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Abstract. We prove that V. Lafforgue’s global Langlands correspondence is

compatible with Fargues–Scholze’s semisimplified local Langlands correspon-

dence. As a consequence, we canonically lift Fargues–Scholze’s construction
to a non-semisimplified local Langlands correspondence for positive character-

istic local fields. We also deduce that Fargues–Scholze’s construction agrees

with that of Genestier–Lafforgue, answering a question of Fargues–Scholze,
Hansen, Harris, and Kaletha. The proof relies on a uniformization morphism

for moduli spaces of shtukas.
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Introduction

The Langlands program predicts a relationship between automorphic forms and
Galois representations. More precisely, in the case of a connected reductive group
G over a global function field F of characteristic p > 0, the Langlands program
posits a canonical map

GLCG :

{
cuspidal automorphic

representations of G(AF)

}
→

{
L-parameters
for G over F

}
,

where AF denotes the adele ring of F, and all representations are taken with Qℓ-
coefficients for some ℓ ̸= p. In a landmark result, such a map GLCG was constructed
by V. Lafforgue [32].

In the case of a connected reductive group G over a nonarchimedean local field
F , the Langlands program predicts a similar map

LLCG :

{
irreducible smooth

representations of G(F )

}
→

{
L-parameters
for G over F

}
.(†)

1
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Recent breakthrough work of Fargues–Scholze [11] constructs such a map up to
semisimplification; namely, they construct a map

LLCss
G :

{
irreducible smooth

representations of G(F )

}
→

{
semisimple L-parameters

for G over F

}
.(‡)

Our main result is that V. Lafforgue’s global Langlands correspondence is com-
patible with Fargues–Scholze’s semisimplified local Langlands correspondence.

Theorem A. Let v be a place of F. Then the square{
cuspidal automorphic

representations of G(AF)

}
GLCG //

(−)v

��

{
L-parameters
for G over F

}
(−)|ssWFv

��{
irreducible smooth

representations of G(Fv)

}
LLCss

GFv//

{
semisimple L-parameters

for GFv
over Fv

}
commutes.

Since GLCG [32, Théorème 12.3] and LLCss
G [11, Theorem IX.0.5] are compatible

with the Satake isomorphism at unramified places, for a given cuspidal automorphic
representation this is already known at unramified places.

We actually prove a refinement of Theorem A on the level of excursion algebras;
see Theorem 6.13.

Remarks.

(1) V. Lafforgue [32, Théorème 13.2] and Fargues–Scholze [11, Proposition IX.4.1]
prove a version of their results with Fℓ-coefficients, and the analogous version
of Theorem A also holds in this mod-ℓ context. See Theorem 6.15.

(2) Once one constructs a non-semisimplified local Langlands correspondence as
in Equation (†) (e.g. see Theorem B below), one can ask whether Theorem
A holds before semisimplification. The answer is already negative when G is
the units of a quaternion algebra [14, Remarque 0.3]. More generally, Arthur’s
conjecture [4] predicts that the answer is negative precisely for global A-packets
where a local A-packet Πψv contains a representation whose L-parameter does
not equal the L-parameter associated with Πψv

. For instance, examples of
Howe–Piatetski-Shapiro [25] show that the answer is also negative when G is
Sp4.

We now turn to some consequences of Theorem A. When charF > 0, Theorem A
enables us to remove the “up to semisimplification” ambiguity in Fargues–Scholze’s
construction.

Theorem B. Assume that charF > 0. Then LLCss
G canonically lifts to a non-

semisimplified local Langlands correspondence LLCG as in Equation (†).
The proof that Theorem A implies Theorem B is due to Gan–Harris–Sawin [12];

roughly, the idea is to maneuver into a situation where Theorem A holds even
before semisimplification. This uses a globalization result of Beuzart-Plessis [12],
work of Heinloth–Ngô–Yun [24] on ℓ-adic Kloosterman sheaves, results of Xu–Zhu
[44] on their p-adic companions, and Deligne’s purity theorem.

Our next result concerns previous work of Genestier–Lafforgue [14], who also con-
structed a map as in Equation (‡) when charF > 0. Genestier–Lafforgue obtained
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a version of Theorem A for their construction, and since this property basically
uniquely characterizes such maps, we deduce the following result.

Theorem C. The Genestier–Lafforgue correspondence agrees with the Fargues–
Scholze correspondence.

This answers a question of Fargues–Scholze [11], Hansen, Harris, and Kaletha
[28]. We also prove a refinement of Theorem C on the level of Bernstein centers;
see Theorem 6.15.

Remark. Conversely, if we only had Theorem C, then work of Genestier–Lafforgue
would imply Theorem A. However, our proof of Theorem A is independent of their
results.

We conclude by showing that LLCss
G satisfies the expected compatibility with

the local Jacquet–Langlands correspondence [5], which we denote by JL, when
charF > 0 and G is the units of a central simple algebra over F .

Theorem D. Assume that charF > 0 and G is the units of a central simple
algebra over F . For any irreducible essentially L2 representation π of G(F ), we
have LLCss

G(π) = LLCss
GLn

(JL(π)).

When charF > 0, Theorem D was previously only known when G is GLn or the
units of a central division algebra over F [11, Theorem IX.7.4]. The charF = 0
analogue of Theorem D is due to Hansen–Kaletha–Weinstein [19, Theorem 6.6.1]
as a consequence of their work on the local Kottwitz conjecture.

Let us discuss our proof of Theorem A. Elements of our strategy go back to
Deligne’s letter to Piatetski-Shapiro [10], which proves local-global compatibility
for modular forms. Their associated Galois representations are constructed via the
cohomology of modular curves, and one of Deligne’s key ideas was to restrict to the
supersingular locus, using the uniformization of the latter by Lubin–Tate space to
relate the local and global Langlands correspondences for GL2.

Deligne’s proof, as well as subsequent works on local-global compatibility using
basic uniformization [9, 21, 40, 35], also crucially relies on arguments specific to the
particular group G in question. However, our proof of Theorem A is uniform in all
groups G.

We begin by observing that, since the correspondences of V. Lafforgue and
Fargues–Scholze are constructed via excursion operators, it suffices to show that
said operators are compatible. Let us recall their definition, which involves moduli

spaces of shtukas. For simplicity, assume that G is split, and write Ĝ for the dual

group of G over Qℓ. For any finite set I and representation V of ĜI , write ShtIG,V
for the associated moduli space of global G-shtukas,1 which is a Deligne–Mumford
stack. Work of Xue [45] naturally endows the compactly supported intersection
cohomology HI

V of its generic fiber with an action of W I
F, where WF denotes the

absolute Weil group. For any x and ξ in V and V ∨, respectively, that are fixed

by the image of ∆ : Ĝ ↪→ ĜI , and any γ• in W I
F, the associated global excursion

operator is

H∗
1

x−→H∗
V |∆(Ĝ)

= HI
V

γ•−→HI
V = H∗

V |∆(Ĝ)

ξ−→H∗
1 ,(♡)

where ∗ denotes the singleton set, and 1 denotes the trivial representation.

1In the introduction, we ignore convolution data and level structures in our notation.
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In the local setting, write LocShtIG,V for the associated moduli space of local
G-shtukas, which is an analytic adic space. Work of Fargues–Scholze [11] naturally

endows the intersection homology H loc,I
V of its generic fiber with an action of W I

Fv
,

so when γ• lies in W I
Fv

, one can form local excursion operators using the same
recipe as in Equation (♡).

We compare the local and global excursion operators using a uniformization mor-
phism. To define it, first we construct a formal model LocShtIG,V for LocShtIG,V at
hyperspecial level. Stating the formal moduli problem is straightforward, although
comparing it with our original definition of local G-shtukas requires an equicharac-
teristic version of Kedlaya–Liu’s results [31] on relative p-adic Hodge theory, which
we prove. Next, we use Beauville–Laszlo gluing to construct a formally étale mor-
phism of formal stacks

Θ̂ : LocShtIG,V → Ŝht
I

G,V

when the level is hyperspecial at v, where Ŝht
I

G,V denotes the formal completion

of ShtIG,V along vI , and we assume that deg v = 1 for simplicity. This generalizes
results of Arasteh Rad–Hartl [3].

From here, we restrict to a Harder–Narasimhan truncation ShtI,≤sG,V of ShtIG,V
and enlarge the level away from v. This yields a scheme that is locally of finite

type, so we can use Huber’s analytification [26, (3.8)] to extend Θ̂ to a morphism
of analytic adic spaces

Θ : LocShtI,≤sG,V →(ShtI,≤sG,V )(SpaFv)I .

for deeper levels at v. To prove that Θ is étale, it suffices to consider the case of
hyperspecial level. There, we prove that LocShtIG,V is a formal scheme that is
locally formally of finite type, generalizing results of Arasteh Rad–Hartl [2]. After
restricting to a Harder–Narasimhan truncation, this lets us upgrade the formal
étaleness of Θ to étaleness, as desired.

Since Θ is étale, we can form the !-pushforward map

Θ! : H
loc,I,≤s
V →HI,≤s

V .

After restricting to a Harder–Narasimhan truncation, this induces a morphism from
the composition diagram in Equation (♡) to the analogous composition diagram

for H loc,I
V . We use this to prove that the global and local excursion operators are

compatible, which concludes the proof of Theorem A.
With Theorem A in hand, let us return to the local context and sketch the

proofs of Theorem B, Theorem C, and Theorem D. For Theorem B, compatibility
with parabolic induction and the Langlands classification reduce us to the case of
L2 representations π. Then the Langlands program predicts LLCG(π) to be the
unique pure L-parameter whose semisimplification is LLCss

G(π), if it exists. To
construct this L-parameter, we use a globalization result of Beuzart-Plessis [12] to
obtain a cuspidal automorphic representation Π that has the same cuspidal support
as π at one place and is isomorphic to the cuspidal representation π′ considered by
Gross–Reeder [16] at another place. Combining Theorem A with work of Heinloth–
Ngô–Yun [24] and Xu–Zhu [44] shows that the Fargues–Scholze parameter of π′ is
irreducible. From here, applying Deligne’s purity theorem and Theorem A to Π
yields the desired result.
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For Theorem C, we instead reduce to the case of cuspidal representations. Then
a classical Poincaré series argument and Theorem A give the desired result. Finally,
for Theorem D we use the simple trace formula to construct a cuspidal automorphic
representation of GLn that globalizes JL(π) and transfers to a suitable central
division algebra under the global Jacquet–Langlands correspondence [6]. From
here, the Chebotarev density theorem and Theorem A imply the desired result.

Outline. In §1, we recall some facts about loop groups and Beilinson–Drinfeld
affine Grassmannians. In §2, we define the formal moduli problem and prove that
it is a formal scheme that is locally formally of finite type. In §3, we prove the
necessary results on z-adic Hodge theory. In §4, we define the analytic moduli
problem, compare it with the formal moduli problem, and recall results of Fargues–
Scholze [11] on its intersection homology. In §5, we recall the global moduli problem
and construct the uniformization morphism. In §6, we use this to prove Theorem
A. In §7, we use Theorem A to prove Theorem B, Theorem C, and Theorem D.

Notation. Unless otherwise specified, all products are taken over Fq. The tran-
sition morphisms for our ind-schemes are required to be closed embeddings. We
view all functors between derived categories as derived functors.

Starting in §3, we freely use definitions from perfectoid geometry as in [41] and
[11]. When viewing an adic space X as a locally ringed space, we take OX for its
structure sheaf. For any adic space X over Zp, write X♢ for the associated v-sheaf
over Fp as in [42, Lemma 18.1.1].

Acknowledgements. The author thanks Mark Kisin for his patience and advice.
The author would also like to thank Michael Harris for giving a talk on [12] that
motivated him to prove Theorem A, to thank Urs Hartl for helpful corrections, and
to thank David Hansen for his interest and encouragement.

1. Recollections on affine Grassmannians

In this section, we begin by setting up our local context. We then establish some
notation on loop groups, Beilinson–Drinfeld affine Grassmannians, and their affine
Schubert varieties, as well as recall basic facts about these objects. Nothing in this
section is new.

1.1. Let F be a local field of characteristic p > 0, and write Fq for its residue field.
Fix a separable closure F of F , and write ΓF for Gal(F/F ). Choose a uniformizer
z of OF , which yields an identification OF = Fq[[z]]. Let G be a parahoric group
scheme over OF as in [8, 5.2.6].

It will be convenient to use the following globalization of our local setup, although
we will see that our constructions are independent of this globalization.

Lemma. There exists a geometrically connected smooth proper curve C over Fq,
a nonempty open subspace U ⊆ C, a parahoric group scheme GC over C as in [38,

Definition 2.18], a closed point v of C, and an isomorphism ÔC,v ∼= OF such that

a) GC |U is reductive over U ,

b) GC |Ov
is identified with G as group schemes over ÔC,v ∼= OF .

Moreover, there exists an SLh-bundle V on C and a closed embedding

ι : GC→Aut(V )
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of group schemes over C such that Aut(V )/GC is quasi-affine over C.

Proof. By [38, Lemma 3.1], there exists a connected smooth curve C̊ over Fq, a
smooth affine group scheme G̊ over C̊ with geometrically connected fibers, a closed

point v of C̊, and an isomorphism ÔC,v ∼= OF such that G̊|C̊∖v is reductive over

C̊∖v and G̊|ÔC,v
is identified with G as group schemes over ÔC,v ∼= OF . Because C̊

has an Fq-point v, it is geometrically connected. Write C for the associated smooth
proper curve over Fq. Fpqc descent and [8, 5.1.9] yield a parahoric group scheme

GC over C as in [38, Definition 2.18] that extends G̊, so we can take U = C̊ ∖ v.
Finally, the last claim follows from [3, Proposition 2.2(b)]. □

1.2. Let us recall some facts about loop groups and affine Grassmannians. Let I
be a finite set, and let S = SpecR be an affine scheme over CI . For all i in I, write
Γi for the graph of its i-th projection S→C, which is a relative effective Cartier
divisor on C × S.

Let I1, . . . , Ik be an ordered partition of I. Write ÔC(S) for the ring of global

sections of the completion of OC×S along
∑
i∈I Γi. For all 1 ≤ j ≤ k, write Ô

j,◦
C (S)

for the version that is punctured along
∑
i∈Ij Γi.

Definition.

a) Write LnI (GC), L
+
I (GC), and L

j,◦
I (GC) for the sheaves over C

I given by sending

S to GC(On
∑

i∈I Γi
), GC(ÔC(S)), and GC(Ôj,◦C (S)), respectively.

b) Write Gr
(I1,...,Ik)
GC

for the sheaf over CI whose S-points parametrize data con-
sisting of

i) for all 1 ≤ j ≤ k, a G-bundle Gj on Spec ÔC(S),
ii) for all 1 ≤ j ≤ k, an isomorphism of G-bundles

ϕj : Gj |Spec Ôj,◦
C (S)

∼→Gj+1|Spec Ôj,◦
C (S),

where Gk+1 denotes the trivial G-bundle.

Write L+
z G and LzG for the fiber at v of L+

∗ (GC) and L
1,◦
∗ (GC), respectively, where

∗ denotes the singleton set. Also, write Grkz,G for the fiber at vI of Gr
({1},...,{k})
GC

.

The proof of [18, Lemma 3.2] shows that LnI (GC) is of finite type and affine over

CI , so L+
I (GC) = lim←−n L

n
I (GC) is affine over CI . Recall that Lj,◦I (GC) is ind-affine

over CI [18, Lemma 3.2(i)], and Gr
(I1,...,Ik)
GC

is ind-projective over CI [3, Proposition

3.12]. Also, note that L+
z G, LzG, and Grkz,G are independent of the globalization

from Lemma 1.1.

1.3. The following lemmas give an alternative description of the Beilinson–Drinfeld
affine Grassmannian after completing at a point. Write D for the formal scheme
Spf OF , and recall that Spec yields an anti-equivalence from the category of Fq[[ζi]]i∈I -
algebras where the ζi are nilpotent to the category of affine schemes over DI . Let
S = SpecR be an affine scheme over DI .

Lemma. The direct system (n
∑
i∈I Γi)n≥0 of schemes over C × S is naturally

isomorphic to (nv × S)n≥0. Consequently, ÔC(S) is naturally isomorphic to R[[z]],

and Ôj,◦C (S) = ÔC(S)[ 1
z−ζi ]i∈Ij = R[[z]][ 1

z−ζi ]i∈Ij is naturally isomorphic to R((z)).
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Proof. As nilpotent thickenings are étale-local and C is smooth at v, it suffices
to replace C with A1

Fq
= SpecFq[z] and v with the origin. Then n

∑
i∈i Γi is the

vanishing locus of
∏
i∈I(z− ζi)n in C × S = SpecR[z], and nv× S is the vanishing

locus of zn in C × S. Choose positive integers ni such that ζni
i = 0 in R.

Set N1 :=
∑
i∈I n+ni−1 and N2 := n+maxi∈I{ni}−1. On n

∑
i∈I Γi, we have

zN1 =
∏
i∈I

((z − ζi) + ζi)
n+ni−1 =

∏
i∈I

n+ni−1∑
l=0

(
n+ni−1

l

)
(z − ζi)lζn+ni−1−l

i = 0,

so n
∑
i∈I Γi lies in N1v × S. Conversely, on nv × S, we see that∏

i∈I
(z − ζi)N2 =

∏
i∈I

N2∑
l=0

(
N2

l

)
zlζN2−l

i = 0,

so nv × S lies in N2

∑
i∈I Γi. □

1.4. Write Ĝr
(I1,...,Ik)

G for the formal completion of Gr
(I1,...,Ik)
GC

along vI in CI .

Lemma. Our Ĝr
(I1,...,Ik)

G is an ind-projective ind-scheme over DI , and it is natu-

rally isomorphic to Grkz,G |DI .

Thus Ĝr
(I1,...,Ik)

G is independent of the globalization from Lemma 1.1.

Proof. This follows immediately from Lemma 1.3. □

1.5. We now introduce affine Schubert varieties. Write Fq(C) for the separable

closure of Fq(C) in F , and write ΓFq(C) for Gal(Fq(C)/Fq(C)). Let T be a maximal

subtorus of GC |Fq(C), and write X+
∗ (T ) for the set of dominant cocharacters of

TFq(C)
with respect to a fixed Borel subgroup B ⊆ GC |Fq(C)

containing TFq(C)
.

Identify X+
∗ (T ) with the set of conjugacy classes of cocharacters of GC |Fq(C)

.

Let µ• = (µi)i∈I be in X+
∗ (T )I . Identify the field of definition of µi with Fq(Ci)

for some finite cover Ci→C that is étale over U , and write Ui for the preimage of
U in Ci. Note that the closure Fi of Fq(Ci) in F equals the completion of Fq(Ci)
at the closed point vi of Ci above v induced by Fq(C)→F . Write Di for Spf OFi

.

Definition.

a) Write Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ui

⊆ Gr
(I1,...,Ik)
GC

|∏
i∈I Ui

for the associated closed affine

Schubert variety, and write Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

for its closure in Gr
(I1,...,Ik)
GC

|∏
i∈I Ci

.

b) Write Ĝr
(I1,...,Ik)

G,µ•
|∏

i∈I Di
for the formal completion of Gr

(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

along∏
i∈I vi in

∏
i∈I Ci.

c) When I = ∗, write Gr1z,G,µ |v∗ for the fiber at v∗ of Gr
(∗)
GC ,µ

|C∗ .

Recall that Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

is a projective scheme over
∏
i∈I Ci, and the nat-

ural L+
I (GC)-action on Gr

(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

factors through LnI (GC) for large enough

n [32, Proposition 1.10]2. Therefore Ĝr
(I1,...,Ik)

G,µ•
|∏

i∈I Di
is a formal scheme that is

formally of finite type and adic over
∏
i∈I Di, and its special fiber is projective

2While [32, Proposition 1.10] only treats the case of split G, it extends to the general case.
Indeed, this is already implicitly used in [32, (12.10)].
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over
∏
i∈I vi. Also, the proof of [47, Lemma 3.2] shows that Ĝr

(I1,...,Ik)

G,µ•
|∏

i∈I Di
is

independent of the globalization from Lemma 1.1.

1.6. Recall that we have an isomorphism

Grkz,G
∼→(Gr1z,G)

k

given by ((Gj)kj=1, (ϕj)
k
j=1) 7→ ((Gk, ϕk), . . . , (G1, ϕk ◦ · · · ◦ ϕ1)).

Definition. Under this identification, write Grkz,SLh,m
for the closed subsheaf of

Grkz,SLh
corresponding to (Gr1z,SLh,m2ρ∨)

k ⊆ (Gr1z,SLh
)k, where 2ρ∨ denotes the sum

of positive coroots in SLh.

By 1.5, we see that Grkz,SLh,m
is a projective scheme over Fq.

1.7. We conclude by showing that, after pulling back to the loop group, affine
Schubert varieties are affine. Write LI(GC)µ• |∏i∈I Ci

for the pullback of

Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

under the natural morphism
∏k
j=1 L

j,◦
I (GC)→Gr

(I1,...,Ik)
GC

.

Lemma. Our LI(GC)µ• |∏i∈I Ci
is affine over

∏
i∈I Ci.

Proof. Because Aut(V )/GC is quasi-affine over C, the proof of [48, Proposition

1.2.6] shows that ι∗ : Gr
(I1,...,Ik)
GC

→Gr
(I1,...,Ik)
SLh,C

is a locally closed embedding. Now

1.5 indicates that Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

is a quasi-compact scheme, so [23, Lemma 5.4]

implies that its image under ι∗ lies in Gr
(I1,...,Ik)
SLh,C ,(m2ρ∨)i∈I

|∏
i∈I Ci

for large enough m.

Since Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

is projective over
∏
i∈I Ci by 1.5 and ι∗ is a monomor-

phism, we see that ι∗ : Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

→Gr
(I1,...,Ik)
SLh,C ,(m2ρ∨)i∈I

|∏
i∈I Ci

is a closed

embedding. Combined with the fact that L+
I (GC)→L+

I (SLr,C) is a closed em-
bedding, this implies that LI(GC)µ• |∏i∈I Ci

→LI(SLh,C)(m2ρ∨)i∈I
|∏

i∈I Ci
is also a

closed embedding. Now the argument in the proof of [2, Lemma 4.23] shows that
LI(SLh,C)(m2ρ∨)i∈I

is affine over CI , so LI(GC)µ• |∏i∈I Ci
is affine over

∏
i∈I Ci. □

2. Formal moduli of local shtukas

To define the uniformization morphism via Beauville–Laszlo gluing in §5, we
need a formal variant of the moduli of local shtukas. Moreover, to show that the
uniformization morphism is étale (after passing to generic fibers), we need some
finitude properties of this formal moduli. Accomplishing these tasks is the goal of
this section.

We start by defining local shtukas and their quasi-isogenies in the formal setting.
After proving a rigidity property for quasi-isogenies, we define the formal moduli
problem, and we dedicate the rest of this section to proving that it gives a formal
scheme that is locally formally of finite type over DI .

Our strategy ultimately harks back to Rapoport–Zink’s proof [36] of the analo-
gous property for Rapoport–Zink spaces. The equicharacteristic incarnation of this
argument is heavily based on work of Hartl–Viehmann [23] and Arasteh Rad–Hartl
[2], although we generalize their results to the case of arbitrarily many legs.
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2.1. Later, it will be useful to work in the following generality. Let R be a topo-
logical Fq[[ζi]]i∈I -algebra that is adic with finitely generated ideal of definition, and
write S := Spf R. Write τ : S→S for the absolute q-Frobenius endomorphism. By
abuse of notation, we also write τ : R[[z]]→R[[z]] for the canonical lift of absolute
q-Frobenius. We use

τ
(−) to denote pullback by τ .

Write R[[z, 1z ⟩ for the completion of R((z)) with respect to the topology induced
from R. We now define local G-shtukas.

Definition.

a) A local G-shtuka over S consists of
i) for all 1 ≤ j ≤ k, a G-bundle Gj on SpecR[[z]],
ii) for all 1 ≤ j ≤ k, an isomorphism of G-bundles

ϕj : Gj |SpecR[[z]][ 1
z−ζi

]i∈Ij

∼→Gj+1|SpecR[[z]][ 1
z−ζi

]i∈Ij
,

where Gk+1 denotes the G-bundle τG1.
b) Suppose that S lies over

∏
i∈I Di, and let G = ((Gj)kj=1, (ϕj)

k
j=1) be a local

shtuka over S. We say that G is bounded by µ• if, for any affine étale cover

Spf R̃→S with τG1|Spec R̃[[z]] trivial and any trivialization t : τG1|Spec R̃[[z]]

∼→G,

the Spf R̃-point of Ĝr
(I1,...,Ik)

G |∏
i∈I Di

given by

G1|Spec R̃[[z]]

(ϕ1)R̃[[z, 1
z
⟩
// · · ·

(ϕk−1)R̃[[z, 1
z
⟩
// Gk|Spec R̃[[z]]

(t◦ϕk)R̃[[z, 1
z
⟩
// G

lies in Ĝr
(I1,...,Ik)

G,µ•
|∏

i∈I Di
, using the description of Ĝr

(I1,...,Ik)

G from Lemma 1.4.

It suffices to check Definition 2.1.b) for a single Spf R̃→S and t.

2.2. For the rest of this section, assume that R is discrete, so that the ζi are
nilpotent in R and S = SpecR. In this setting, we use the following notion of
quasi-isogenies.

Definition. Let G and G ′ be local G-shtukas over S.

a) A quasi-isogeny from G to G ′ consists of, for all 1 ≤ j ≤ k, an isomorphism of
G-bundles

δj : Gj |SpecR((z))
∼→G ′

j |SpecR((z))

such that the diagram

Gj |SpecR((z))

ϕj
//

δj

��

Gj+1|SpecR((z))

δj+1

��

G ′
j |SpecR((z))

ϕ′
j
// G ′
j+1|SpecR((z))

commutes, where δk+1 denotes the isomorphism τδ1, and we use Lemma 1.3 to
identify R[[z]][ 1

z−ζi ]i∈Ij with R((z)).

b) Let m be a non-negative integer, and let δ be a quasi-isogeny from G to G ′. We
say that δ is bounded by m if, for all 1 ≤ j ≤ k, the morphism ι∗(δj) yields a

point of [L+
z SLh\Gr1z,SLh,m2ρ∨ ].

Since L+
z G-bundles on SpecR are trivial after an étale cover, [23, Lemma 5.4]

implies that any quasi-isogeny is bounded by m for large enough m.
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2.3. We will need the following quantitative version of the rigidity of quasi-isogenies.
Let J be an ideal of R satisfying Jn = 0, and write ȷ : S→S for the associated
closed embedding.

Proposition. For all local G-shtukas G and G ′ over S, pullback yields a bijection

{quasi-isogenies from G to G ′} ∼→{quasi-isogenies from ȷ∗G to ȷ∗G ′}.
Moreover, suppose that S lies over

∏
i∈I Di and that G and G ′ are bounded by µ•.

There exists a non-negative integer B such that, if ȷ∗δ is bounded by m, then δ is
bounded by m+B⌈logq n⌉.

Proof. By induction, it suffices to consider the n = q case. There τ : S→S factors
as ȷ ◦ ı for a unique morphism ı : S→S, so for any quasi-isogeny δ from G to G ′,
we get τδ1 = ı∗ȷ∗δ1. Hence the commutative square

Gk|SpecR((z))
ϕk //

δk

��

τG1|SpecR((z))

τδ1

��

G ′
k|SpecR((z))

ϕ′
k // τG ′

1|SpecR((z))

,

enables us to recover δk from ȷ∗δ1, where we use Lemma 1.3 to identifyR[[z]][ 1
z−ζi ]i∈Ik

with R((z)). From here, we similarly recover δj for 1 ≤ j ≤ k − 1, showing that

pullback by ȷ is injective on quasi-isogenies. Considering the same squares over S
also shows that pullback by ȷ is surjective on quasi-isogenies.

Next, suppose that S lies over
∏
i∈I Di and that G and G ′ are bounded by µ•.

If ȷ∗δ is bounded by m, then its pullback ı∗ȷ∗δ1 = τδ1 is as well. Because ϕk and ϕ′k
are bounded by (µi)i∈Ik , where the relative position bound is taken with respect
to the (z − ζi) for i in Ik, a quasi-compactness argument shows that there exists
a non-negative integer B such that δk is bounded by m + B. For 1 ≤ j ≤ k − 1,
applying the same argument to δj indicates that, after increasing B by an amount
depending only on µ•, our δj is also bounded by m+B. □

2.4. We now define the formal moduli of local G-shtukas.

Definition. Write LocSht
(I1,...,Ik)
G for the sheaf over DI whose S-points parame-

trize data consisting of

i) a local G-shtuka G over S,
ii) a quasi-isogeny δ from G to the trivial local G-shtuka G = ((G)kj=1, (id)

k
j=1).

Write LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

for the subsheaf of LocSht
(I1,...,Ik)
G |∏

i∈I Di
whose S-

points consist of the (G , δ) such that G is bounded by µ•.

Write fL : LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

→
∏
i∈I Di for the structure morphism.

2.5. Proposition. Our LocSht
(I1,...,Ik)
G is naturally isomorphic to Grkz,G |DI over

DI , and LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

is a closed subsheaf of LocSht
(I1,...,Ik)
G |∏

i∈I Di
.

Proof. In Definition 2.4, note that i) and ii) are uniquely determined by (Gj)kj=1,

(ϕj)
k−1
j=1 , and δk. This is precisely the data parametrized by Grkz,G |DI , which proves

the first claim. The second claim follows from the fact that Ĝr
(I1,...,Ik)

G,µ•
|∏

i∈I Di
is a

closed subsheaf of Ĝr
(I1,...,Ik)

G |∏
i∈I Di

; see the proof of [2, Proposition 4.11]. □
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2.6. First, we naively stratify LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

by bounding the quasi-isogeny.

Write LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

for the subsheaf of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

whose S-

points consist of the (G , δ) such that δ is bounded by m.

Proposition. Our LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

is a formal scheme that is formally of

finite type and adic over
∏
i∈I Di, its reduced subscheme is projective over

∏
i∈I vi,

and LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

equals the direct limit lim−→m
LocSht

(I1,...,Ik)
G,µ•,m

|∏
i∈Di

.

Proof. Note that we have a Cartesian square

LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

//

ι∗

��

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

ι∗

��

Grkz,SLh,m
|∏

i∈I Di
// Grkz,SLh

|∏
i∈I Di

,

where we use Proposition 2.5 to identify LocSht
(I1,...,Ik)
SLh

|∏
i∈I Di

with Grkz,SLh
|∏

i∈I Di
.

Because SLh/G is quasi-affine over OF , Proposition 2.5 and [48, Proposition 1.2.6]

show that LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

→Grkz,SLh
|∏

i∈I Di
is a closed embedding. There-

fore its pullback LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

→Grkz,SLh,m
|∏

i∈I Di
is as well. Since

Grkz,SLh,m
|∏

i∈I nvi

is projective over
∏
i∈I nvi for any positive integer n by 1.6, the same holds for

LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I nvi

. Now the underlying topological space of Grkz,SLh,m
|∏

i∈I nvi

is independent of n, so the LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I nvi

have this property too. From

here, [17, (1, 10.6.4)] indicates that LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

is a noetherian formal

scheme that is adic over
∏
i∈I Di. Therefore its reduced subscheme equals that of

LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I vi

, which is projective over
∏
i∈I vi, so LocSht

(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

is formally of finite type over
∏
i∈I Di. Finally, last statement follows from Grkz,SLh

equaling the direct limit lim−→m
Grkz,SLh,m

. □

2.7. To obtain a better stratification of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

, we need the fol-

lowing algebraization lemma. Briefly, relax our assumption that R is discrete, since
we will also use this lemma later. Let (Sl)l≥0 be a direct system of affine schemes
Sl = SpecRl over

∏
i∈I Di such that

i) the morphisms Sl→Sl′ are closed embeddings,
ii) the associated ideals ker(Rl′→Rl) are nilpotent.

Take R to be the ring lim←−lRl, and endow R with a topological ring structure

such that Fq[[ζi]]i∈I→R is continuous, the R→Rl are continuous for the discrete
topology on Rl, and R is adic with finitely generated ideal of definition.

Lemma. Pullback yields an equivalence of groupoids{
local G-shtukas over
S bounded by µ•

}
∼−→ lim←−

l

{
local G-shtukas over
Sl bounded by µ•

}
.
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Proof. Let (G l)l≥0 be a compatible system of local G-shtukas over Sl bounded by
µ•. We can form the G-bundles Gj := lim←−l G

l
j on SpecR[[z]], so now we just need to

form the isomorphisms ϕj .

Let Spec R̃0→S0 be an affine étale cover where G 0
j |Spec R̃0[[z]]

is trivial for all

1 ≤ j ≤ k, and fix trivializations of the G 0
j |Spec R̃0[[z]]

. By ii), there exists a unique

affine étale cover Spec R̃l→Sl whose pullback to S0 is Spec R̃0, and there also exist
compatible systems of trivializations of the G l

j |Spec R̃l[[z]]
[23, Proposition 2.2(c)]3.

Under these identifications, the (ϕlj)R̃l((z))
correspond to compatible systems of blj in

G(Ôj,◦C (Spec R̃l)), where we use Lemma 1.3 to identify R̃l((z)) with Ôj,◦C (Spec R̃l).
For all i in I, let Vi be an affine neighborhood of vi in Ci. Because the G l

are bounded by µ•, our (blj)
k
j=1 yield R̃l-points of LI(GC)µ• |∏i∈I Vi

. The latter is

affine by Lemma 1.7, so the compatible system of (blj)
k
j=1 yields an R̃ := lim←−l R̃l-

point (bj)
k
j=1 of LI(GC)|∏

i∈I Vi
. By construction, the resulting local G-shtuka

G̃ := ((Gj |Spec R̃[[z]])
k
j=1, (bj)

k
j=1) over Spec R̃ is bounded by µ•. Since the (ϕlj)R̃l((z))

and thus blj are compatible with the descent data of G l
j from Spec R̃l to Sl, we see

that the bj are compatible with the descent data of Gj from Spec R̃ to S. Hence G̃
naturally descends to a local G-shtuka G over S bounded by µ•, as desired. □

2.8. Resume our assumption that R is discrete. The following stratification of

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

has the advantage of being closed under formal completion.

Write LocSht
(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

for the formal completion of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

along the reduced subscheme of LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

.

Lemma. Our LocSht
(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

is a formal scheme that is formally of finite

type over
∏
i∈I Di.

Proof. Proposition 2.6 and [23, Lemma 5.4] imply that LocSht
(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

equals the direct limit lim−→l
LocSht

(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

, where LocSht
(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

denotes the formal completion of LocSht
(I1,...,Ik)
G,µ•,m+l|∏i∈I Di

along the reduced sub-

scheme of LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

. The reduced subscheme of LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

is quasi-compact by Proposition 2.6, so it is covered by finitely many affine open sub-

schemes U . Proposition 2.6 indicates that LocSht
(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

is a noetherian

formal scheme with the same reduced subscheme as LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

, so U

corresponds to an affine open formal subscheme Ul = Spf Al of LocSht
(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

.

The above shows that lim−→l
Ul is an open subsheaf of LocSht

(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

.

Thus it suffices to prove that lim−→l
Ul is an affine formal scheme that is formally of

finite type over
∏
i∈I Di. Because the inclusion morphisms

LocSht
(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

→LocSht
(I1,...,Ik)
G,µ•,m̂,l′

|∏
i∈I Di

are closed embeddings, the maps Al′→Al are surjective. Write A := lim←−lAl. Write

J0 for the largest ideal of definition of A0, and write J for its preimage in A.

3While [23] only treats split reductive G, the proof immediately adapts to any smooth G.
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For any positive integer c, we claim that Al′/J
c→Al/J

c is an isomorphism for
large enough l and l′. Note that Al′/J

c→Al/J
c is surjective with nilpotent kernel,

and the Mittag-Leffler criterion implies that A/Jc = lim←−lAl/J
c. Endow A/Jc with

the discrete topology. Because the ζi vanish in A/J = A0/J0, the ζi are nilpotent
in A/Jc, so Fq[[ζi]]i∈I→A/Jc is continuous. Altogether we can apply Lemma 2.7
to the local G-shtukas G l over SpecAl/J

c obtained from the morphism

SpecAl/J
c→Spf Al = Ul ⊆ LocSht

(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

to get a local G-shtuka G over SpecA/Jc bounded by µ•. Next, consider the

quasi-isogeny δ0 obtained from SpecA0/J0→LocSht
(I1,...,Ik)
G,µ•,m̂,0

|∏
i∈I Di

. Proposition

2.3 uniquely lifts δ0 to a quasi-isogeny δ from G to G, which implies that the

resultingA/Jc-point (G , δ) of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

lies in LocSht
(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

.

Therefore [23, Lemma 5.4] indicates that (G , δ) lies in LocSht
(I1,...,Ik)
G,µ•,m̂,l

|∏
i∈I Di

for

large enough l. Pulling back to SpecA0/J0 shows that (G , δ) even lies in Spf Al.
The uniqueness of Proposition 2.3 implies that the pullback of (G , δ) to SpecAl′/J

c

equals (G l, δl), so Al′→Al→A/Jc→Al′/J
c equals the quotient map. Quotienting

by the image of Jc in Al shows that Al′/J
c→Al/J

c is an isomorphism, which
concludes our proof of the claim.

Write al := ker(A→Al). The claim indicates that the ideals al+J
c of A stabilize

for any positive integer c, and because the Al are noetherian, we see that the
im(J/J2→Al/J

2) = J/(J2+al) are finite over A. Therefore [36, proposition (2.5)]
shows that A with the inverse limit topology is noetherian and J-adic, which implies
that lim−→l

Ul = Spf A. Finally, the reduced subscheme of Spf A is of finite type over∏
i∈I vi by Proposition 2.6, so Spf A is formally of finite type over Di. □

2.9. We can use the quasi-isogeny to define the following distance function.

Definition. Let K be a field over Fq, and let x = (G , δ) and x′ = (G ′, δ′) be

K-points of LocSht
(I1,...,Ik)
G . Write d(x, x′) for the smallest non-negative integer m

such that the quasi-isogeny δ−1 ◦ δ′ of local G-shtukas over SpecK((z)) is bounded
by m.

2.10. Lemma. As K runs over all fields over Fq, the maps d induce a metric on the

underlying set |LocSht
(I1,...,Ik)
G |. For any x in |LocSht

(I1,...,Ik)
G | and non-negative

integer r, the associated closed ball Br(x) of radius r centered at x is closed with

respect to the Zariski topology on |LocSht
(I1,...,Ik)
G |.

Proof. We immediately see that d is insensitive to field extensions, so d induces

a map |LocSht
(I1,...,Ik)
G | × |LocSht

(I1,...,Ik)
G |→Z≥0. Since relative position bounds

along the same divisor are sub-additive under composition, d satisfies the triangle
inequality, and because 2ρ∨ is fixed by the Chevalley involution, d is symmetric.
Next, if d(x, x′) = 0, then ι∗(δ

−1
j ◦ δ′j) extends to an isomorphism of SLr-bundles

on SpecK[[z]] for all 1 ≤ j ≤ k. Since ι is a monomorphism, this implies that the
δ−1
j ◦ δ′j extend to isomorphisms of G-bundles on SpecK[[z]], so x = x′. For the last

statement, note that Br(x) equals, on the level of topological spaces, the preimage
of the closed substack [L+

z SLh\Gr1z,SLh,r2ρ∨
]k under the morphism

LocSht
(I1,...,Ik)
G →[L+

z SLh\Gr1z,SLh
]k

given by (G ′, δ′) 7→ (ι∗(δ
−1
j ◦ δ′j))kj=1. □
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2.11. All points of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

are close enough to one defined over a

fixed finite field in the following sense.

Lemma. There exists a finite extension Fq′ of Fq and a non-negative integer D

such that, for every x in |LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

|, there exists an Fq′-point y of

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

satisfying d(x, y) ≤ D.

Proof. Suppose that x corresponds to a K-point (G , δ), where we can assume that
K is an algebraically closed field over Fq. Then Gj is trivial for all 1 ≤ j ≤ k,
and after fixing trivializations of the Gj , our δj correspond to gj in G(K((z))). The
commutativity of the diagram

G1|SpecK((z))
ϕ1 //

δ1
��

· · ·
ϕk−1

// Gk|SpecK((z))
ϕk //

δk
��

τG1|SpecK((z))

τδ1
��

G · · · G G

implies that
τ
δ−1
1 ◦ δ1 = ϕk ◦ · · · ◦ ϕ1, so the image of τ(g1)

−1g1 in Gr1z,G |v∗ lies

in Gr1z,G,
∑

i∈I µi
|v∗ . Now 1.5 indicates that Gr1z,G,

∑
i∈I µi

|v∗ is a quasi-compact

scheme, so [23, Lemma 5.4] shows that its image under ι∗ lies in Gr1z,SLh,m
for large

enough m. Therefore [33, 2.2.1 (ii)] and [37, (2.1)] yield a non-negative integer D
such that, for all such g1, there exists h1 in G(Fq((z))) such that the image of g1h

−1
1

in Gr1z,SLh
lies in Gr1z,SLh,D2ρ∨ .

If
∑
i∈I µi is not a coroot, then LocSht

(I1,...,Ik)
G,µ•

|∏
i∈I Di

is empty, and the re-

sult vacuously holds. So assume that
∑
i∈I µi is a coroot, which implies that

Gr
(I)
G,

∑
i∈I µi

|∏
i∈I vi

contains the image of 1 in Gr
(I)
G |∏i∈I vi

. Since the convolu-

tion morphism Gr
(I1,...,Ik)
G,µ•

|∏
i∈I vi

→Gr
(I)
G,

∑
i∈I µi

|∏
i∈I vi

is of finite type by 1.5 and

surjective, its fiber at 1 has an Fq′ -point b for some finite extension Fq′ of Fq. Next,

identify Gr
(I1,...,Ik)
G |vI with Grkz,G |vI . Because the fiber of (LzG)k→GrkG |∏i∈I vi

at

b is an (L+
z G)

k-bundle on SpecFq′ , Lang’s lemma indicates that it has an Fq′ -point
(bj)

k
j=1. By construction, the local G-shtuka H := ((G)kj=1, (bj)

k
j=1) over SpecFq′

is bounded by µ•, and bk · · · b1 equals 1 up to right G(Fq′ [[z]])-translation. After
replacing b1 with a right G(Fq′ [[z]])-translate, we can assume that bk · · · b1 = 1.
Combined with the fact that h1 = τ(h1), we see that the diagram

G
b1 //

h1

��

· · ·
bk−1

// G
bk //

hk

��

G

τh1

��

G · · · G G

commutes for uniquely determined h2, . . . , hk in G(Fq′((z))). Since bj and ϕj are
bounded by

∑
i∈Ij µj for 1 ≤ j ≤ k− 1, where the relative position bound is taken

with respect to z, a quasi-compactness argument shows that, after increasing D by
an amount depending only on µ•, the image of gjh

−1
j in Gr1z,SLh

lies in Gr1z,SLh,D2ρ∨ .

Hence the quasi-isogeny h := (hj)
k
j=1 from H to G yields an Fq′ -point y := (H , h)

of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

with d(x, y) ≤ D, as desired. □



LOCAL-GLOBAL COMPATIBILITY OVER FUNCTION FIELDS 15

2.12. The following theorem is the main result of this section. Write Br(x)µ• for

the intersection of Br(x) and |LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

|, and write 1 for the Fq-point
(G, (id)kj=1) of LocSht

(I1,...,Ik)
G . Note that Bm(1)µ• equals |LocSht

(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

|.

Theorem. Our LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

is a formal scheme that is locally formally

of finite type over
∏
i∈I Di.

Proof. Let Fq′ and D be as in Lemma 2.11. Write Zsm for the union⋃
y

BD(y)µ• ∩Bm(1)µ• ,

where y runs over Fq′ -points of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

satisfying d(1, y) ≥ s. The

triangle inequality implies that it suffices to take y also satisfying d(1, y) ≤ m+D.

Because Bm+D(1)µ• equals |LocSht
(I1,...,Ik)
G,µ•,m+D|∏i∈I Di

|, Proposition 2.6 implies that

there are finitely many such y. Hence Lemma 2.10 indicates that Zsm is a a finite

union of Zariski closed subsets of |LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

|.
Write Usm for the open formal subscheme of LocSht

(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

with un-

derlying topological space given by the complement of Zsm. By Lemma 2.8, Usm
is formally of finite type over

∏
i∈I Di. Note that LocSht

(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

equals

the formal completion of LocSht
(I1,...,Ik)

G,µ•,m̂+1
|∏

i∈I Di
along the reduced subscheme of

LocSht
(I1,...,Ik)
G,µ•,m̂

|∏
i∈I Di

, so Usm+1 equals the formal completion of Usm along the

reduced subscheme of Usm.
For any non-negative integer s, we claim that Usm stabilizes. The above indicates

that it suffices to check this on underlying sets, so suppose that there exists x

in |Usm+1| ∖ |Usm|. Lemma 2.11 yields an Fq′ -point y of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

satisfying d(x, y) ≤ D. As x does not lie in Zsm+1, we have d(1, y) < s, so the
triangle inequality yields m + 1 = d(1, x) < s + D. Hence Usm stabilizes for m ≥
s+D − 1, which concludes our proof of the claim.

Set Us := lim−→m
Usm. Proposition 2.6 implies that Us is an open subsheaf of

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

.

The claim shows that Us equals Usm for large enough m, so Us is formally of finite

type over
∏
i∈I Di. Now we just need to prove lim−→s

Us = LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

.

It suffices to check this on underlying sets, so take x in |LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

|.
Proposition 2.6 indicates that x lies in

|LocSht
(I1,...,Ik)
G,µ•,m

|∏
i∈I Di

|

for large enough m, so for all y in |LocSht
(I1,...,Ik)
G | such that x lies in BD(y)µ• ,

the triangle inequality yields d(1, y) ≤ m+D. Therefore x lies in |Um+D+1|. □

2.13. Using representations of the dual group, we can index relative position

bounds as follows. Let F̃ be the finite Galois extension of F such that Gal(F̃ /F )

equals the image of the ΓF -action on X+
∗ (T ). Write D̃ for SpdOF̃ . Let E be a

finite extension of Qℓ(
√
q), write Ĝ for the dual group of GF over OE , and write

LG for Ĝ⋊Gal(F̃ /F ).
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Let V be an object of RepE(
LG)I . Note that

∐
µ•

LocSht
(I1,...,Ik)
G,µ•

|D̃I naturally

descends to a sheaf LocSht
(I1,...,Ik)
G,V over DI , where µ• runs over highest weights

appearing in VQℓ
|ĜI . Theorem 2.12 and descent imply that LocSht

(I1,...,Ik)
G,V is a

formal scheme that is locally formally of finite type over DI .

2.14. Finally, we define partial Frobenii for the formal moduli of local G-shtukas.

Definition. Write Fr(I1,...,Ik) : LocSht
(I1,...,Ik)
G,V →LocSht

(I2,...,Ik,I1)
G,V for the mor-

phism given by sending

G1
ϕ1 //

δ1

��

· · ·
ϕk−1

// Gk
ϕk //

δk

��

τG1

τδ1 to
��

G2
ϕ2 //

δ2

��

· · ·
ϕk // τG1

τϕ1
//

τδ1

��

τG2

τδ2

��

G · · · G G G · · · G G.

Note that Fr(I1,...,Ik) lies above the endomorphism of DI given by geometric
q-Frobenius on the i-th factor for i in I1 and the identity on all other factors.

3. Relative z-adic Hodge theory

The local shtukas defined in §2 are (formal) algebraic, while the local shtukas
used by Fargues–Scholze [11] are (non-archimedean) analytic in nature. To compare
them, we need an equicharacteristic version of Kedlaya–Liu’s results [31] on relative
p-adic Hodge theory. Our goal in this section is to prove the necessary results on
relative z-adic Hodge theory, in the spirit of work of Hartl [22].

We begin by recalling the equicharacteristic version of Fontaine’s period ringAinf .
Using a result of Anschütz [1], we prove an algebraization theorem for G-bundles on
Ainf , at least pro-étale locally on the base. Finally, we relate G(OF )-local systems

to G-bundles on the equicharacteristic version of the (relative integral) Robba ring
equipped with a Frobenius automorphism.

Our arguments closely follow those of Kedlaya–Liu [31] and Scholze–Weinstein
[42]. However, we have streamlined and simplified the presentation, both because
we only prove what we need as well as because the arithmetic of formal power series
is easier than that of Witt vectors.

3.1. Let S = Spa(R,R+) be an affinoid perfectoid space over Fq, and choose a
pseudouniformizer ϖ of R. Write YS for the complement of the vanishing locus of
ϖ and z in SpaR+[[z]], and note that YS is the analytic locus of the pre-adic space
SpaR+[[z]]. We have a continuous map rad : |YS |→[0,∞] given by

x 7→ log |ϖ(x̃)|
log |z(x̃)|

,

where x̃ denotes the unique rank-1 generalization of x in YS . For any closed interval
I in [0,∞] with rational endpoints, write YS,I = Spa(BS,I , B

+
S,I) for the associated

rational open subspace of SpaR+[[z]], which lies in YS . More generally, for any
subset I of [0,∞], write YS,I for the open subspace

⋃
I′ YS,I′ of YS , where I ′ runs

over closed intervals in I with rational endpoints. Note that YS,I ⊆ rad−1(I). We
see that YS,[0,∞) and YS,(0,∞) are naturally isomorphic to D × S and SpaF × S,
respectively.
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Write τ : S→S for the absolute q-Frobenius automorphism, and by abuse of
notation, write τ : R[[z]]→R[[z]] for the canonical lift of absolute q-Frobenius. Note
that rad ◦τ = q · rad. Finally, write XS for the quotient YS,(0,∞)/τ

Z.

3.2. When I contains ∞, we can describe BS,I using the following lemma. For

any positive r in Z[ 1p ], write R
+[[z, ϖ

r

z ⟩ for the ϖ-adic completion of R+[[z]][ϖ
r

z ].

Lemma. We can identify

R+[[z, ϖ
r

z ⟩ =

{ ∞∑
m=−∞

amz
m

the am lie in R+, lim
m→−∞

amϖ
rm = 0,

and for m ≤ 0, amϖ
rm lies in R+

}
.

If we give R+[[z, ϖ
r

z ⟩ the (ϖ, z)-adic topology, then BS,[1/r,∞] equals R
+[[z, ϖ

r

z ⟩[
1
z ].

Proof. The above description of R+[[z, ϖ
r

z ⟩ follows immediately from the definition.

This description shows that R+[[z, ϖ
r

z ⟩ is z-adically complete as a ring, so R+[[z, ϖ
r

z ⟩
equals the (ϖ, z)-adic completion of R+[[z]][ϖ

r

z ] as rings. Since YS,[1/r,∞] equals the

rational open subspace {|ϖr| ≤ |z| ≠ 0} of SpaR+[[z]], this identifies BS,[1/r,∞] with

R+[[z, ϖ
r

z ⟩[
1
z ] if we give R+[[z, ϖ

r

z ⟩ the (ϖ, z)-adic topology. □

3.3. Sometimes, it will be convenient to ignore the topology induced from R as
follows. Write A′(R+) for R+[[z]] with the z-adic topology.

Lemma. Our Spa(A′(R+)[ 1z ], A
′(R+)) is a sousperfectoid adic space.

Proof. The natural map A′(R+)[ 1z ]→R+[[z±1/p∞ ]] is a split injection of topological

A′(R+)[ 1z ]-modules, where we give R+[[z±1/p∞ ]] the z-adic topology. □

3.4. Proposition. Our YS is a sousperfectoid adic space.

Proof. Note that YS is covered by YS,[0,∞) and YS,[1,∞]. Now YS,[0,∞) is a sousper-
fectoid adic space by [11, Proposition II.1.1], so it suffices to prove that YS,[1,∞] is a

sousperfectoid adic space. By Proposition 3.2, BS,[1,∞] equals R
+[[z, ϖz ⟩[

1
z ], where

R+[[z, ϖz ⟩ has the (ϖ, z)-adic topology.
Now z divides ϖ in R+[[z]][ϖz ], so the (ϖ, z)-adic topology on R+[[z]][ϖz ] equals

the z-adic topology. This enables us to identify YS,[1,∞] with the rational open

subspace {|ϖ| ≤ |z| ≠ 0} of Spa(A′(R+)[ 1z ], A
′(R+)). The latter is sousperfectoid

by Lemma 3.3, so YS,[1,∞] is as well. □

3.5. Since a power ofϖ divides a power of z in R+[[z]][ zϖr ], the (ϖ, z)-adic topology
on R+[[z]][ zϖr ] equals the ϖ-adic topology. Therefore BS,[0,1/r] equals the Tate
algebra R⟨ zϖr ⟩. This argument similarly lets us identify

BS,[1,1] =

{ ∞∑
m=−∞

amz
m

∣∣∣∣∣ the am lie in R and lim
m→±∞

amϖ
m = 0

}
.

We will use the following result with the Tannakian description of G-bundles.

Proposition. Pullback yields a fully faithful functor

{vector bundles on SpecR+[[z]]} ↪−→ {vector bundles on YS}.
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Proof. Let f :M→M ′ be a map of finite projective R+[[z]]-modules, and consider
its pullback g to YS . Now Proposition 3.4 and [31, Theorem 2.7.7] indicate that
g|YS,[0,1]

, g|YS,[1,∞]
, and g|YS,[1,1]

correspond to maps of finite projective modules
over BS,[0,1], BS,[1,∞], and BS,[1,1], respectively, which are given by tensoring with

f over R+[[z]]. Lemma 3.2 indicates that BS,[1,∞] equals R
+[[z, ϖz ⟩[

1
z ] as rings, so

we see that BS,[0,1] and BS,[1,∞] inject into BS,[1,1]. Note that their intersection

equals R+[[z]]. Therefore the flatness of M yields a Cartesian square

M
� � //� _

��

M ⊗R+[[z]] BS,[0,1]� _

��

M ⊗R+[[z]] BS,[1,∞]
� � // M ⊗R+[[z]] BS,[1,1],

and the same holds for M ′. In particular, we recover f as the restriction of g|YS,[0,1]

(or of g|YS,[1,∞]
) to the intersection of M ⊗R+[[z]] BS,[0,1] and M ⊗R+[[z]] BS,[1,∞] in

M ⊗R+[[z]] BS,[1,1]. □

3.6. We turn to the first main result of this section, which algebraizes G-bundles
on YS when S is a product of points as in [15, Definition 1.2].

Recall that Spa yields an anti-equivalence from the category of perfectoid Huber
pairs over Fq[[ζi]]i∈I to the category of affinoid perfectoid spaces over DI . Let
S = Spa(R,R+) be an affinoid perfectoid space over DI , and for all i in I, write Γi
for the graph of its i-th projection S→D, which is a closed effective Cartier divisor
on YS [11, Proposition VI.1.2 (i)].

Theorem. Suppose that S is a product of points as in [15, Definition 1.2], and let
1 ≤ j ≤ k be an integer. Then pullback yields an equivalence of groupoids

{G-bundles on SpecR+[[z]]} ∼−→{G-bundles on YS},

where morphisms on the left-hand side are given by isomorphisms of their pullbacks
to SpecR+[[z]][ 1

z−ζi ]j∈Ij , and morphisms on the right-hand side are given by isomor-

phisms of their pullbacks to YS ∖
∑
i∈Ij Γi that are meromorphic along

∑
i∈Ij Γi.

Proof. First, we tackle full faithfulness. Write O(
∑
i∈Ij Γi) for the line bundle on

YS associated with the closed effective Cartier divisor
∑
i∈Ij Γi, and let G and

G ′ be G-bundles on YS . The Tannakian description of G-bundles implies that an
isomorphism G |YS∖

∑
i∈Ij

Γi

∼→G ′|YS∖
∑

i∈Ij
Γi

that is meromorphic along
∑
i∈Ij Γi

corresponds to a family of morphisms of vector bundles over YS
G (V )→G ′(V )⊗ O(

∑
i∈Ij Γi)

⊗n(V )

that is functorial in V , compatible with tensor products, and compatible with duals,
where V runs over objects of RepOF

(G) and n(V ) is a large enough integer. Hence
full faithfulness follows immediately from Proposition 3.5.

As for essential surjectivity, let G be a G-bundle on YS . By [31, Theorem 2.7.7],
G |YS,[0,1]

and G |YS,[1,∞]
correspond to G-bundles N0 and N∞ on SpecBS,[0,1] and

SpecBS,[1,∞], respectively. Note that the z-adic completion of R+[[z]][ zϖ ] equals

R+⟨ zϖ ⟩ as rings, so the global sections of the rational open subspace {|z| ≤ |ϖ| ≠ 0}
of Spa(A′(R+)[ 1z ], A

′(R+)) equals R⟨ zϖ ⟩[
1
z ] = BS,[0,1][

1
z ] as rings. We have seen in

the proof of Proposition 3.4 that the global sections of the rational open subspace
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{|ϖ| ≤ |z| ≠ 0} of Spa(A′(R+)[ 1z ], A
′(R+)) equals BS,[1,∞]. Because these two ra-

tional open subspaces cover Spa(A′(R+)[ 1z ], A
′(R+)), Lemma 3.3 and [31, Theorem

2.7.7] enable us to glue N0[
1
z ]

4 and N∞ into a G-bundle N 1
z
on SpecA′(R+)[ 1z ] =

SpecR+((z)).
Note that the z-adic completion of R+[[z]][ 1ϖ ] equals R[[z]]. Since

N 1
z
⊗R+((z)) BS,[0,1][

1
z ] = N0[

1
z ],

we see that N 1
z
[ 1ϖ ]⊗R+((z))[ 1

ϖ ] R((z)) = N0 ⊗BS,[0,1]
R((z)). Therefore we can apply

Beauville–Laszlo to the vanishing locus of z in SpecR+[[z]][ 1ϖ ] to glue N 1
z
[ 1ϖ ] and

N0 ⊗BS,[0,1]
R[[z]] into a G-bundle N 1

ϖ
on SpecR+[[z]][ 1ϖ ]. As N 1

ϖ
[ 1z ] = N 1

z
[ 1ϖ ], we

can glue N 1
ϖ

and N 1
z
into a G-bundle N̊ on the complement of the vanishing locus

of ϖ and z in SpecR+[[z]]. Finally, because S is a product of points, [1, Proposition

11.5] uniquely extends N̊ to a G-bundle N on SpecR+[[z]].

Let us verify that the pullback of N to YS equals G . Because N [ 1z ] = N̊ [ 1z ] = N 1
z
,

we see that N⊗R+[[z]]BS,[1,∞] = N∞. Thus we just need to show N⊗R+[[z]]BS,[0,1] =

N0. We have N [ 1ϖ ] = N̊ [ 1ϖ ] = N 1
ϖ
, so

N ⊗R+[[z]] BS,[0,1][
1
z ] = N 1

z
⊗R+((z)) BS,[0,1][

1
z ] = N0[

1
z ].

Note that the z-adic completion of BS,[0,1] = R⟨ zϖ ⟩ equals R[[z]], and
N ⊗R+[[z]] R[[z]] = N 1

ϖ
⊗R+[[z]][ 1

ϖ ] R[[z]] = N0 ⊗BS,[0,1]
R[[z]].

Hence the desired result follows from applying the uniqueness of Beauville–Laszlo
gluing to the vanishing locus of z in SpecBS,[0,1]. □

3.7. We have the following version of non-abelian Artin–Schreier–Witt theory for
OF . Recall the terminology of τ -modules as in [42, Definition 12.3.3], and let n
be a positive integer. For any OF /zn-local system L on S, write M(L) for the

τ -module over SpecR[[z]]/zn given by L⊗OF /zn (OSpecR[[z]]/zn , id). Conversely, for

any τ -module (M,ϕ) over SpecR[[z]]/zn, write L(M,ϕ) for the OF /zn-sheaf over

SpecR given by Homτ -mod((OSpecR[[z]]/zn , id), (M,ϕ)).

Proposition. Our M(−) yields an exact tensor equivalence of categories

{OF /zn-local systems on S} ∼−→{τ -modules over SpecR[[z]]/zn}.

Consequently, L 7→ L⊗OF
(OSpecR[[z]], id) is an exact tensor equivalence of categories

{OF -local systems on S} ∼−→{τ -modules over SpecR[[z]]}.

Proof. Note that M(−) is left adjoint to L(−), and the unit id→L(M(−)) is an
isomorphism. So we just need to prove thatM(−) is essentially surjective. Because
OF /zn-local systems are trivial after a finite étale cover, it suffices to prove that

the same holds for τ -modules over SpecR[[z]]/zn.
So let (M,ϕ) be a τ -module over SpecR[[z]]/zn such that M has rank h. When

n = 1, the desired result is [31, Lemma 3.2.7]. For n ≥ 2, by induction there
exists a finite étale cover SpecR′→SpecR such that the pullback of (M,ϕ) to
SpecR′[[z]]/zn−1 has a basis fixed by ϕR′[[z]]/zn−1 . Nakayama’s lemma shows that
any lift of this basis to R′[[z]]/zn yields a basis of M ⊗R R′. In these coordinates,

4By abuse of notation, we apply notation for pullbacks of vector bundles to G-bundles.
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we see that ϕ−1
R′[[z]]/zn acts by A ◦ τ , where A in GLh(R

′[[z]]/zn) satisfies A ≡ 1

(mod zn−1).

Write Spec R̃ for the vanishing locus in SpecR′[uab]1≤a,b≤h of the matrix

τ(U)− U − 1
zn−1 (A− 1),

where U denotes the matrix with entries uab. Examining entrywise shows that R̃

is finite over R′, the Jacobian criterion shows that R̃ is étale over R′, and checking

on fibers shows that Spec R̃→SpecR′ is surjective. Finally, on R̃[[z]]/zn we have

(1 + zn−1U)Aτ(1 + zn−1U)−1 = (1 + zn−1U)(1 +A− 1)(1− zn−1U − (A+ 1)) = 1,

so the basis of M ⊗R R̃ given by 1+ zn−1U is fixed by ϕ−1

R̃
. Therefore the pullback

of (M,ϕ) to Spec R̃[[z]]/zn is trivial, as desired. □

3.8. We can upgrade Proposition 3.7 to G-bundles as follows. Briefly, let X be a
scheme or a sousperfectoid adic space over OF , and let τ : X→X be an endomor-
phism over OF . By a τ -G-bundle over X, we mean a G-bundle G on X along with
an isomorphism of G-bundles ϕ : G

∼→ τG .
Let n be a positive integer or ∞, and define z∞ to be 0. For any G(OF /zn)-

bundle P on S, by abuse of notation writeM(P) for the τ -G-bundle over SpecR[[z]]/zn

given by P×G(OF /z
n) (G, id).

Proposition. Our M(−) yields an equivalence of groupoids

{G(OF /zn)-bundles on S} ∼−→{τ -G-bundles over SpecR[[z]]/zn}.

Proof. The assignment P 7→ (V 7→ P×G(OF /z
n) V (OF /zn)) yields a functor

{G(OF /zn)-bundles on S}−→
{

OF -linear exact tensor functors
RepOF

(G)→{OF /zn-local systems on S}

}
.

By Proposition 3.7 and the Tannakian description of G-bundles, the right-hand side
is equivalent to the groupoid of τ -G-bundles over SpecR[[z]]/zn. Now we just need
to prove that the above functor is an equivalence of groupoids. Because G(OF /zn)-
bundles are trivial after a pro-étale cover, it suffices to prove that the same holds
for objects of the right-hand side.

So let ρ : RepOF
(G)→{OF /zn-local systems on S} be an OF -linear exact ten-

sor functor, and let S̃→S be a pro-étale cover such that S̃ is strictly totally

disconnected. Then OF /zn-local systems on S̃ are equivalent to finite projective

Cont(|S̃|,OF /zn)-modules, so ρ|S̃ corresponds to a G-bundle G̃ on

SpecCont(|S̃|,OF /zn).

Note that Cont(|S̃|,OF /zn) = Cont(π0(S̃),OF /zn). For any s in π0(S̃), [31,
Lemma 2.2.3] indicates that lim−→U

Cont(U,OF /zn) is Henselian with respect to the

kernel of evaluation at s, where U runs over neighborhoods of s in π0(S̃). Lang’s

lemma shows that the pullback of G̃ to SpecCont(s,OF /zn) = SpecOF /zn is triv-

ial, so Hensel lifting implies that the pullback of G̃ to SpecCont(U,OF /zn) is trivial
for some U . Therefore ρ|Ũ is isomorphic to the canonical fiber functor, where Ũ

denotes the preimage of U in |S̃|. As s varies, this yields a pro-étale cover of S
where ρ is trivial, as desired. □
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3.9. Let us recall the equicharacteristic version of the (relative integral) Robba
ring. Write ∥−∥ for the spectral norm on R, normalized such that ∥ϖ∥ = 1

q . For

any positive rational b, we have a map ∥−∥b : R[[z]]→[0,∞] given by∑∞
m=0 amz

m 7→ supm≥0{q−m∥am∥
b}.

Evidently ∥τ(−)∥b = ∥−∥qb. When 1/b lies in Z[ 1p ], 3.5 shows that the restriction

of ∥−∥b to BS,[0,b] ⊆ R[[z]] is a norm and induces the usual topology on BS,[0,b].

Moreover,
∑∞
m=0 amz

m lies in BS,[0,b] if and only if ∥amzm∥b → 0.

Write R̃int
R for lim−→b

BS,[0,b], where b runs over positive rationals. Note that any

multiple f of z in R̃int
R satisfies ∥f∥b < 1 for small enough b, so the completeness

of BS,[0,b] implies that z lies in the Jacobson radical of R̃int
R .

3.10. Just like OF -local systems, we show that τ -modules over the Robba ring are
trivial after a pro-finite étale cover.

Lemma. Let (M̃, ϕ̃) be a τ -module over Spec R̃int
R such that M̃ is free of rank h.

Then there exists a pro-finite étale cover Spa(R̃, R̃+)→S such that the pullback of

(M̃, ϕ̃) to Spec R̃int
R̃

is trivial.

Proof. Proposition 3.7 enables us to assume that the pullback of (M̃, ϕ̃) to SpecR

has a basis fixed by ϕ̃R. Now 3.9 and Nakayama’s lemma show that any lift of

this basis yields a basis of M̃ , and in these coordinates, we see that ϕ̃−1 acts by

A ◦ τ , where A in GLh(R̃int
R ) satisfies A ≡ 1 (mod z). Proposition 3.7 yields a

pro-finite étale cover Spa(R̃, R̃+)→Spa(R,R+) such that the pullback of (M̃, ϕ̃) to

Spec R̃[[z]] has a basis fixed by (ϕ̃)R̃[[z]]. Since the pullback of (M̃, ϕ̃) to SpecR is

already trivial, we can choose this basis of M̃ ⊗R̃int
R
R̃[[z]] such that its matrix U

in GLh(R̃[[z]]) satisfies U ≡ 1 (mod z). Now we just need to prove that U lies in

GLh(R̃int
R̃

).

As A−1 is divisible by z, we have ∥A− 1∥b < 1 for small enough positive rational
b. Write C := max{q−1, ∥A− 1∥b} < 1, write Un for the mod-zn truncation of U ,
and write Xn for the zn-coefficient of U . For any positive integer n, we claim that

∥znXn∥qb, ∥Un − 1∥b, and ∥Un − 1∥qb ≤ C.
When n = 1, the last two bounds hold because U1 = 1. For general n, we have

Un + znXn ≡ U ≡ Aτ(U) ≡ A(τ(Un) + znτ(Xn)) (mod zn+1)

=⇒ zn(Xn −Aτ(Xn)) ≡ (A− 1)τ(Un) + (τ(Un)− 1)− (Un − 1) (mod zn+1)

=⇒ Xn − τ(Xn) ≡ 1
zn

[
(A− 1)τ(Un) + (τ(Un)− 1)− (Un − 1)

]
(mod z).

By evaluating this equation at rank-1 points of S and considering the Newton
polygon of its entries, induction on n implies that

∥Xn∥b ≤ max{1, (qn∥(A− 1)τ(Un) + τ(Un − 1)− (Un − 1)∥b)
1/q}

≤ max{1, (qnC)1/q} ≤ (qnC)1/q.

Therefore ∥znXn∥qb ≤ C, so ∥Un+1 − 1∥qb ≤ C. Since C ≥ q−n, we also get

∥Un+1 − 1∥b ≤ max{∥znXn∥b, ∥Un − 1∥b} ≤ max{q−n(qnC)1/q, C} ≤ C,
which concludes our proof of the claim.
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By 3.9, the claim implies that U has coefficients in BS,[0,b′] for any positive

rational b′ < qb such that 1/b′ lies in Z[ 1p ]. After decreasing b′ such that b′ < b,

the claim also implies that U is invertible over BS,[0,b′]. Therefore U indeed lies in

GLh(R̃int
R̃

), as desired. □

3.11. Vector bundles on the Robba ring are local on S in the following sense. Let
(Sα)α be a finite cover of S by rational open subspaces, where Sα = Spa(Rα, R

+
α ).

Write Sαβ = Spa(Rαβ , R
+
αβ) for their pairwise intersections, and write Sαβγ =

Spa(Rαβγ , R
+
αβγ) for their triple intersections.

Lemma. Pullback yields an equivalence from the category of vector bundles on

Spec R̃int
R to the category of vector bundles on the Spec R̃int

Rα
with transition mor-

phisms on the Spec R̃int
Rαβ

whose pullbacks to Spec R̃int
Rαβγ

satisfy the cocycle condi-

tion. Moreover, for any vector bundle M on Spec R̃int
R , there exists (Sα)α as above

such that M |Spec R̃int
Rα

is trivial for all α.

Proof. Because R̃int
R = lim−→b

BS,[0,b], we have an equivalence of categories

lim−→b
{vector bundles on SpecBS,[0,b]}

∼−→{vector bundles on Spec R̃int
R }.

When 1/b lies in Z[ 1p ], the BS,[0,b] are Tate algebras over R. Hence S 7→ BS,[0,b] com-

mutes with rational localization on S. Applying [31, Theorem 2.7.7] to the resulting
open cover of YS,[0,b] by (YSα,[0,b])α shows that vector bundles on SpecBS,[0,b] are
equivalent to vector bundles on the SpecBSα,[0,b] with transition morphisms on
the SpecBSαβ ,[0,b] whose pullbacks to SpecBSαβγ ,[0,b] satisfy the cocycle condition.
Because there are finitely many α, taking the directed limit over b yields the first
claim.

For the second claim, [31, Theorem 2.7.7] shows that there exists (Sα)α as above
such that the pullback of M to SpecRα is trivial for all α. Since z lies in the

Jacobson radical of R̃int
Rα

, any trivialization lifts to R̃int
Rα

by Nakayama’s lemma. □

3.12. We conclude by showing that τ -modules on R[[z]] uniquely descend to the
Robba ring.

Theorem. Pullback yields an exact tensor equivalence of categories

{τ -modules over Spec R̃int
R }

∼−→{τ -modules over SpecR[[z]]}.

Consequently, pullback induces an equivalence of groupoids

{τ -G-bundles over Spec R̃int
R }

∼−→{τ -G-bundles over SpecR[[z]]}.

Proof. First, we tackle full faithfulness. By considering internal homs for τ -modules,

it suffices to prove that, for any τ -module (M̃, ϕ̃) over Spec R̃int
R , any m in M̃ ⊗R̃int

R

R[[z]] that is fixed by ϕ̃R[[z]] lies in M̃ . Lemma 3.11 implies that it suffices to prove

this after passing to an open cover of S, so we can assume that M̃ is free of rank

h. Then Lemma 3.10 yields a pro-finite étale cover Spa(R̃, R̃+)→S such that the

pullback of (M̃, ϕ̃) to Spec R̃int
R̃

has a basis fixed by ϕ̃R̃int
R̃

. In these coordinates, the

entries of m lie in (R̃τ )[[z]], which lies in R̃int
R̃

by 3.9. Note that the intersection of

R[[z]] and R̃int
R̃

equals R̃int
R , so the flatness of M̃ shows that m lies in M̃ .
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As for essential surjectivity, let (M,ϕ) be a τ -module over SpecR[[z]]. By passing
to a clopen cover of S, we can assume that M has rank h. Proposition 3.7, full
faithfulness, and finite étale descent enable us to assume that the pullback of (M,ϕ)
to SpecR has a basis fixed by ϕR. Nakayama’s lemma shows that any lift of this
basis yields a basis of M , and in these coordinates, we see that ϕ−1 acts by A ◦ τ ,
where A in GLh(R[[z]]) satisfies A ≡ 1 (mod z).

Let n be a positive integer. We inductively construct certain Cn, Bn, and Un in
GLh(R[[z]]) such that Cn−Bn is divisible by zn. First, set C1 := A and B1 := 1. For
general n, write Xn for the zn-coefficient of Cn −Bn. There exists Yn in Math(R)
satisfying ∥Xn + Yn − τ(Yn)∥1 < qn/2 [31, Lemma 8.5.2], which we use to define

Un := 1 + znYn, Cn+1 := UnCnτ(Un)
−1, and Bn+1 := Bn + zn(Xn + Yn − τ(Yn)).

By induction, we have

Cn+1 ≡ (1 + znYn)Cn(1− znτ(Yn))
≡ Bn + zn(Xn + Yn − τ(Yn)) ≡ Bn+1 (mod zn+1),

as desired.
We see from 3.9 that the Bn converge to a matrix B in GLh(BS,[0,1]). Now the

Cn converge to a matrix C in GLh(R[[z]]), and because Cn − Bn is divisible by
zn, we have C = B. Moreover, the infinite product U := U1U2 · · · converges to a
matrix U in GLh(R[[z]]), and the above shows that UAτ(U)−1 = C = B. Thus the

basis of M given by U descends (M,ϕ) to a τ -module over Spec R̃int
R , as desired.

Finally, we show that pullback has an exact tensor quasi-inverse. Note that we
have a commutative triangle

{OF -local systems on S}

ww

M(−)

''

{τ -modules over Spec R̃int
R } // {τ -modules over SpecR[[z]]}.

Every arrow is an exact tensor functor, and M(−) is an exact tensor equivalence
by Proposition 3.7. Hence its quasi-inverse L(−) postcomposed with the left arrow
yields an exact tensor quasi-inverse to pullback. □

4. Analytic moduli of local shtukas

In this section, we define local shtukas in the analytic setting and compare them
with the formal variant from §2. We start by giving an algebraic version of local
shtukas over a perfectoid space, which is the equicharacteristic analogue of Breuil–
Kisin–Fargues modules. This mediates between the formal variant and more ana-
lytic variants. Next, we define an analytic version of local shtukas, as well as the
corresponding moduli problem. Using results from §3, we show that the analytic
moduli problem agrees with the formal moduli problem from §2.

From here, we define the covering tower for our analytic moduli problem. We
conclude by recalling the moduli of local shtukas appearing in Fargues–Scholze [11],
which is defined purely in terms of the Fargues–Fontaine curve. While this subtly
differs from our analytic moduli problem, their intersection homology complexes
are naturally isomorphic, which is all we need.
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4.1. Let S = Spa(R,R+) be an affinoid perfectoid space over DI . For any i in I,
if ζi is an R

◦◦-multiple of ϖr, then

1

z − ζi
=

1

z

∞∑
n=0

(
ζi
z

)n
lies in R+[[z, ϖ

r

z ⟩[
1
z ]. As ζi is topologically nilpotent, this always holds for small

enough r.
Recall the µi and Di from 1.5, and recall Definition 2.1. We use Definition 2.1

to define an algebraic version of local G-shtukas over S.

Definition.

a) An algebraic local G-shtuka over S is a local G-shtuka over Spf R+.
b) Suppose that S lies over

∏
i∈I Di, and let G be an algebraic local shtuka over

S. We say that G is bounded by µ• if the corresponding local G-shtuka over
SpecR+ is bounded by µ•.

c) Let G and G ′ be algebraic local G-shtukas over S. A quasi-isogeny from G to
G ′ consists of, for some small enough positive r in Z[ 1p ] and all 1 ≤ j ≤ k, an

isomorphism of G-bundles

δj : Gj |SpecR+[[z,ϖ
r

z ⟩[ 1z ]
∼→G ′

j |SpecR+[[z,ϖ
r

z ⟩[ 1z ]

such that the diagram

Gj |SpecR+[[z,ϖ
r

z ⟩[ 1z ]

(ϕj)R+[[z,ϖ
r

z
⟩[ 1

z
]
//

δj

��

Gj+1|SpecR+[[z,ϖ
r

z ⟩[ 1z ]

δj+1

��

G ′
j |SpecR+[[z,ϖ

r

z ⟩[ 1z ]

(ϕ′
j)R+[[z,ϖ

r
z

⟩[ 1
z
]
// G ′
j+1|SpecR+[[z,ϖ

r

z ⟩[ 1z ]

commutes, where δk+1 denotes the isomorphism τδ1.

4.2. Let n be a non-negative integer, and note that R+/ϖn is a discrete Fq[[ζi]]i∈I -
algebra. For any algebraic local shtuka G over S, write G n for the local shtuka over
Sn := SpecR+/ϖn given by pullback. Since R+[[z, ϖ

r

z ⟩[
1
z ]/ϖ

n equals (R+/ϖn)((z)),
quasi-isogenies of algebraic local G-shtukas over S pull back to quasi-isogenies of
local G-shtukas over Sn.

Lemma 2.7 shows that bounded algebraic local G-shtukas are all captured by
this limit process. The following lemma shows that quasi-isogenies between them
are also all captured by this limit process.

Lemma. Suppose that S lies over
∏
i∈I Di, and let G and G ′ be algebraic local

G-shtukas over S bounded by µ•. Then pullback yields a bijection

{quasi-isogenies from G to G ′} ∼→ lim←−n{quasi-isogenies from G n to G ′n}.

Proof. Let (δn)n≥0 be a compatible system of quasi-isogenies from G n to G ′n.
Because lim←−n(R

+/ϖn)((z)) equals R+[[z, 1z ⟩, we see that δj := lim←−n δ
n
j yields an

isomorphism of G-bundles Gj |SpecR+[[z, 1z ⟩
∼→G ′

j |SpecR+[[z, 1z ⟩
for all 1 ≤ j ≤ k. Now

δ0 is bounded by m for some non-negative integer m as in Definition 2.2.b), so
Proposition 2.3 yields a non-negative integer B such that δn is bounded by m +
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B⌈logq n⌉. From here, the Tannakian description of G-bundles implies that δj
naturally descends to an isomorphism of G-bundles

Gj |SpecR+[[z,ϖ
r

z ⟩[ 1z ]
∼→G ′

j |SpecR+[[z,ϖ
r

z ⟩[ 1z ]

for any positive r in Z[ 1p ]. By taking r small enough such that 1
z−ζi lies in

R+[[z, ϖ
r

z ⟩[
1
z ] for all i in I, the commutativity of the square in Definition 4.1.c)

follows from the commutativity of the analogous square in Definition 2.2.a). □

4.3. Before introducing the analytic version of local G-shtukas, we need some
notation on the BdR-affine Grassmannian. Write B+

dR(S) for the ring of global

sections of the completion of OYS
along

∑
i∈I Γi, and write BjdR(S) for the version

that is punctured along
∑
i∈Ij Γi.

Definition.

a) Write LnIG and L+
I G for the small v-sheaves over (DI)♢ given by sending S to

G(On
∑

i∈I Γi
) and G(B+

dR(S)), respectively.

b) Write Gr(I1,...,Ik)G for the small v-sheaf over (DI)♢ whose S-points parametrize
data consisting of
i) for all 1 ≤ j ≤ k, a G-bundle Gj on SpecB+

dR(S),
ii) for all 1 ≤ j ≤ k, an isomorphism of G-bundles

ϕj : Gj |SpecBj
dR(S)

∼→Gj+1|SpecBj
dR(S),

where Gk+1 denotes the trivial G-bundle.

4.4. In certain cases, we can describe the functor of points of (generalized) ana-
lytifications without analytically sheafifying. Briefly, let A be a noetherian ring,
and let X be a scheme locally of finite type over Z := SpecA. Let J ⊆ A be an

ideal, write Â for the completion of A with respect to J , and write Ẑ for the adic

space Spa Â. Write XẐ for the fiber product as in [26, (3.8)].

Lemma. Suppose that X is quasi-projective over Z. For any analytic affinoid adic
space S = Spa(R,R+), the S-points of XẐ consist of the R-points of X such that
the resulting ring homomorphism A→R is continuous for the J-adic topology on
A.

Proof. The universal property of XẐ [26, (3.8)] indicates that an S-point of XẐ is

equivalent to a morphism S→ Ẑ of adic spaces along with a morphism S→X of
locally ringed spaces such that, in the category of locally ringed spaces, the square

S //

��

X

��

Ẑ // Z

commutes. The Spec-global sections adjunction shows that S→X→Z yields a
ring homomorphism A→R, and note that the commutativity of this square is
equivalent to A→R being continuous for the J-adic topology on A.

Now assume that X = PNZ . Since Z is affine, the Spec-global sections adjunction
implies that S→X is equivalent to the data of a line bundle L on S along with
sections s0, . . . , sN that generate L . By [30, Theorem 1.4.2], this is equivalent
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to a finite projective R-module M of rank 1 along with elements r0, . . . , rN that
generate M , which is precisely the data of an R-point of X.

In general, X is a locally closed subscheme of PNZ . Because Z is noetherian,
there exist finitely many homogeneous polynomials f1, . . . , fl and g1, . . . , gm in
A[t0, . . . , tN ] such that X ⊆ PNZ is the locus where fa(s0, . . . , sN ) vanishes for
all 1 ≤ a ≤ l and gb(s0, . . . , sN ) does not vanish for all 1 ≤ b ≤ m. These properties
are preserved by [30, Theorem 1.4.2], so we see that S→X is equivalent to an
R-point of X. □

4.5. We check that the BdR-affine Grassmannian and its affine Schubert varieties
are the analytifications of their algebraic counterparts. Write Salg for the R-point of

CI given by SpecR→SpecFq[[ζi]]i∈I→CI , and write Γalg
i for the resulting relative

effective Cartier divisor on C × S as in 1.2. Recall the Fi from 1.5.

Lemma. We have a natural isomorphism of rings On
∑

i∈I Γalg
i

∼= On
∑

i∈I Γi
. Con-

sequently, we obtain natural isomorphisms from (LnI (GC))
♢
DI and (L+

I (GC))
♢
DI to

LnI (G) and L
+
I (G), respectively, and we may view (Ĝr

(I1,...,Ik)

G,µ•
|∏

i∈I Di
)♢ as a closed

subsheaf

Gr(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
⊆ Gr(I1,...,Ik)G |∏

i∈I D♢
i
.

Finally, the S-points of Gr(I1,...,Ik)G,µ•
|∏

i∈I SpdFi
consist of the ((Gj)kj=1, (ϕj)

k
j=1) such

that, for all geometric points s of S and 1 ≤ j ≤ k, the relative position of ϕj,s at
Γi,s is bounded by

∑
i′ µi′ , where i

′ runs over elements of I satisfying Γi′,s = Γi,s.

Proof. The first claim is immediate, which identifies (LnI (GC))
♢
DI with LnI (G). The

first claim also induces isomorphisms ÔC(Salg) ∼= B+
dR(S) and Ô

j,◦
C (Salg) ∼= BdR(S),

which identifies (L+
I (GC))

♢
DI with L+

I (G). This also shows that, for any presentation

of Gr
(I1,...,Ik)
GC

as a directed limit lim−→l
Xl of projective schemes Xl over C

I , we have

Gr(I1,...,Ik)G (S) = Gr
(I1,...,Ik)
GC

(Salg) = (lim−→l
Xl)(S

alg) = lim−→l
Xl(S

alg) = lim−→l
(Xl)

♢
DI (S),

where the last two equalities follow from [23, Lemma 5.4] and Lemma 4.4, respec-

tively. Now 1.5 indicates that Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

is a closed subscheme of Xl|∏
i∈I Ci

for large enough l. Since Gr
(I1,...,Ik)
GC ,µ•

|∏
i∈I Ci

is projective over
∏
i∈I Ci, the natural

morphism of adic spaces Ĝr
(I1,...,Ik)

G,µ•
|∏

i∈I Di
→(Gr

(I1,...,Ik)
GC ,µ•

)∏
i∈I Di

is an isomorphism

[26, (4.6.iv.d)]. Hence taking (−)♢ yields the desired closed subsheaf

Gr(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
⊆ Gr(I1,...,Ik)G |∏

i∈I D♢
i
.

Finally, the description of Gr(I1,...,Ik)G,µ•
|∏

i∈I SpdFi
follows from 1.5. □

4.6. Now, we can define an analytic version of local G-shtukas over S. Let a in
Z[ 1p ] be non-negative. For any i in I, if ζai is an R◦◦-multiple of ϖ, then rad(Γi) lie

in [0, a). As ζi is topologically nilpotent, this always holds for large enough a.

Definition.

a) An analytic local G-shtuka over S consists of
i) for all 1 ≤ j ≤ k, a G-bundle Gj on YS,[0,∞),
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ii) for all 1 ≤ j ≤ k, an isomorphism of G-bundles

ϕj : Gj |YS,[0,∞)∖
∑

i∈Ij
Γi

∼→Gj+1|YS,[0,∞)∖
∑

i∈Ij
Γi
,

that is meromorphic along
∑
i∈Ij Γi, where Gk+1 denotes the G-bundle τG1.

b) Suppose that S lies over
∏
i∈I Di, and let G be an analytic local G-shtuka

over S. We say that G is bounded by µ• if, for any affinoid perfectoid étale

cover Spa(R̃, R̃+)→S where τG1|YSpa(R̃,R̃+),[0,∞)
is trivial and any trivialization

t : τG1|YSpa(R̃,R̃+),[0,∞)

∼→G, the Spa(R̃, R̃+)-point of Gr(I1,...,Ik)G |∏
i∈I D♢

i
given by

G1|SpecB+
dR(R̃)

(ϕ1)B1
dR

(R̃)
// · · ·

(ϕk−1)
B

k−1
dR

(R̃)
// Gk|B+

dR(R̃)

(t◦ϕk)Bk
dR

(R̃)
// G

lies in Gr(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
.

c) Let G and G ′ be analytic local G-shtukas over S. A quasi-isogeny from G to G ′

consists of, for some large enough rational a and all 1 ≤ j ≤ k, an isomorphism
of G-bundles

δj : Gj |YS,[a,∞)

∼→G ′
j |YS,[a,∞)

such that the diagram

Gj |YS,[a,∞)

(ϕj)YS,[a,∞)
//

δj

��

Gj+1|YS,[a,∞)

δj+1

��

G ′
j |YS,[a,∞)

(ϕ′
j)YS,[a,∞)

// G ′
j+1|YS,[a,∞)

commutes, where δk+1 denotes the isomorphism τδ1.

It suffices to check Definition 4.6.b) for a single Spa(R̃, R̃+)→S and t.

4.7. We now define the analytic moduli of local G-shtukas.

Definition. Write LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
for the small v-sheaf over

∏
i∈I D

♢
i whose

S-points parametrize data consisting of

i) an analytic local G-shtuka over S bounded by µ•,
ii) a quasi-isogeny δ from G to the trivial analytic local G-shtuka G.

Write fL : LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
→

∏
i∈I D

♢
i for the structure morphism.

4.8. Let us compare the formal and analytic moduli of local G-shtukas. Recall

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

from Definition 2.4.

Proposition. Our (LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

)♢ is the analytic sheafification of the

presheaf over
∏
i∈I D

♢
i whose S-points parametrize data consisting of

i) an algebraic local G-shtuka G over S bounded by µ•,
ii) a quasi-isogeny δ from G to the trivial algebraic local G-shtuka G.

In particular, we have a canonical morphism of v-sheaves over
∏
i∈I D

♢
i

an : (LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

)♢→LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i

given by pulling back (G , δ) to YS,[0,∞).
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Proof. Theorem 2.12 shows that LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

is a locally noetherian for-

mal scheme, so as an adic space it is the analytic sheafification of the presheaf

Spa(A,A+) 7→ Hom(Spa(A+, A+),LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

).

Because R+ is adic with ideal of definition generated by ϖ, we have

Hom(Spa(R+, R+),LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

)

= Hom(Spf R+,LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

)

= lim←−nHom(SpecR+/ϖn,LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

).

From here, Lemma 2.7 and Lemma 4.2 yield the first claim. The second claim

follows from the fact that LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
is already a sheaf in the analytic

topology, so pulling back (G , δ) to YS,[0,∞) induces a morphism an as desired. □

4.9.Theorem. Our an is an isomorphism. Consequently, LocSht(I1,...,Ik)G,µ•
|∏

i∈I SpdFi

is a locally spatial diamond.

Proof. First, we prove that an is an isomorphism. Because products of points as
in [15, Definition 1.2] form a basis for the v-topology [15, Example 1.1]5 and both

(LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

)♢ and LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
are v-sheaves, it suffices to

check this on S-points when S is a product of points. Products of points are totally
disconnected [15, Proposition 1.6], so we do not need to analytically sheafify when

evaluating LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

on them.

So assume that S is a product of points, and let (G , δ) be an S-point of

LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
.

For large enough rational a and all 1 ≤ j ≤ k, we can use δj |YS,[a,a]
to glue Gj |YS,[0,a]

and G|YS,[a,∞]
into a G-bundle G j on YS . The commutativity of the square in

Definition 4.6.c) imply that ϕj and id glue into an isomorphism of G-bundles

ϕj : G j |YS∖
∑

i∈Ij
Γi

∼→G j+1|YS∖
∑

i∈Ij
Γi
,

where G k+1 denotes the G-bundle
τ
G 1. Then Theorem 3.6 indicates that G j and ϕj

are uniquely pulled back from a G-bundle G alg
j on SpecR+[[z]] and an isomorphism

of G-bundles ϕalgj : G alg
j |SpecR+[[z]][ 1

z−ζi
]i∈Ij

∼→G alg
j+1|SpecR+[[z]][ 1

z−ζi
]i∈Ij

, where G alg
k+1

denotes the G-bundle τG alg
1 .

Altogether G alg := ((G alg
j )kj=1, (ϕ

alg
j )kj=1) is an algebraic local G-shtuka over S.

Since G is bounded by µ•, Lemma 4.5 shows that G alg is too. Finally, take a for
which r := 1/a lies in Z[ 1p ]. Applying Lemma 3.2, Proposition 3.4, and [31, The-

orem 2.7.7] to the canonical isomorphism Gj |YS,[a,∞]

∼→G yields an isomorphism

of G-bundles δalgj : G alg
j |SpecR+[[z,ϖ

r

z ⟩[ 1z ]
∼→G, and we see that δalg := (δalgj )kj=1 is

a quasi-isogeny from G alg to G. The uniqueness of Theorem 3.6 and [31, Theo-
rem 2.7.7] imply that (G , δ) is uniquely the image of (G alg, δalg) under an. Hence

5However, in [15, Example 1.1] one must replace the k(x) with its completed algebraic closure
C(x) and k(x)+ with its integral closure in C(x).
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an is bijective on S-points, as desired. Finally, the last statement follows from

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I SpaFi

being an analytic adic space and [41, Lemma 15.6]. □

4.10. Next, we turn to level structures. Let n be a non-negative integer.

Definition. Suppose that S lies over (SpaF )I , and let G be an analytic local
G-shtuka over S. A level-n structure on G consists of, for all 1 ≤ j ≤ k, an
isomorphism of G-bundles

ψj : Gj |SpecR[[z]]/zn
∼→G

such that the diagram

Gj |SpecR[[z]]/zn
(ϕj)R[[z]]/zn

//

ψj

��

Gj+1|SpecR[[z]]/zn

ψj+1

��

G G

commutes, where Gk+1 denotes τG1, and ψk+1 denotes τψ1.

Since S lies over (SpaF )I , the (ϕj)R[[z]]/zn are isomorphisms. Therefore ψ1

uniquely determines ψj for 2 ≤ j ≤ k.

4.11. We now define the covering tower of the generic fiber of LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
.

Definition. Write LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
for the small v-sheaf over

∏
i∈I SpdFi

whose S-points parametrize data consisting of

i) an analytic local G-shtuka G over S bounded by µ•,
ii) a quasi-isogeny δ from G to the trivial analytic local G-shtuka,
iii) a level-n structure ψ = (ψj)

k
j=1 on G .

Write fL : LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
→

∏
i∈I SpdFi for the structure morphism.

4.12. For n′ ≥ n, we have morphisms

LocSht(I1,...,Ik)G,µ•,n′v |∏i∈I SpdFi
→LocSht(I1,...,Ik)G,µ•,nv

|∏
i∈I SpdFi

given by pulling back ψj to SpecR[[z]]/zn for all 1 ≤ j ≤ k. Write Kn′,n for the ker-

nel ofG(OF /zn
′
)→G(OF /zn), and note thatKn′,n acts on LocSht(I1,...,Ik)G,µ•,n′v |∏i∈I SpdFi

over LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
via postcomposition with ψj for all 1 ≤ j ≤ k.

Proposition. The morphism

LocSht(I1,...,Ik)G,µ•,n′v |∏i∈I SpdFi
→LocSht(I1,...,Ik)G,µ•,nv

|∏
i∈I SpdFi

is finite Galois, where the Galois action is given by that of Kn′,n. Consequently,

LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
is a locally spatial diamond.

Proof. First, take n = 0, so that

LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
= LocSht(I1,...,Ik)G,µ•

|∏
i∈I SpdFi

.
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For any S-point (G , δ) of LocSht(I1,...,Ik)G,µ•
|∏

i∈I SpdFi
, form the Cartesian square

S′ //

��

LocSht(I1,...,Ik)G,µ•,n′v |∏i∈I SpdFi

��

S // LocSht(I1,...,Ik)G,µ•
|∏

i∈I SpdFi
.

Then S′ parametrizes level-n′ structures ψ on G . Because ψ1 uniquely determines
ψj for 2 ≤ j ≤ k, we see that level-n′ structures on G are equivalent to trivializations

of the τ -G-bundle (G1|SpecR[[z]]/zn′ , (ϕk ◦ · · · ◦ϕ1)R[[z]]/zn′ ) over SpecR[[z]]/zn
′
. Thus

Proposition 3.8 and [41, Proposition 9.7] imply that S′→S is finite Galois with the
desired Galois action.

For general n, the result follows from the commutative triangle

LocSht(I1,...,Ik)G,µ•,n′v |∏i∈I SpdFi
//

&&

LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi

xx

LocSht(I1,...,Ik)G,µ•
|∏

i∈I SpdFi

and compatibility of the Kn′,n-action with changing n′ and n. Finally, the last
statement follows from Theorem 4.9 and [41, Lemma 11.21]. □

4.13. The covering tower enjoys the following Hecke correspondences. Write

LocSht(I1,...,Ik)G,µ•,∞v := lim←−n LocSht
(I1,...,Ik)
G,µ•,nv

|∏
i∈I SpdFv

,

and write Kn for the kernel of G(OF )→G(OF /zn).

Proposition. We have a canonical G(F )-action on LocSht(I1,...,Ik)G,µ•,∞v over
∏
i∈I SpdFi

that extends the G(OF )-action from 4.12. Consequently, for any g in G(F ), we have

a canonical finite étale correspondence 1KngKn from LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
to

itself.

Proof. Let (G , δ) be an S-point of LocSht(I1,...,Ik)G,µ•
|∏

i∈I SpdFi
, and let (ψn)n≥0 be

a compatible system of level-n structures ψn on G . For all 1 ≤ j ≤ k, we see that
ψj := lim←−n ψ

n
j yields an isomorphism of G-bundles Gj |SpecR[[z]]

∼→G. For any g in

G(F ), we get an isomorphism of G-bundles g ◦ (ψj)R((z)) : Gj |SpecR((z))
∼→G, which

we use with Beauville–Laszlo to glue G|SpecR[[z]] and Gj |YS,(0,∞)
into a G-bundle

g · Gj on YS,[0,∞).
Since (g · Gj)|YS,(0,∞)∖

∑
i∈Ij

Γi
is canonically isomorphic to Gj |YS,(0,∞)∖

∑
i∈Ij

Γi
,

the commutativity of the square in Definition 4.10 and Beauville–Laszlo let us glue
id and (ϕj)YS,(0,∞)∖

∑
i∈Ij

Γi
into an isomorphism of G-bundles

g · ϕj : (g · Gj)|YS,[0,∞)∖
∑

i∈Ij
Γi

∼→(g · Gj+1)|YS,[0,∞)∖
∑

i∈Ij
Γi
,

where g · Gk+1 denotes
τ
(g · G1). As G is bounded by µ•, the analytic local G-

shtuka g ·G := ((g ·Gj)kj=1, (g ·ϕj)kj=1) is too. Because (g ·Gj)|YS,[a,∞)
is canonically

isomorphic to Gj |YS,[a,∞)
, our δ induces a quasi-isogeny from g · G to G. Since

(g · Gj)|SpecR[[z]] is canonically trivial, we have the trivial level-n structure id =

(id)kj=1 on g · G .



LOCAL-GLOBAL COMPATIBILITY OVER FUNCTION FIELDS 31

Altogether, we define the image of (G , δ, (ψn)n≥0) under g to be (g ·G , δ, (id)n≥0).
When g lies in G(OF ), our g ◦ (ψj)R((z)) above extends to an isomorphism of G-

bundles g ◦ψj : Gj |SpecR[[z]]
∼→G, and tracing through our identifications shows that

this indeed recovers the action from 4.12. Finally, 1KngKn is given by

LocSht(I1,...,Ik)G,µ•,∞v /(Kn ∩ g−1Kng)
g
//

��

LocSht(I1,...,Ik)G,µ•,∞v /(gKng
−1 ∩Kn)

��

LocSht(I1,...,Ik)G,µ•,∞v /Kn LocSht(I1,...,Ik)G,µ•,∞v /Kn

and identifying LocSht(I1,...,Ik)G,µ•,∞v /Kn with LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
. □

4.14. Recall the following variant of the moduli of local shtukas, which is defined
purely in terms of the Fargues–Fontaine curve. Let K be a compact open subgroup
of G(F ).

Definition. WriteMI
G,µ•,K

|∏
i∈I SpdFi

for the small v-sheaf over
∏
i∈I SpdFi whose

S-points parametrize data consisting of

i) a G-bundle E on XS such that, for all geometric points s of S, its pullback Es
to Xs is trivial,

ii) an isomorphism of G-bundles

α : E |XS∖
∑

i∈I Γi

∼→G

that is meromorphic along
∑
i∈I Γi such that, for all geometric points s of S,

the relative position of αs at Γi,s is bounded by
∑
i′ µi′ , where i

′ runs over
elements of I satisfying Γi′,s = Γi,s,

iii) a K-bundle P on S whose pushforward along K→G(F ) equals the G(F )-

bundle on S corresponding to E via [11, Theorem III.2.4].

Write fM :MI
G,µ•,K

|∏
i∈I SpdFi

→
∏
i∈I SpdFi for the structure morphism.

Recall thatMI
G,µ•,K

|∏
i∈I SpdFi

is a locally spatial diamond.

4.15. The analytic moduli of local G-shtukas is related to the Fargues–Fontaine
variant as follows.

Proposition. We have a canonical morphism

c : LocSht(I)G,µ•,nv
|∏

i∈I SpdFi
→MI

G,µ•,Kn
|∏

i∈I SpdFi

of locally spatial diamonds over
∏
i∈I SpdFi.

Proof. Let (G , δ, ψ) be an S-point of LocSht(I)G,µ•,nv
. Theorem 3.12 and Proposition

3.8 show that (G1|Spec R̃int
R
, (ϕ1)R̃int

R
) corresponds to a G(OF )-bundle on S, and

Proposition 3.8 implies that ψ1 corresponds to a reduction P of this G(OF )-bundle
to a Kn-bundle. Via continuation by Frobenius, (G1|Spec R̃int

R
, (ϕ1)R̃int

R
) also induces

a τ -G-bundle (F , υ) over YS,[0,∞) such that (F |YS,(0,∞)
, (υ)YS,(0,∞)

) corresponds to

the pushforward of P along Kn→G(F ). Therefore the pullback of the G-bundle

E := (F |YS,(0,∞)
)/(υ)ZYS,(0,∞)

from XS to Xs is trivial for all geometric points s of

S, and the corresponding G(F )-bundle on S via [11, Theorem III.2.4] equals the

pushforward of P alongKn→G(F ). Finally, continuation by Frobenius and Lemma
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4.5 indicate that δ1 induces an isomorphism of G-bundles α : E |XS∖
∑

i∈I Γi

∼→G

with the desired relative position bound, so altogether (E , α,P) yields an S-point
ofMI

G,µ•,Kn
. □

4.16. We will need the following results of Fargues–Scholze [11] on the intersection
homology of the moduli of local shtukas. Recall the notation of 2.13, and let V be
an object of RepE(

LG)I . Note that∐
µ•
LocSht(I1,...,Ik)G,µ•,nv

|(Spd F̃ )I and
∐
µ•
MI

G,µ•,K
|(Spd F̃ )I

naturally descend to small v-sheaves LocSht(I1,...,Ik)G,V,nv and MI
G,V,K over (SpdF )I ,

respectively, where µ• runs over highest weights appearing in VQℓ
|ĜI . Proposition

4.12 and [41, Proposition 13.4 (iv)] imply that LocSht(I1,...,Ik)G,V,nv is a locally spatial

diamond, and we see thatMI
G,V,K is also a locally spatial diamond.

Let Λ be OE or E, and now let V be an object of RepOE
(LG)I . If Λ = OE , then

by abuse of notation write V for VE . Write (Spd F̆ )I for the I-th power of Spd F̆
over Fq, and write ′FIV,K,Λ for the object of D■(MI

G,V,K |(Spd F̆ )I ,Λ) obtained from

[11, Theorem VI.11.1] and V by first applying the double-dual embedding as in [11,

p. 264] and then pulling back toMI
G,V,K |(Spd F̆ )I . Write ′F (I1,...,Ik)

V,nv,Λ for the pullback

of ′FIV,Kn,Λ
under the composition

LocSht(I1,...,Ik)G,V,nv |(Spd F̆ )I →LocSht
(I)
G,V,nv|(Spd F̆ )I

c→MI
G,V,Kn

|(Spd F̆ )I .

Write WF for the absolute Weil group of F .

Theorem. Our c induces an isomorphism fL♮ (
′F (I)

V,nv,Λ)
∼→ fM♮ (′FIV,Kn,Λ). Conse-

quently, the object fL♮ (
′F (I)

V,nv,Λ) of D■((Spd F̆ )
I ,Λ) naturally arises via pullback

from D(W I
F ,Λ).

Proof. Using Theorem 3.12 and Proposition 3.8, the argument in the proof of [11,
Proposition IX.3.2] yields the first claim. For the second claim, [11, Proposition

VII.3.1 (iii)] enables us to identify fM♮ (′FIV,Kn,Λ
) with i∗1TV (i1!(c-Ind

G(F )
Kn

Λ)) as

objects of D(Λ), where i1 : [∗/G(F )]→BunG is the canonical open embedding, and

TV is the geometric Hecke operator associated with V . Therefore [11, Corollary
IX.2.3] yields the desired result. □

4.17. Finally, we define partial Frobenii for the analytic moduli of local G-shtukas
and relate them to partial Frobenii on the Fargues–Fontaine variant as follows.

Write Fr(I1,...,Ik) : LocSht(I1,...,Ik)G,V,nv →LocSht(I2,...,Ik,I1)G,V,nv for the morphism that sends

G1
ϕ1 //

δ1

��

· · ·
ϕk−1

// Gk
ϕk //

δk

��

τG1

τδ1 to
��

G2
ϕ2 //

δ2

��

· · ·
ϕk // τG1

τϕ1
//

τδ1

��

τG2

τδ2

��

G · · · G G G · · · G G.

Note that MI
G,V,K naturally descends to a v-sheaf over (Div1F )

I , where Div1F de-
notes the small v-sheaf over SpdFq whose S-points parametrize degree-1 relative

effective Cartier divisors of XS . Write φI1 : MI
G,V,K→M

I
G,V,K for the resulting

endomorphism given by geometric q-Frobenius on the i-th factor of (SpdF )I for i
in I1 and the identity on all other factors.
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Lemma. We have a commutative diagram

LocSht(I1,...,Ik)G,V,nv
//

Fr(I1,...,Ik)

��

LocSht(I)G,V,nv
c //MI

G,V,Kn

φI1

��

LocSht(I2,...,Ik,I1)G,V,nv
// LocSht(I)G,V,nv

c //MI
G,V,Kn

.

Proof. This follows immediately from the proof of Proposition 4.15. □

5. Uniformizing the moduli spaces of global shtukas

At this point, we shift focus from local to global considerations. Our goal in this
section is to define the uniformization morphism, which is essential for our main
results. First, we recall some facts about global shtukas and their moduli spaces.
We then take formal completions at a fixed place and define the uniformization
morphism on the level of formal stacks. By restricting to a Harder–Narasimhan
truncation on the global moduli and using results from §2 on the local moduli, we
can pass from formal stacks to formal schemes that are locally formally of finite
type over DI . This lets us avoid questions about analytifying stacks, as well as
upgrade the formal étaleness of our uniformization morphism to étaleness (after
passing to generic fibers). Finally, we extend the uniformization morphism to the
covering tower on generic fibers.

5.1. We start by switching our notation to a global context. Let C be a geometri-
cally connected smooth proper curve over a finite field Fq, and write F for Fq(C).
Fix a separable closure F of F , and write ΓF for Gal(F/F ). Write A for the adele
ring of C, and write O for its subring of integral adeles.

Let G be a parahoric group scheme over C as in [38, Definition 2.18], and write
Z for the center of G. By [3, Proposition 2.2(b)], there exists an SLh-bundle V on
C and a closed embedding ι : Gad→Aut(V ) of group schemes over C such that
Aut(V )/Gad satisfies [3, (2.1)].

Let T be a maximal subtorus of GF , and write X+
∗ (T ) for the set of dominant

cocharacters of TF with respect to a fixed Borel subgroup B ⊆ GF containing
TF . Identify X+

∗ (T ) with the set of conjugacy classes of cocharacters of GF . Let
µ• = (µi)i∈I be in X+

∗ (T ), and identify the field of definition of µi with Fq(Ci) for
some finite generically étale cover Ci→C. Write Gr

(I1,...,Ik)
G,µ•

|∏
i∈I Ci

for the closed

affine Schubert variety as in 1.5.

5.2. Let us recall the definition of global G-shtukas. Let S be an affine scheme over
CI , and adopt the notation of 1.2. Write τ : S→S for the absolute q-Frobenius
endomorphism, and by abuse of notation, write τ : C × S→C × S for the identity
times τ .

Definition.

a) A global G-shtuka over S consists of
i) for all 1 ≤ j ≤ k, a G-bundle Gj on C × S,
ii) for all 1 ≤ j ≤ k, an isomorphism of G-bundles

ϕj : Gj |C×S∖
∑

i∈Ij
Γi

∼→Gj+1|C×S∖
∑

i∈Ij
Γi
,

where Gk+1 denotes the G-bundle τG1.
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b) Suppose that S lies over
∏
i∈I Ci, and let G = ((Gj)kj=1, (ϕj)

k
j=1) be a global

G-shtuka over S. We say that G is bounded by µ• if the S-point of

[L+
I (G)\Gr

(I1,...,Ik)
G |∏

i∈I Ci
]

given by ((Gj |Spec ÔC(S))
k
j=1, ((ϕj)Ôj,◦

C (S))
k
j=1) lies in [L+

I (G)\Gr
(I1,...,Ik)
G,µ•

|∏
i∈I Ci

].

c) Let G be a global G-shtuka over S. We say that G has Harder–Narasimhan
polygon bounded by s if the SLr-bundle ι∗(G ad

1 ) has Harder–Narasimhan polygon
bounded by s2ρ∨, where 2ρ∨ denotes the sum of positive coroots in SLh.

5.3. Next, we turn to level structures. Let N be a finite closed subscheme of C.

Definition. Suppose that S lies over (C ∖ N)I , and let G be a global G-shtuka
over S. A level-N structure on G consists of, for all 1 ≤ j ≤ k, an isomorphism of
G-bundles

ψj : Gj |N×S
∼→G

such that the diagram

Gj |N×S
(ϕj)N

//

ψj

��

Gj+1|N×S

ψj+1

��

G G

commutes, where Gk+1 denotes τG1, and ψk+1 denotes τψ1.

Since S lies over (C ∖N)I , the (ϕj)N are isomorphisms. Therefore ψ1 uniquely
determines ψj for 2 ≤ j ≤ k.

5.4. We now recall the moduli of global G-shtukas and its associated structures.
Write Ni for the preimage of N in Ci.

Definition. Write Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

for the stack over
∏
i∈I Ci ∖ Ni whose

S-points parametrize data consisting of

i) a global G-shtuka G over S bounded by µ•,
ii) a level-N structure ψ = (ψj)

k
j=1 on G .

Write Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

for the open substack of Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

whose S-points consist of the (G , ψ) such that G has Harder–Narasimhan polygon
bounded by s.

Write fS : Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

→
∏
i∈I Ci ∖Ni for the structure morphism.

Our Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

has an action of Z(F )\Z(A) by twisting. Since

the image of Z in Aut(V ) is trivial, Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

is preserved by

the Z(F )\Z(A)-action. Finally, note that Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

is the increas-

ing union of the Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

.
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5.5. For finite closed subschemes N ′ ⊇ N of C, we have morphisms

Sht
(I1,...,Ik)
G,µ•,N ′ |∏

i∈I Ci∖N ′
i
→Sht

(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖N ′

i

given by pulling back ψj to N × S for all 1 ≤ j ≤ k. Write KN ′,N for the ker-

nel of G(ON ′)→G(ON ), and note that KN ′,N acts on Sht
(I1,...,Ik)
G,µ•,N ′ |∏

i∈I Ci∖N ′
i
over

Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖N ′

i
via postcomposition with ψj for all 1 ≤ j ≤ k.

Proposition. The morphism Sht
(I1,...,Ik)
G,µ•,N ′ |∏

i∈I Ci∖N ′
i
→Sht

(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖N ′

i
is

finite Galois, where the Galois action is given by that of KN ′,N .

Proof. When N = ∅, the result follows from the proof of [43, Proposition 2.16 b)].
For general N , the result follows from the commutative triangle

Sht
(I1,...,Ik)
G,µ•,N ′ |∏

i∈I Ci∖N ′
i

//

%%

Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖N ′

i

yy

Sht
(I1,...,Ik)
G,µ•,∅ |∏

i∈I Ci∖N ′
i

and compatibility of the KN ′,N -action with changing N ′ and N . □

5.6. Proposition. Our Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

is a Deligne–Mumford stack that is

separated and locally of finite type over
∏
i∈I Ci ∖Ni. Moreover, for large enough

degN , our Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

is a scheme that is separated and locally of

finite type over
∏
i∈I Ci ∖Ni.

Proof. The second claim follows from the proof of [32, Lemme 12.19]. Using Propo-
sition 5.5, the first claim follows from the argument in [46, §5.1.5]. □

5.7. Let F̃ be the finite Galois extension of F such that Gal(F̃ /F ) equals the image

of the ΓF -action on X+
∗ (T ), and identify F̃ with Fq(C̃) for some finite generically

étale cover C̃→C. Write Ñ for the preimage of N in C̃. Write Ĝ for the dual

group of GF over OE , and write LG for Ĝ⋊Gal(F̃ /F ).

Let V be an object of RepE(
LG)I . Note that

∐
µ•

Sht
(I1,...,Ik)
G,µ•,N

|(C̃∖Ñ)I and∐
µ•

Sht
(I1,...,Ik),≤s
G,µ•,N

|(C̃∖Ñ)I naturally descend to stacks

Sht
(I1,...,Ik)
G,V,N and Sht

(I1,...,Ik),≤s
G,V,N

over (C∖N)I , respectively, where µ• runs over highest weights appearing in VQℓ
|ĜI .

Proposition 5.6 and descent imply that Sht
(I1,...,Ik)
G,V,N is a Deligne–Mumford stack that

is separated and locally of finite type over (C∖N)I , and for large enough degN , our

Sht
(I1,...,Ik),≤s
G,V,N is a scheme that is separated and locally of finite type over (C∖N)I .

5.8. Write KN for the kernel of G(O)→G(ON ). For any g in G(A), recall that we
have a canonical finite étale correspondence 1KNgKN

from Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Fq(Ci) to

itself [32, Construction 2.20]6. Note that 1KNgKN
commutes with the Z(F )\Z(A)-

action.

6Although [32, Construction 2.20] only addresses the case when G is split, it extends to the
general case. Indeed, this is already implicitly used in [32, (12.16)].
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5.9. Definition. Write Fr(I1,...,Ik) : Sht
(I1,...,Ik)
G,V,N → Sht

(I2,...,Ik,I1)
G,V,N for the morphism

given by

(G1
ϕ1 // · · ·

ϕk−1
// Gk

ϕk // τG1)
� // (G2

ϕ2 // · · ·
ϕk // τG1

τϕ1
// τG2).

Note that Fr(I1,...,Ik) lies above the endomorphism of (C∖N)I given by geometric
q-Frobenius on the i-th factor for i in I1 and the identity on all other factors.

By [32, Lemme 3.1]7, there exists a non-negative integer κ(V ) such that

(Fr(I1,...,Ik))−1(Sht
(I2,...,Ik,I1),≤s
G,V,N ) ⊆ Sht

(I1,...,Ik),≤s+κ(V )
G,V,N and

Fr(I1,...,Ik)(Sht
(I1,...,Ik),≤s
G,V,N ) ⊆ Sht

(I2,...,Ik,I1),≤s+κ(V )
G,V,N .

5.10. At this point, we fix a place of F and begin exploring the interplay between
the local and global situations. Let v be a closed point of C, write r for the

degree of v, and write Ov for ÔC,v. Choose a uniformizer z of Ov, which yields an
identification Ov = Fqr [[z]]. Write Fv for the fraction field of Ov, and write D for
the formal scheme Spf Ov.

Fix a separable closure F v of Fv, and fix an embedding F →F v. By abuse of
notation, write G for the pullback of G to Ov. Using TFv

for our maximal subtorus
of GFv

and BFv
for our Borel subgroup of GFv

, we can identify Fi from 1.5 with the

closure of Fq(Ci) in F v as well as identify Di from 1.5 with the formal completion

of Ci at the closed point vi of Ci above v induced by F →F v.

5.11. The following two lemmas explain how to resolve the clash between our
local and global base fields. Write DI for the I-th power of D over Fqr . Adopt the
notation of 1.3, and let S = SpecR be an affine scheme over DI .

Lemma. We have a natural isomorphism of affine formal schemes∐
d

D×Fqr ,d S
∼→D× S,

where D ×Fqr ,d S denotes the product of S→SpecFqr
τd

→SpecFqr and D over Fqr ,
and d runs over Z/r. Under this identification, τ : D × S→D × S on the right-
hand side corresponds to the disjoint union of τ : D×Fqr,d

S→D×Fqr,d−1
S on the

left-hand side.

Proof. Take D×Fqr,d
S→D×S to be the natural morphism. Since Fqr is finite Galois

over Fq with Gal(Fqr/Fq) = τZ/r, the induced morphism above is an isomorphism.
The last statement follows immediately. □

5.12. Lemma. A local G-shtuka over S is equivalent to data consisting of

i) for all 1 ≤ j ≤ k, a G-bundle Hj on D× S,
ii) for all 1 ≤ j ≤ k, an isomorphism of G-bundles

χj : Hj |D×S∖∑
i∈Ij

Γi

∼→Hj+1|D×S∖∑
i∈Ij

Γi
,

where Hk+1 denotes the G-bundle τHk.

7While [32, Lemme 3.1] only treats the case of split G, it extends to the general case. Indeed,
this is already implicitly used in [32, (12.15)].
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Proof. Let G be a local G-shtuka over S, and for all 1 ≤ j ≤ k, view Gj as a

G-bundle on D ×Fqr
S. Using Lemma 5.11, we can form Hj by taking τd

G1 on

D×Fqr ,dS for 1 ≤ d ≤ r−1 and Gj on D×Fqr
S. Note that τH1 is given by τd

G1 on
D×Fqr ,d S for all 1 ≤ d ≤ r. Therefore we can form χj by taking id on D×Fqr ,d S
for 1 ≤ d ≤ r − 1 and ϕj on D×Fqr

S.

Conversely, let H := ((Hj)
k
j=1, (χj)

k
j=1) be as above. Write (−)|d for restrictions

to D×Fqr ,d S. Since Γi lies in D×Fqr
S for all i in I, our χj |d is an isomorphism for

all 1 ≤ j ≤ k and 1 ≤ d ≤ r − 1. By repeatedly using Lemma 5.11, this identifies

Hj |d with τd

H1|r. Hence this also identifies Hk+1|r with τr

H1|r, so altogether we
see that H |r yields a local G-shtuka over S. □

5.13. In our study of the uniformization morphism, we start by defining it on the
level of formal stacks. Write

∏
i∈I Di for the product of the Di over Fqr , and write∏

i∈I vi for the product of the vi over Fqr . Assume that N and v are disjoint, and

write Ŝht
(I1,...,Ik)

G,µ•,N |∏
i∈I Di

for the formal completion of Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

along∏
i∈I vi in

∏
i∈I Ci ∖Ni.

Proposition. We have a canonical morphism

Θ̂ : LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

→ Ŝht
(I1,...,Ik)

G,µ•,N |∏
i∈I Di

of stacks over
∏
i∈I Di that is formally étale.

This result generalizes cases of [3, Theorem 5.3].

Proof. First, we define Θ̂. Let (G , δ) be an S-point of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

, and

let ((Hj)
k
j=1, (χj)

k
j=1) be the data corresponding to G as in Lemma 5.12. For all

1 ≤ j ≤ k, Lemma 5.11 shows that taking δj on D ×Fqr
S and τd

δ1 on D ×Fqr ,d S
for 1 ≤ d ≤ r − 1 yields an isomorphism of G-bundles

ϵj : Hj |D×S∖v×S
∼→G.

Beauville–Laszlo lets us use ϵj to glue Hj and G|C×S∖v×S into a G-bundle G Θ
j on

C × S. Because the square in Definition 2.2.b) commutes, Beauville–Laszlo also
lets us glue χj and id into an isomorphism of G-bundles

ϕΘj : G Θ
j |C×S∖

∑
i∈Ij

Γi

∼→G Θ
j+1|C×S∖

∑
i∈Ij

Γi
,

where we use Lemma 1.3 to identify R[[z]] with ÔC(S), and G Θ
k+1 denotes the G-

bundle
τ
G Θ
1 . As G is bounded by µ•, the globalG-shtuka G Θ := ((G Θ

j )kj=1, (ϕ
Θ
j )
k
j=1)

is too. Because N and v are disjoint, G Θ
j |N×S and ϕΘj |N×S are canonically trivial,

so we have the trivial level-N structure id = (id)kj=1 on G Θ. Altogether, we define

Θ̂(G , δ) to be the S-point (G Θ, id) of Ŝht
(I1,...,Ik)

G,µ•,N |∏
i∈I Di

.
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To see that Θ̂ is formally étale, let J be an ideal of R satisfying Jn = 0, and
write S→S for the associated closed embedding. For any commutative square

S //

��

LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

Θ̂
��

S //

88

Ŝht
(I1,...,Ik)

G,µ•,N |∏
i∈I Di

,

write (G , δ) for the S-point of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

, and write (F , ψ) for the S-

point of Ŝht
(I1,...,Ik)

G,µ•,N |∏
i∈I Di

. The restriction of F to D×S yields data as in Lemma

5.12, which corresponds to a local G-shtuka G over S. As F is bounded by µ•, our

G is too. Because the pullback of F to S is Θ̂(G , δ), we see that the pullback of G
to S is G . Therefore Proposition 2.3 yields a unique quasi-isogeny δ from G to G
whose pullback to S is δ.

Consider the S-point of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

given by (G , δ). The top triangle

commutes by construction, and the bottom triangle commutes by the uniqueness of
Beauville–Laszlo gluing. Finally, the uniqueness of Proposition 2.3 and Beauville–
Laszlo gluing also imply that (G , δ) is the unique such morphism, as desired. □

5.14. By restricting to a Harder–Narasimhan truncation and letting the (tame)
level be large enough, we can pass from formal stacks to formal schemes. Maintain

the assumptions of 5.13, Write Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di
for the formal completion of

Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

along
∏
i∈I vi in

∏
i∈I Ci∖Ni, and write LocSht

(I1,...,Ik),≤s
G,µ•

|∏
i∈I Di

for the preimage

of Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di
under Θ̂.

Proposition. For large enough degN , the restriction

Θ̂ : LocSht
(I1,...,Ik),≤s
G,µ•

|∏
i∈I Di

→ Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di

is a morphism of formal schemes that is formally étale and locally formally of finite
type.

Proof. Proposition 5.13 shows that the restriction

Θ̂ : LocSht
(I1,...,Ik),≤s
G,µ•

|∏
i∈I Di

→ Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di

is formally étale. Because Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di
is an open substack of

Ŝht
(I1,...,Ik)

G,µ•,N |∏
i∈I Di

,

we see that LocSht
(I1,...,Ik),≤s
G,µ•

|∏
i∈I Di

is an open subsheaf of LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

,

so Theorem 2.12 implies that LocSht
(I1,...,Ik),≤s
G,µ•

|∏
i∈I Di

is a formal scheme that is

locally formally of finite type over
∏
i∈I Di. For large enough degN , Proposition

5.6 implies that Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di
is a formal scheme that is formally of finite

type over
∏
i∈I Di. Hence Θ̂ is locally formally of finite type, as desired. □
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5.15. To add level at v, we need to pass to generic fibers as follows. Maintain the
assumptions of 5.14, and assume that degN is large enough as in Proposition 5.14.

Proposition 5.6 shows that Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

is separated over
∏
i∈I Ci∖Ni,

so the natural morphism of adic spaces

Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I Di
→(Sht

(I1,...,Ik),≤s
G,µ•,N

)∏
i∈I Di

is an open embedding [26, (4.6.iv.c)]. Write
∏
i∈I SpaFi for the product of the

SpaFi over Fqr . For any non-negative integer n, write Ŝht
(I1,...,Ik),≤s
G,µ•,nv+N |

∏
i∈I SpaFi

for

the preimage of Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I SpaFi
in (Sht

(I1,...,Ik),≤s
G,µ•,nv+N

)∏
i∈I SpaFi

.

Write
∏
i∈I SpdFi for the product of the SpdFi over Fqr . Write

LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I SpdFi

for the preimage of (LocSht
(I1,...,Ik),≤s
G,µ•

|∏
i∈I SpaFi

)♢ in LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I SpdFi
,

where we use Theorem 4.9 to identify (LocSht
(I1,...,Ik)
G,µ•

|∏
i∈I Di

)♢ with

LocSht(I1,...,Ik)G,µ•
|∏

i∈I D♢
i
.

5.16. We can now define the uniformization morphism on generic fibers. Maintain
the assumptions of 5.15, and let S = Spa(R,R+) be an affinoid perfectoid space
over

∏
i∈I SpaFi.

Theorem. We have a canonical morphism

Θn : LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I SpdFi
→(Ŝht

(I1,...,Ik),≤s
G,µ•,nv+N |

∏
i∈I SpaFi

)♢

of locally spatial diamonds over
∏
i∈I SpdFi that is étale.

Proof. First, we define Θn. By Theorem 4.9, an S-point of

LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I SpdFi

corresponds to a cover (Sα)α of S by rational open subspaces Sα = Spa(Rα, R
+
α )

with pairwise intersections Sαβ = Spa(Rαβ , R
+
αβ), a family (G α, δα) of Spf R+

α -

points of LocSht
(I1,...,Ik),≤s
G,µ•

|∏
i∈I Di

that agree on Spf R+
αβ , and a level-n structure

ψ on the analytic local G-shtuka over S obtained from gluing the (G α)an.

Proposition 5.6 indicates that Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

is locally of finite type

over
∏
i∈I Ci ∖Ni, so for all α, our Θ(G α, δα) yields an R+

α -point of

Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

.

Write G α,Θ for the resulting global G-shtuka over SpecRα, which is bounded by µ•
and has Harder–Narasimhan polygon bounded by m. Note that the pullback ψα of
ψ to Sα is precisely a level-nv structure on G α,Θ, so we can form a level-(nv +N)
structure ψα,Θ on G α,Θ by taking ψα on nv and id onN . Then (G α,Θ, ψα,Θ) induces

an Sα-point of Ŝht
(I1,...,Ik),≤s
G,µ•,nv+N |

∏
i∈I SpaFi

, and because the G α,Θ and ψα,Θ agree on

SpecRαβ , the resulting family glues into an S-point. We define this S-point to be
the value of Θn.
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To see that Θn is étale, note that we have a commutative square

LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I SpdFi
//

Θn

��

(LocSht
(I1,...,Ik),≤s
G,µ |∏

i∈I SpaFi
)♢

Θ̂♢

��

(Ŝht
(I1,...,Ik),≤s
G,µ•,nv+N |

∏
i∈I SpaFi

)♢ // (Ŝht
(I1,...,Ik),≤s
G,µ•,N |∏

i∈I SpaFi
)♢.

Theorem 4.9 and Proposition 4.12 show that the top arrow is étale, and Proposition
5.5 and [41, Lemma 15.6] imply that the bottom arrow is étale. Proposition 5.14 and

[41, Lemma 15.6] imply that Θ̂♢ is étale, so the 2-out-of-3 property [41, Proposition
11.30] concludes that Θn is étale. □

5.17. As before, we reindex everything in terms of representations of the dual

group. Maintain the assumptions of 5.15. Let F̃v be the extension of Fv as in

2.13, and identify F̃v with the completion of F̃ at the place ṽ of F̃ above v induced

by F →F v. Identify Ĝ with the dual group of GFv
over OE , and write LGv for

Ĝ⋊Gal(F̃v/Fv). Note that we have a natural inclusion LGv→ LG.

Let V be an object of RepE(
LGv)

I . Write Ŝht
(I1,...,Ik)

G,V,N and Ŝht
(I1,...,Ik),≤s
G,V,N for

the formal completions of Sht
(I1,...,Ik)
G,V,N and Sht

(I1,...,Ik),≤s
G,V,N , respectively, along vI in

(C ∖N)I . Proposition 5.13 and descent yield a canonical morphism

Θ̂ : LocSht
(I1,...,Ik)
G,V → Ŝht

(I1,...,Ik)

G,V,N

that is formally étale. Write LocSht
(I1,...,Ik),≤s
G,V for the preimage of Ŝht

(I1,...,Ik),≤s
G,V,N

under Θ.

Write Ŝht
(I1,...,Ik),≤s
G,V,nv+N for the preimage of Ŝht

(I1,...,Ik),≤s
G,V,N in (Sht

(I1,...,Ik)
G,V,nv+N )(SpaFv)I ,

and write LocSht(I1,...,Ik),≤sG,V,nv for the preimage of (LocSht
(I1,...,Ik),≤s
G,V )♢

(SpaFv)I
in

LocSht(I1,...,Ik)G,V,nv , where we use Theorem 4.9 to identify (LocSht
(I1,...,Ik),≤s
G,V )♢

(SpaFv)I

with LocSht(I1,...,Ik)G,V,0v . Theorem 5.16 and Galois descent yield a canonical morphism

Θn : LocSht(I1,...,Ik),≤sG,V,nv →(Ŝht
(I1,...,Ik),≤s
G,V,nv+N )♢

of locally spatial diamonds over (SpdFv)
I that is étale.

5.18. We conclude by showing that the uniformization morphism is compatible
with partial Frobenii. Maintain the assumptions of 5.15.

Lemma. Our Fr(I1,...,Ik) restricts to a morphism

Fr(I1,...,Ik) : LocSht(I1,...,Ik),≤sG,V,nv →LocSht(I1,...,Ik),≤s+rκ(V )
G,V,nv .

After enlarging degN , we can also form the r-fold composition

(Fr(I1,...,Ik))τr−1
(SpaFv)I1×(SpaFv)I∖I1

◦ · · · ◦ (Fr(I1,...,Ik))(SpaFv)I ,

which yields a morphism

(Fr(I1,...,Ik))r(SpaFv)I
: (Sht

(I1,...,Ik),≤s
G,V,nv+N )(SpaFv)I →(Sht

(I1,...,Ik),≤s+rκ(V )
G,V,nv+N )(SpaFv)I .

Finally, we have Θn ◦ Fr(I1,...,Ik) = (Fr(I1,...,Ik))r,♢
(SpaFv)I

◦Θn.
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Proof. Write Ŝht
(I1,...,Ik)

G,V,N |τDI1×DI∖I1 for the formal completion of Sht
(I1,...,Ik)
G,V,N along

τ(v)I1 × vI∖I1 in (C ∖N)I . We see from 5.9 that Fr(I1,...,Ik) induces a morphism

F̂r
(I1,...,Ik)

: Ŝht
(I1,...,Ik)

G,V,N → Ŝht
(I2,...,Ik,I1)

G,V,N |τDI1×DI∖I1 .

If r = 1, then stop here. Otherwise, the relative effective Cartier divisors on
C ×S corresponding to S-points of τD and D are disjoint, so the right-hand side is

naturally isomorphic to Ŝht
(I1,...,Ik)

G,V,N |τDI1×DI∖I1 . By forming F̂r
(I1,...,Ik)|τDI1×DI∖I1

and repeating this r − 1 more times, we obtain a morphism

F̂r
(I1,...,Ik)|τr−1DI1×DI∖I1

◦ · · · ◦ F̂r
(I1,...,Ik)

: Ŝht
(I1,...,Ik)

G,V,N → Ŝht
(I2,...,Ik,I1)

G,V,N .

Tracing through our identifications shows that

Θ̂ ◦ Fr(I1,...,Ik) = F̂r
(I1,...,Ik)|τr−1DI1×DI∖I1

◦ · · · ◦ F̂r
(I1,...,Ik) ◦ Θ̂,

so 5.9 implies that Fr(I1,...,Ik) restricts to a morphism

LocSht
(I1,...,Ik),≤s
G,V →LocSht

(I1,...,Ik),≤s+rκ(V )
G,V .

Pulling back to SpaFv and using Theorem 4.9 yields the desired result. □

6. Local-global compatibility

Our goal in this section is to prove Theorem A. First, we recall the coefficient
sheaves used for the cohomology of the global and local moduli problems. We show
that they are compatible under the uniformization morphism from §5. Next, we
recall smoothness theorems for our cohomology sheaves, which are due to Xue [45]
in the global case and Fargues–Scholze [11] in the local case.

These smoothness theorems yield global and local excursion operators. Using the
uniformization morphism, we prove that the global and local excursion operators are
compatible. From this, we deduce that the Bernstein center elements constructed
by Genestier–Lafforgue [14] agree with those constructed by Fargues–Scholze [11],
and we also deduce Theorem A.

6.1. For the cohomology of the moduli of global G-shtukas, we use the follow-
ing sheaves obtained via geometric Satake. For large enough e, recall from 1.5

that the natural L+
I (G)-action on Gr

(I1,...,Ik)
G,µ•

|∏
i∈I Ci

factors through LeI(G). Write

A
(I1,...,Ik)
G,µ•,N

for the LeI(G)-bundle on Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

whose fiber over (G , ψ)

parametrizes trivializations of the G-bundle τG1|e∑i∈I Γi
. Note that we have a nat-

ural LeI(G)-equivariant morphism A
(I1,...,Ik)
G,µ•,N

→Gr
(I1,...,Ik)
G,µ•

|∏
i∈I Ci

, which is smooth

by [32, p. 867]. Write A
(I1,...,Ik),≤s
G,µ•,N

for the restriction of A
(I1,...,Ik)
G,µ•,N

to

Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

.

Write Vµ• for the highest weight representation of ĜI corresponding to µ•, and

write S(I1,...,Ik)µ•,E
for the corresponding object of D(Gr

(I1,...,Ik)
G,µ•

|∏
i∈I Ci

, E) under geo-

metric Satake. Write F (I1,...,Ik)
µ•,N,E

for the object of D(Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

, E) ob-

tained by first pulling back S(I1,...,Ik)µ•,E
to A

(I1,...,Ik)
G,µ•,N

and then using LeI(G)-equivariance
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to descend along A
(I1,...,Ik)
G,µ•,N

→Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

. Finally, write F (I1,...,Ik),≤s
µ•,N,E

for the restriction of F (I1,...,Ik)
µ•,N,E

to Sht
(I1,...,Ik),≤s
G,µ•,N

|∏
i∈I Ci∖Ni

.

6.2. We will also take cohomology after quotienting by a lattice Ξ of Z(F )\Z(A),
where a lattice means a discrete torsionfree cocompact subgroup. We proceed as

follows. Note that L+
I (Z) acts trivially on Gr

(I1,...,Ik)
G,µ•

|∏
i∈I Ci

, so the natural L+
I (G)-

action factors through L+
I (G

ad). For large enough e, 1.5 indicates that this factors
through LeI(G

ad). Now LeI(Z) acts trivially on the objects of

D(Gr
(I1,...,Ik)
G,µ•

|∏
i∈I Ci

, E)

obtained from geometric Satake [32, Théorème 12.16], so these objects are LeI(G
ad)-

equivariant. Adapting the construction in 6.1 yields an object F (I1,...,Ik)
Ξ,µ•,N,E

of

D(Sht
(I1,...,Ik)
G,µ•,N

/Ξ |∏
i∈I Ci∖Ni

, E),

and we see that the pullback of F (I1,...,Ik)
Ξ,µ•,N,E

to Sht
(I1,...,Ik)
G,µ•,N

|∏
i∈I Ci∖Ni

equals F (I1,...,Ik)
µ•,N,E

.

6.3. Next, we describe the sheaves used for the homology of the moduli of local
G-shtukas. Recall LeI(G) and L+

I (G) from Definition 4.3. For large enough e, 1.5

and Lemma 4.5 indicate that the natural L+
I (G)-action on Gr(I1,...,Ik)G,µ•

|∏
i∈I D♢

i
factors

through LeI(G). WriteA(I1,...,Ik)
G,µ•,nv

for the LeI(G)-bundle on LocSht
(I1,...,Ik)
G,µ•,nv

|∏
i∈I SpdFi

whose fiber over (G , δ, ψ) parametrizes trivializations of the G-bundle τ
r

G1|e∑i∈I Γi
.

Note that we have a natural LeI(G)-equivariant morphism

A(I1,...,Ik)
G,µ•,nv

→Gr(I1,...,Ik)G,µ•
|∏

i∈I SpdFi
.

Recall Λ from 4.16, and write
∏
i∈I Spd F̆i for the product of the Spd F̆i over

Fq. Write ′F (I1,...,Ik)
µ•,nv,Λ

for the object of D■(LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I Spd F̆i
,Λ) obtained

from [11, Theorem VI.11.1] and Vµ• by first applying the double-dual embedding as

in [11, p. 264], then pulling back to A(I1,...,Ik)
G,µ•,nv

|∏
i∈I Spd F̆i

, and finally using LeI(G)-
equivariance and [41, Proposition 17.3] to descend along

A(I1,...,Ik)
G,µ•,nv

→LocSht(I1,...,Ik)G,µ•,nv
|∏

i∈I Spd F̆i
.

WriteA(I1,...,Ik),≤s
G,µ•,nv

for the restriction ofA(I1,...,Ik)
G,µ•,nv

to LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I SpdFi
,

and write ′F (I1,...,Ik),≤s
µ•,nv,Λ

for the restriction of ′F (I1,...,Ik)
µ•,nv,Λ

to

LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I Spd F̆i
.

6.4. Our local and global coefficient sheaves are compatible under Θn in the fol-
lowing sense. Adapt the assumptions of 5.15, and write

∏
i∈I Spa F̆i for the product

of the Spa F̆i over Fq. Write (F (I1,...,Ik),≤s
µ•,nv+N,E

)∏
i∈I Spa F̆i

for the object of

D((Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)∏
i∈I Spa F̆i

, E)

obtained by analytifying F (I1,...,Ik),≤s
µ•,nv+N,E

as in [27, (3.2.8)]. Because

(Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)∏
i∈I Spa F̆i
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is an analytic adic space, [41, Lemma 15.6] and [41, Remark 14.14] indicate that

(F (I1,...,Ik),≤s
µ•,nv+N,E

)∏
i∈I Spa F̆i

yields an object (F (I1,...,Ik),≤s
µ•,nv+N,E

)♢∏
i∈I Spa F̆i

of

Dét((Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

, E).

Lemma. (F (I1,...,Ik),≤s
µ•,nv+N,E

)♢∏
i∈I Spa F̆i

is universally locally acyclic over
∏
i∈I Spd F̆i.

Moreover, its image
′
(F (I1,...,Ik),≤s

µ•,nv+N,E
)♢∏

i∈I Spa F̆i
in D■((Sht

(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

, E)

under the double-dual embedding as in [11, p. 260] satisfies

Θ∗
n

[ ′
(F (I1,...,Ik),≤s

µ•,nv+N,E
)♢∏

i∈I Spa F̆i

]
= ′F (I1,...,Ik),≤s

µ•,nv,E
.

Proof. We start by rewriting (F (I1,...,Ik),≤s
µ•,nv+N,E

)♢∏
i∈I Spa F̆i

as follows. Since

(Gr
(I1,...,Ik)
G,µ•

)∏
i∈I Spa F̆i

is an analytic adic space, [41, Lemma 15.6] and [41, Remark 14.14] indicate that

(S(I1,...,Ik)µ•,E
)♢∏

i∈I Spa F̆i
yields an object of Dét((Gr

(I1,...,Ik)
G,µ•

)♢∏
i∈I Spa F̆i

, E). By first

pulling back (S(I1,...,Ik)µ•,E
)♢∏

i∈I Spa F̆i
to (A

(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

and then using LeI(G)-
equivariance and [41, Proposition 17.3] to descend along

(A
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

→(Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

,

where we use Lemma 4.5 to identify (LeI(G))
♢
DI with LeI(G), we see that the resulting

object of Dét((Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

, E) equals (F (I1,...,Ik),≤s
µ•,nv+N,E

)♢∏
i∈I Spa F̆i

.

Let us prove the first claim. By using the explicit description in [11, Proposition
VI.7.9] and the fiberwise criterion for perversity [11, Corollary VI.7.6], we see that

(S(I1,...,Ik)µ•,E
)♢∏

i∈I Spa F̆i
equals the object obtained from [11, Theorem VI.11.1] and

Vµ• , where we use Lemma 4.5 to identify

(Gr
(I1,...,Ik)
G,µ•

)♢∏
i∈I Spa F̆i

= Gr(I1,...,Ik)G,µ•
|∏

i∈I Spd F̆i
.

Hence (S(I1,...,Ik)µ•,E
)♢∏

i∈I Spa F̆i
is universally locally acyclic over

∏
i∈I Spd F̆i. Now 6.1

and [41, Proposition 24.4] show that (A
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

→(Gr
(I1,...,Ik)
G,µ•

)♢∏
i∈I Spa F̆i

is ℓ-cohomologically smooth, so [11, Proposition IV.2.13 (i)] implies that the pull-

back of (S(I1,...,Ik)µ•,E
)♢∏

i∈I Spa F̆i
to (A

(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

remains universally locally

acyclic over
∏
i∈I Spd F̆i. Applying [41, Proposition 24.4] again shows that

(A
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

→(Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

is ℓ-cohomologically smooth, so [11, Proposition IV.2.13 (ii)] implies that

(F (I1,...,Ik),≤s
µ•,nv+N,E

)♢∏
i∈I Spa F̆i

is universally locally acyclic over
∏
i∈I Spd F̆i, as desired.

For the second claim, note that Θn naturally induces a morphism

A(I1,...,Ik),≤s
G,µ•,nv

→(A
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I SpaFi
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such that the diagram

Gr(I1,...,Ik)G,µ•
|∏

i∈I Spd F̆i
(Gr

(I1,...,Ik)
G,µ•

)♢∏
i∈I Spa F̆i

A(I1,...,Ik),≤s
G,µ•,nv

|∏
i∈I Spd F̆i

//

OO

��

(A
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

OO

��

LocSht(I1,...,Ik),≤sG,µ•,nv
|∏

i∈I Spd F̆i

Θn // (Sht
(I1,...,Ik),≤s
G,µ•,nv+N

)♢∏
i∈I Spa F̆i

commutes. Therefore the above discussion yields the desired result. □

6.5. We now consider the cohomology of the moduli of global G-shtukas. Let

V be an object of RepE(
LG)I . Note that the F (I1,...,Ik)

µ•,N,E
and F (I1,...,Ik),≤s

µ•,N,E
nat-

urally descend to objects F (I1,...,Ik)
V,N,E and F (I1,...,Ik),≤s

V,N,E of D(Sht
(I1,...,Ik)
G,V,N , E) and

D(Sht
(I1,...,Ik),≤s
G,V,N , E), respectively, where µ• runs over highest weights appearing

in VQℓ
|ĜI with multiplicity.

Recall that fS! F
(I1,...,Ik),≤s
V,N,E is independent of the ordered partition I1, . . . , Ik [32,

p. 868], so we write it as HI,≤sV,N,E . The same holds for fS! F
(I1,...,Ik)
V,N,E , so we write it as

HIV,N,E . Because Sht
(I1,...,Ik)
G,V,N is the increasing union of the Sht

(I1,...,Ik),≤s
G,V,N , we have

HIV,N,E = lim−→s
HI,≤sV,N,E . Note that 5.8 yields an action of Cc(KN\G(A)/KN , E) on

HIV,N,E .

6.6. Recall the following smoothness result of Xue [45]. Write η for SpecF , and
write ∆ for diagonal morphisms. Write WF for the absolute Weil group of F , and
write valF : WF →Z for the homomorphism that sends geometric q-Frobenii to 1.
Write U ⊆ C for the largest open subspace where GU is reductive.

Theorem. The cohomology sheaves of HIV,N,E |(U∖N)I are ind-smooth, and the co-

homology sheaves of HIV,N,E |∆(η) have a natural action ofW I
F . For any γ• = (γi)i∈I

inW I
F , the γ•-action sends the image of the cohomology groups of HI,≤sV,N,E |∆(η) to the

image of the cohomology groups of HI,≤s
′

V,N,E |∆(η) for s
′ ≥ s+

∑
i∈I max{0, valF (γi)}.

Proof. The first claim follows from the proof of [45, Theorem 6.0.12], and the W I
F -

action follows from the proof of [45, Proposition 6.0.10]. The last claim follows
from 5.9. □

6.7. Let us record the analogous results after quotienting by Ξ. Let V be an

object of RepE(
LG)I , and note that the F (I1,...,Ik)

Ξ,µ•,N,E
naturally descend to an object

F (I1,...,Ik)
Ξ,V,N,E of D(Sht

(I1,...,Ik)
G,V,N /Ξ, E), where µ• runs over highest weights appearing in

VQℓ
|ĜI with multiplicity.

Recall that fS! F
(I1,...,Ik)
Ξ,V,N,E is independent of the ordered partition I1, . . . , Ik [32,

p. 868], so we write it as HIΞ,V,N,E . Note that 5.8 yields an action of

Cc(KN\G(A)/KN , E)
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on HIΞ,V,N,E . Recall that the cohomology sheaves of HIΞ,V,N,E |(U∖N)I are ind-

smooth [45, Theorem 6.0.12], and the cohomology sheaves of HIΞ,V,N,E |∆(η) have a

natural action of W I
F [45, Proposition 6.0.10].

6.8. Next, we consider the homology of the moduli of local G-shtukas. Let V be

an object of RepOE
(LGv)

I . Note that the ′F (I1,...,Ik)
µ•,nv,Λ

and ′F (I1,...,Ik),≤s
µ•,nv,Λ

naturally

descend to objects ′F (I1,...,Ik)
V,nv,Λ and ′F (I1,...,Ik),≤s

V,nv,Λ of D■(LocSht(I1,...,Ik)G,V,nv |(Spd F̆v)I
,Λ)

and D■(LocSht(I1,...,Ik),≤sG,V,nv |(Spd F̆v)I
,Λ), respectively, where µ• runs over highest

weights appearing in VQℓ
|ĜI with multiplicity.

Recall the notation of 4.16. Since the square

LocSht(I)G,V,nv|(Spd F̆v)I
c //MI

G,V,Kn
|(Spd F̆v)I

��

LocSht(I1,...,Ik)G,V,nv |(Spd F̆v)I

OO

// [LeI(G)\Gr
(I)
G,V |(Spd F̆v)I

]

commutes, where Gr(I)G,V denotes the natural descent of
∐
µ•
Gr(I)G,µ•

|(D̃I)♢ to (DI)♢,
the ′F (I1,...,Ik)

V,nv,Λ defined in 4.16 agrees with the ′F (I1,...,Ik)
V,nv,Λ defined here.

The smallness of convolution implies that fM♮ (′F (I1,...,Ik),≤s
V,nv,Λ ) is independent of

the ordered partition I1, . . . , Ik, so we write it as Hloc,I,≤s
V,nv,Λ . The same holds for

fM♮ (′F (I1,...,Ik)
V,nv,Λ ), so we write it as Hloc,I

V,nv,Λ. Because LocSht
(I1,...,Ik)
G,V,nv is the increas-

ing union of the LocSht(I1,...,Ik),≤sG,V,nv , we have Hloc,I
V,nv,Λ = lim−→s

Hloc,I,≤s
V,nv,Λ . Note that

Proposition 4.13 yields an action of Cc(Kn\G(Fv)/Kn, E) on Hloc,I
V,nv,Λ.

Write Cv for the completion of F v, and write ηv for SpdCv. Theorem 4.16 yields

a natural action of W I
Fv

on the cohomology groups of Hloc,I
V,nv,Λ|∆(ηv)

. For any γ• in
WFv , Lemma 5.18 and Lemma 4.17 imply that the γ•-action sends the image of the

cohomology groups of Hloc,I,≤s
V,nv,Λ to the image of the cohomology groups of Hloc,I,≤s′

V,nv,Λ

for s′ ≥ s+
∑
i∈I max{0, valF (γi)}.

6.9. Let us recall some facts about excursion algebras. For any abstract group W ,

finite group Q with a pinned action on Ĝ, and group homomorphism W →Q, write

Exc(W, Ĝ) for the excursion algebra over OE as in [11, Definition VIII.3.4]. Recall

that Exc(W, Ĝ) is flat overOE and has canonical generators SI,V,x,ξ,γ• , where I runs

over finite sets, V runs over objects of RepOE
((Ĝ ⋊ Q)I), x runs over morphisms

1→V |∆(Ĝ), ξ runs over morphisms V |∆(Ĝ)→1, and γ• runs through W I .

Proposition. Let L be an algebraically closed field over OE. We have a unique
bijection{
OE-algebra homomorphisms

χ : Exc(W, Ĝ)→L

}
∼→
{

semisimple homomorphisms

ρ :W → Ĝ(L)⋊Q over Q

}/
Ĝ(L)-conj.

such that χ(SI,V,x,ξ,γ•) equals the composition

L
x // V (L)

(ρ(γi))i∈I
// V (L)

ξ
// L.

Proof. This follows immediately from [11, Corollary VII.4.3]. □
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6.10. The following theorem summarizes the work of V. Lafforgue [32] and Xue
[45] on global excursion operators. Write BunG,N (Fq) for the groupoid of G-bundles
on C equipped with a trivialization along N .

Theorem. There exists a unique E-algebra homomorphism

Exc(WF , Ĝ)E→EndCc(KN\G(A)/KN ,E)(Cc(BunG,N (Fq), E))

that sends SI,V,x,ξ,γ• to the composition

Cc(BunG,N (Fq), E) H∗,0
1,N,E |η

x // H∗,0
V |∆(Ĝ),N,E

|η HI,0V,N,E |∆(η)

γ•

��

Cc(BunG,N (Fq), E) H∗,0
1,N,E |η H∗,0

V |∆(Ĝ),N,E
|η

ξ
oo HI,0V,N,E |∆(η).

Moreover, the image of Exc(WF , Ĝ)E in EndCc(KN\G(A)/KN ,E)(Cc(BunG,N (Fq), E))
preserves the kernel of the surjective Cc(KN\G(A)/KN , E)-equivariant map

Cc(BunG,N (Fq), E)→Cc(BunG,N (Fq)/Ξ, E),

so we obtain an E-algebra homomorphism

Exc(WF , Ĝ)E→EndCc(KN\G(A)/KN ,E)(Cc(BunG,N (Fq)/Ξ, E)).

Proof. Arguing as in [32, p. 870] shows that the images of the SI,V,x,ξ,γ• satisfy the
necessary relations, so we get the desired E-algebra homomorphism

Exc(WF , Ĝ)E→EndCc(KN\G(A)/KN ,E)(Cc(BunG,N (Fq), E)).

Next, because Sht
(I1,...,Ik)
G,V,N →Sht

(I1,...,Ik)
G,V,N /Ξ is étale, 6.2 yields a natural !-pushforward

morphism HIV,N,E→H
I
Ξ,V,N,E , which induces a morphism from the composition di-

agram above to the analogous composition diagram for HIΞ,V,N,E . Note that, when
I = ∗ and V = 1, the natural !-pushforward morphism recovers

Cc(BunG,N (Fq), E)→Cc(BunG,N (Fq)/Ξ, E)

on fibers. Thus the image of SI,V,x,ξ,γ• in EndCc(KN\G(A)/KN ,E)(Cc(BunG,N (Fq), E))
satisfies the desired property. □

6.11. We now elaborate on variants of Theorem 6.10. Recall that

BunG,N (Fq) ∼=
∐
α

Gα(F )\Gα(A)/KN

as groupoids [32, Remarque 12.2], where α runs over G-bundles on SpecF whose
pullback to SpecFc is trivial for all closed points c of C, and Gα denotes the
inner twist of GF over F associated with α. Hence Cc(G(F )\G(A)/KN , E) and
Cc(G(F )Ξ\G(A)/KN , E) are Cc(KN\G(A)/KN , E)-stable direct summands of

Cc(BunG,N (Fq), E) and Cc(BunG,N (Fq)/Ξ, E),

respectively, so Theorem 6.10 induces E-algebra homomorphisms

Exc(WF , Ĝ)E→EndCc(KN\G(A)/KN ,E)(Cc(G(F )\G(A)/KN , E)),

Exc(WF , Ĝ)E→EndCc(KN\G(A)/KN ,E)(Cc(G(F )Ξ\G(A)/KN , E)).
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6.12. For us, the most convenient interpretation of Fargues–Scholze [11] is the
following theorem. Write zKn(G(Fv),Λ) for the center of Cc(Kn\G(Fv)/Kn,Λ).

Theorem. There exists a unique Λ-algebra homomorphism

Exc(WFv
, Ĝ)Λ→ zKn

(G(Fv),Λ)

that sends SI,V,x,ξ,γ• to the composition

Cc(G(Fv)/Kn,Λ) Hloc,∗,0
1,nv,Λ|ηv

x // Hloc,∗,0
V |∆(Ĝ),nv,Λ

|ηv Hloc,I,0
V,nv,Λ|∆(ηv)

γ•

��

Cc(G(Fv)/Kn,Λ) Hloc,∗,0
1,nv,Λ|ηv Hloc,∗,0

V |∆(Ĝ),nv,Λ
|ηv

ξ
oo Hloc,I,0

V,nv,Λ|∆(ηv)
.

Proof. This follows from [11, Corollary IX.2.4] and [11, Theorem VIII.4.1]. □

6.13. We now prove local-global compatibility on the level of algebras over E.
Write Av for the away-from-v adeles, write Kv

N for Av ∩ KN , and let n be the
multiplicity of v in N . So KN = KnK

v
N .

Theorem. The square

Exc(WFv
, Ĝ)E //

��

zKn
(G(Fv), E)

��

Exc(WF , Ĝ)E // EndCc(KN\G(A)/KN ,E)(Cc(G(F )\G(A)/KN , E))

commutes.

Proof. It suffices to check commutativity on the canonical generators SI,V,x,ξ,γ• of

Exc(WFv
, Ĝ)E , where I is a finite set, V is an object of RepE((Ĝ ⋊ Gal(F̃ /F ))I),

x is a morphism 1→V |∆(Ĝ), ξ is a morphism V |∆(Ĝ)→1, and γ• is in W I
Fv
.

This amounts to computing certain E-linear actions on Cc(G(F )\G(A)/KN , E),
which we check on the E-spanning set given by 1G(F )gKN

for g in G(A). Since
the Cc(Kn\G(Fv)/Kn, E)-action commutes with the G(Av)-action, we can assume
that the away-from-v components of g equal 1.

Then 1G(F )gKN
equals the image of 1gvKn

under the natural pushforward map

Cc(G(Fv)/Kn, E)→Cc(G(F )\G(A)/KN , E).

Because this map commutes with the Cc(Kn\G(Fv)/Kn, E)-action, it also com-
mutes with the action of the image of SI,V,x,ξ,γ• in zKn

(G(Fv), E). Hence we can
compute the latter for 1G(F )gKN

by computing it for 1gvKn .

Fix s such that 1gvKn lies in the image of Hloc,∗,≤s,0
1,nv,E |ηv in

Hloc,∗,0
1,nv,E |ηv = Cc(G(Fv)/Kn, E).

By Theorem 6.12 and 6.8, the image of SI,V,x,ξ,γ• in zKn
(G(Fv), E) acts on 1gKn

via the composition

Hloc,∗,≤s,0
1,nv,E |ηv

x−→Hloc,∗,≤s,0
V |∆(Ĝ),nv,E

|ηv = Hloc,I,≤s,0
V,nv,E |∆(ηv)

γ•−→Hloc,I,≤s′,0
V,nv,E |∆(ηv)

= Hloc,∗,≤s′,0
V |∆(Ĝ),nv,E

|ηv
ξ→Hloc,∗,≤s′,0

1,nv,E |ηv(⋆)
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for large enough s′. By enlarging the away-from-v part of N and using the action
of G(Av) as before, we can assume that degN is large enough. Then Lemma 6.4
shows that Θn yields a natural ♮-pushforward morphism

Hloc,I,≤s
V,nv,E |∆(ηv)

→HI,≤sV,N,E |∆(η),

where we use Lemma 6.4, [11, Proposition VII.5.2], and [27, (5.7.2)] to identify

(fS)♢∆(ηv)♮

[
(′F (I1,...,Ik),≤s

V,N,E )♢∆(ηv)

]
= HI,≤sV,N,E |∆(η).

Lemma 5.18 and Lemma 4.17 imply that Hloc,I,≤s
V,nv,E |∆(ηv)

→HI,≤sV,N,E |∆(η) induces

a morphism from the composition diagram in Equation (⋆) to the composition
diagram

H∗,≤s,0
1,N,E |η

x−→H∗,≤s,0
V |∆(Ĝ),N,E

|η = HI,≤s,0V,N,E |∆(η)

γ•−→HI,≤s
′,0

V,N,E |∆(η) = H∗,≤s′,0
V |∆(Ĝ),N,E

|η
ξ→H∗,≤s′,0

1,N,E |η.(⋆⋆)

When I = ∗ and V = 1, the natural ♮-pushforward morphism recovers

Cc(G(Fv)/Kn, E)→Cc(G(F )\G(A)/KN , E)

on fibers, so we see that the image of SI,V,x,ξ,γ• in zKn
(G(Fv), E) acts on 1G(F )gKN

via Equation (⋆⋆). But Theorem 6.10 and 6.5 indicate that this is precisely how

the image of SI,V,x,ξ,γ• in Exc(WF , Ĝ)E acts on 1G(F )gKN
, as desired. □

6.14. Let us recall the elements of the Bernstein center constructed by Genestier–
Lafforgue [14]. Write mE for the maximal ideal of OE , and let c be a non-negative
integer. Write zKn(G(Fv),OE/mcE) for the center of Cc(Kn\G(Fv)/Kn,OE/mcE).
For any finite set I, algebraic function f on Ĝ\(LG)I/Ĝ, element γ• ofW

I
Fv
, and pos-

itive integer n, write zGL
n,c,I,f,γ•

for the element of zKn
(G(Fv),OE/mcE) constructed

in [14, Théorème 1.1]8.

6.15. We prove that the elements of the Bernstein center constructed by Fargues–
Scholze coincide with those constructed by Genestier–Lafforgue. Recall that the im-

age of Exc(WF , Ĝ) in EndCc(KN\G(A)/KN ,E)(Ccusp(G(F )Ξ\G(A)/KN , E)) preserves
Ccusp(G(F )Ξ\G(A)/KN ,OE) [32, Proposition 13.1], so 6.11 induces an OE-algebra
homomorphism

Exc(WF , Ĝ)→EndCc(KN\G(A)/KN ,OE)(Ccusp(G(F )Ξ\G(A)/KN ,OE)).

For any object V of RepOE
(LG)I , morphism x : 1→V |∆(Ĝ), and morphism ξ :

V |∆(Ĝ)→1, write f for the algebraic function on Ĝ\(LG)I/Ĝ given by g• 7→ ξ(g•·x).

Theorem. The square

Exc(WFv
, Ĝ) //

��

zKn
(G(Fv),OE)

��

Exc(WF , Ĝ) // EndCc(KN\G(A)/KN ,OE)(Ccusp(G(F )Ξ\G(A)/KN ,OE))

8While [14, Théorème 1.1] is stated for split G, the proof adapts for all G. Indeed, this is
implicitly used in [14, Théorème 8.1].
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commutes. Consequently, the image of SI,V,x,ξ,γ• in zKn
(G(Fv),OE/mcE) equals

zGL
n,c,I,f,γ•

.

Proof. Since Theorem 6.12 is compatible with changing Λ, the first claim fol-
lows immediately from Theorem 6.13 and the flatness of the above objects over
OE . From here, tensoring with OE/mcE shows that the image of SI,V,x,ξ,γ• in
zKn(G(Fv),OE/mcE) has the same action on

Ccusp(G(F )Ξ\G(A)/KN ,OE/mcE)

as the image of SI,V,x,ξ,γ• in Exc(WF , Ĝ) does. Now zGL
n,c,I,f,γ•

enjoys the same

property by [14, Proposition 1.3], so they must be equal by [14, Lemme 1.4]. □

6.16. We conclude this section by proving Theorem A. For us, cuspidal automor-
phic representations of G(A) are irreducible summands of C∞

cusp(G(F )Ξ\G(A),Qℓ)
lying in a single generalized eigenspace for Exc(WF , Ĝ)Qℓ

, where Ξ is some lattice

of Z(F )\Z(A).

Theorem. The square{
cuspidal automorphic

representations of G(A)

}
GLCG //

(−)v

��

{
L-parameters
for G over F

}
(−)|ssWFv

��{
irreducible smooth

representations of G(Fv)

}
LLCss

GFv//

{
semisimple L-parameters

for GFv over Fv

}
commutes.

Proof. Let Π be a cuspidal automorphic representation of G(A), and let N be
large enough such that ΠKN is nonzero. Adapt the notation of 6.13, and write
χΠv

: zKn
(G(Fv),Qℓ)→Qℓ for the Qℓ-algebra homomorphism induced by ΠKn

v .
By Theorem 6.15, the square

Exc(WFv , Ĝ)Qℓ

//

��

zKn(G(Fv),Qℓ)

��

Exc(WF , Ĝ)Qℓ

// EndCc(KN\G(A)/KN ,Qℓ)
(Ccusp(G(F )Ξ\G(A)/KN ,Qℓ))

commutes. The action of Exc(WF , Ĝ)Qℓ
on ΠKN corresponds to GLCG(Π) under

Proposition 6.9, and composition with the left arrow corresponds to GLCG(Π)|ssWFv

under Proposition 6.9. On the other hand, the action of zKn
(G(Fv),Qℓ) on ΠKN

corresponds to χΠv
, and the composition with the top arrow corresponds to to

LLCss
GFv

(Πv) under Proposition 6.9. Hence commutativity of the square yields the
desired result. □

7. Applications

We revert our notation to the local context: let F be a local field of characteristic
p > 0, let G be a connected reductive group over F , and write C for its radical.
Our goal in this section is to prove Theorem B, Theorem C, and Theorem D. The
proofs all proceed by carefully embedding local representations into global ones.
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7.1. We now prove Theorem B. Fix an isomorphism Qℓ ∼= C.

Theorem. The LLCss
G uniquely lifts to a family of maps

LLCG :

{
irreducible smooth

representations of G(F )

}
→

{
L-parameters
for G over F

}
,

where G runs over connected reductive groups over F , that is compatible with twist-
ing by characters, compatible with parabolic induction for essentially L2 represen-
tations as in [29, Conjecture 4.1 (5)], and whose value on L2 representations with
finite order central character is pure.

Proof. By compatibility with parabolic induction for essentially L2 representations,
LLCG is determined by its values on essentially L2 representations π. By compati-
bility with twisting by characters, we can assume that π also has finite order central

character ωπ : C(F )→Q×
ℓ . There exists at most one pure L-parameter for G over

F whose semisimplification equals LLCss
G(π) [12, Lemma 3.5.(b)], so we just need

to construct it.
By [13, Lemma 3.2], there exists a global field F of characteristic p, a place v of

F, a connected reductive group G over F, and an isomorphism Fv ∼= F such that

• GFv
is identified with G as group schemes over Fv ∼= F ,

• the radical C of G has F-split rank equal to the F -split rank of C.

Write AF for the adele ring of F. By the Chebotarev density theorem, there exists a
place v′ ̸= v of F where GFv′ is split. Write Fq′ for the residue field of Fv′ , identify

Fv′ with Fq′(( 1z )), and write GFv′ as the pullback of a split connected reductive
group H over Fq′ .

Let ϕ be a generic character for H as in [24, Section 1.3], write Π′ for the cuspidal
automorphic representation of H(AFq′ (z)

) associated with the automorphic sheaf

Aϕ as in [24, Definition 2.6], and write ρ′ for the L-parameter for H over Fq′(z)
associated with the LH-local system KlLH(ϕ) as in [24, Theorem 1(1)]. Since Aϕ is

a Hecke eigensheaf with eigenvalue KlLH(ϕ), we see that Π′ and ρ′ are associated

via the Satake isomorphism at cofinitely many places of Fq′(z). Now ρ′|WF
q′ ((

1
z
))
is

irreducible by [24, Corollary 5.1(1)] and [44, Remark 4.5.10(i)], so ρ′ is irreducible.
Hence [32, Théorème 12.3] and [7, Proposition 6.4]9 imply that ρ′ = GLCH(Π′).
From here, Theorem 6.16 shows that LLCss

HF
q′ ((

1
z
))
(Π′

∞) = ρ′|ssWF
q′ ((

1
z
))
= ρ′|WF

q′ ((
1
z
))
.

By [13, p. 2829], there exists a finite order character ω : C(F)\C(AF)→Q×
ℓ such

that ωv is identified with ωπ and ωv′ is identified with an unramified twist of ωΠ′
∞
.

Note that kerω contains a lattice Ξ of C(F)\C(AF). Then [12, Lemma A.1] and
[13, Lemma 8.1] yield an irreducible summand Π of C∞

cusp(G(F)Ξ\G(AF),Qℓ) such
that

• Πv has the same cuspidal support as π,
• Πv′ is isomorphic to an unramified twist of Π′

∞ via Fv′ ∼= Fq′(( 1z )).
Theorem 6.16 and [11, p. 326] indicate that GLCG(Π)|ssWF

v′
equals an unramified

twist of LLCss
HF

q′ ((
1
z
))
(Π′

∞). This shows that GLCG(Π) is irreducible, so [32, Lemme

16.2] and [39, Lemma 11.4] imply that GLCG(Π) is pure.10 Hence GLCG(Π)|WFv
is

9While [7] only considers split G, [7, Proposition 6.4] immediately extends to general G.
10Now [32, Lemme 16.2] and [39, Lemma 11.4] are stated for split G, but they hold in general.
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pure as in [12, Definition 3.3.(b)]. Finally, Theorem 6.16 and [11, Corollary IV.7.3]
show that GLCG(Π)|ssWFv

= LLCss
G(Πv) = LLCss

G(π), so GLCG(Π)|WFv
is the unique

pure L-parameter for G over F whose semisimplification equals LLCss
G(π). □

7.2. We give the following abstract proof of Theorem C.

Theorem. There exists at most one family of maps

LLCssG :

{
irreducible smooth

representations of G(F )

}
→

{
semisimple L-parameters

for G over F

}
,

where G runs over connected reductive groups over F , that is compatible with twist-
ing by characters as in [20, Property 2.8], compatible with parabolic induction as in
[20, Property 2.13], and satisfies the conclusion of Theorem 6.16.

Consequently, the Genestier–Lafforgue correspondence agrees with the Fargues–
Scholze correspondence.

Proof. By compatibility with parabolic induction, LLCssG is determined by its values
on cuspidal representations π. By compatibility with twisting by characters, we can

assume that π also has finite order central character ωπ : C(F )→Q×
ℓ .

Let F, v, G, and C be as in the proof of Theorem 7.1. By [13, Lemma 3.3],

there exists a finite order character ω : C(F)\C(AF)→Q×
ℓ such that ωv is identified

with ωπ. Note that kerω contains a lattice Ξ of C(F)\C(AF). Poincaré series yield
an irreducible summand Π of C∞

cusp(G(F)Ξ\G(A),Qℓ) such that Πv is identified
with π [14, Theorem 1.1], so the conclusion of Theorem 6.16 uniquely determines
LLCssG (π) as GLCG(Π)|ssWFv

.

The Fargues–Scholze correspondence satisfies the aforementioned properties by
[11, p. 326], [11, Corollary IX.7.3], and Theorem 6.16. The Genestier–Lafforgue
correspondence also satisfies these properties by [14, Théorème 8.1], so the above
shows that it agrees with the Fargues–Scholze correspondence. □

7.3. Finally, we prove Theorem D. Let D be a central simple algebra over F of
degree n.

Theorem. The triangle{
irreducible essentially L2

representations of D×

}
JL //

LLCss
D× ''

{
irreducible essentially L2

representations of GLn(F )

}

LLCss
GLnww{

n-dimensional semisimple
representations of WF

}
commutes, where JL denotes the local Jacquet–Langlands correspondence as in [5,
(th. 1.1)].

Proof. Because both JL [5, (th. 1.1)] and LLCss
G [11, p. 326] are compatible with

twisting by characters, it suffices to check commutativity on L2 representations π

with finite order central character ωπ : F×→Q×
ℓ .

Let F be a global field of characteristic p along with a place v of F and an isomor-
phism Fv ∼= F , and let D be a central division algebra over F such that DFv is iden-
tified with D as central simple algebras over Fv ∼= F . Using the pseudo-coefficient
for JL(π) constructed in [6, Section 5], the proof of [34, (15.10)] yields a lattice Ξ
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of F×\A×
F and an irreducible summand Π̃ of C∞

cusp(GLn(F)Ξ\GLn(AF),Qℓ) such
that

• Π̃v is isomorphic to JL(π),

• for all places v′ ̸= v of F where DFv′ is ramified, Π̃v′ is cuspidal.

Therefore we can apply the global Jacquet–Langlands correspondence [6, Theorem

3.2] to Π̃, which yields an irreducible summand Π of C∞
cusp(D

×Ξ\(D⊗F AF)
×,Qℓ)

such that

• Πv is isomorphic to π,

• for all places w of F where DFw
is split, Πw is isomorphic to Π̃w.

Then [32, Théorème 12.3] and the Chebotarev density theorem imply that

GLCD×(Π) = GLCGLn(Π̃),

so Theorem 6.16 enables us to conclude that

LLCss
D×(π) = GLCD×(Π)|ssWFv

= GLCGLn
(Π̃)|ssWFv

= LLCss
GLn

(JL(π)). □
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actéristique non nulle. Ann. Sci. École Norm. Sup. (4), 35(5):695–747, 2002.

[6] A. I. Badulescu and P. Roche. Global Jacquet-Langlands correspondence for division algebras
in characteristic p. Int. Math. Res. Not. IMRN, (7):2172–2206, 2017.
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Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 1971.

http://publications.ias.edu/sites/default/files/deligne73.pdf
http://publications.ias.edu/sites/default/files/deligne73.pdf


LOCAL-GLOBAL COMPATIBILITY OVER FUNCTION FIELDS 53

[18] T. J. Haines and T. Richarz. The test function conjecture for local models of Weil-restricted

groups. Compos. Math., 156(7):1348–1404, 2020.

[19] D. Hansen, T. Kaletha, and J. Weinstein. On the Kottwitz conjecture for local shtuka spaces.
Forum Math. Pi, 10:Paper No. e13, 79, 2022.

[20] M. Harris. Local Langlands correspondences. arXiv e-prints, page arXiv:2205.03848, May

2022, 2205.03848.
[21] M. Harris and R. Taylor. The geometry and cohomology of some simple Shimura varieties,

volume 151 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,

2001. With an appendix by Vladimir G. Berkovich.
[22] U. Hartl. Period spaces for Hodge structures in equal characteristic. Ann. of Math. (2),

173(3):1241–1358, 2011.

[23] U. Hartl and E. Viehmann. The Newton stratification on deformations of local G-shtukas. J.
Reine Angew. Math., 656:87–129, 2011.
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