ON CLOSE FIELDS AND THE LOCAL LANGLANDS
CORRESPONDENCE

SIYAN DANIEL LI-HUERTA

ABSTRACT. We prove that Fargues—Scholze’s semisimplified local Langlands
correspondence (for quasisplit groups) with Fe-coefficients is compatible with
Deligne and Kazhdan’s philosophy of close fields. From this, we deduce that
the same holds with Q-coefficients after restricting to wild inertia, addressing
questions of Gan—Harris—Sawin and Scholze. The proof involves constructing
a moduli space of nonarchimedean local fields and then extending Fargues—
Scholze’s work to this context.
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INTRODUCTION
Close fields. In number theory, there is a heuristic that
(%) “as absolute ramification tends to oo, p-adic fields tend to function fields.”

For example, let E' be a p-adic field with residue field F, and absolute ramification
index e, and write E’ for the function field F((¢)). Write I" and I for the absolute
Galois groups of E and E’, respectively. Building on work of Krasner [28], Deligne
[10] showed that there exists a Canonicaﬂ isomorphism (up to conjugation)

r/re=1'/1e,
where I¢ and I’® denote the e-th ramification subgroup of I" and I, respectively.

Consequently, we get a canonical bijection between representations of I' that are
trivial on I¢ and representations of IV that are trivial on I’¢.

1Everything depends on a choice of uniformizer (up to multiplication by 1+p®, where p denotes
the maximal ideal of the ring of integers) of E. However, we ignore this in the introduction.

1
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This bijection also applies to Galois representations with extra structure. More
precisely, Deligne’s isomorphism induces a correspondence G/E <+ G'/E' between
isomorphism classes of quasisplitﬂ connected reductive groups that split over an e-
ramified extension. Under this correspondence, Deligne’s isomorphism also induces
a canonical bijection

L-parameters p L-parameters p’
for G with p|je =1 for G’ with p'|pe =1 [~

Something similar happens for representations of p-adic groups. Fix a positive
integer n. One can compatibly define n-th congruence subgroups K™ and K'™ of
G(F) and G'(E’), respectively, by using the corresponding Chevalley group over Z.
Let £ # p be a prime, and let A be either F, or Q,. Extending results of Kazhdan
[25], Ganapathy [19] showed that there exists a canonical isomorphisnﬁ between
the bi-invariant Hecke algebras

H(G(E)a Kn)l\ = H(G/(E/)v K/n)A
over A whenever e is large enough. Consequently, we get a canonical bijection

smooth irreps 7w of G(F) PN smooth irreps 7’ of G'(E’)
over A with ()K" #£0 over A with (7/)X"™ 0 '

Local Langlands. The Langlands program predicts a relationship between auto-
morphic forms and Galois representations. For example, in the context of connected
reductive groups G over nonarchimedean local fields F, recent groundbreaking work
of Fargues—Scholze [14] yields a natural map

LLCS - smooth irreps semisimple L-parameters
G\ of G(E) over A for G over A '

The goal of this paper is to prove that LLCg; is compatible with Heuristic (ED
Our first main theorem concerns the case of Fy-coefficients.

Theorem A. Let G' be a quasisplit connected reductive group over E’' that splits
over an n-ramified extension. There exists an integer d > n such that, for all p-adic
fields E with residue field 'y, and absolute ramification index e > d,

i) the map LLCE restricts to a map

LLCS - smooth irreps w of G(E) semisimple L-parameters p
G over Fy with (7)5" #0 for G over Fy with p|ja =1

i) the square

smooth irreps m of G(E) LLCE semisimple L-parameters p
over Ty with (7)5" #0 for G over Fy with p|lja =1

I I

smooth irreps ' of G'(E') | LLCZ semisimple L-parameters p’
over Ty with (7')K™" #0 for G' over Fy with p'|pa =1

20ne can even extend this to all connected reductive groups that split over an e-ramified
extension [I8, Lemma 5.1], though we do not work in this generality.

3While Kazhdan and Ganapathy work over C = Q,, one can deduce the result over F, using
their work. Also, strictly speaking, we use an isomorphism whose construction differs from that
of [19], and we do not know whether these isomorphisms are equal. See Appendix
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commutes.

We actually prove a refinement of Theorem A on the level of excursion algebras;
see Theorem 0.8 Using this refinement, we prove our second main theorem in the
case of Q-coefficients.

Theorem B. Let G’ be a quasisplit connected reductive group over E' that splits
over an n-ramified extension. There exists an integer d > n such that, for all p-adic
fields E with residue field 'y, and absolute ramification index e > d,

i) the map LLCE restricts to a map

LLCS - smooth irreps m of G(E) semisimple L-parameters p
G over Qp with (m)X" #0 for G over Q, with p|ja =1

i) the square

over Qp with (7)%" #0 for G over Q, with p|;a =1

I I

smooth irreps ' of G'(E’) | LLCg semisimple L-parameters p'
over Q, with ()K" #£0 for G' over Q, with p'|pa =1

{ smooth irreps ™ of G(E) } LLCS { semisimple L-parameters p }

commutes after restricting to the wild inertia subgroup.

This addresses (a generalization to quasisplit connected reductive groups of) a
question of Gan—Harris—Sawin [17, Conjecture 11.7]E| and Scholze [35] p. 470].

Remarks.

1) Since LLCE equals the expected local Langlands correspondence when G is a
torus [I4], p. 331], in this case Theorem A and Theorem B follow from work of
Aubert—Varma [2, Theorem 1.2.1(iv)].

2) One can ask whether our main theorems hold for d = n. The answer for part
i) is already negative when G is a wildly ramified induced torus [33] Sec. 7.1].
When G is split but not a torus, the answer for part i) is also negative because
our congruence subgroups arise from hyperspecial subgroups and hence are “too
big.” However, if one instead uses congruence subgroups arising from Iwahori
subgroups, then one expects the answer to be positive when G is split [I7]
Conjecture 11.7].

Idea of proof. We begin by introducing a moduli space of nonarchimedean local
fields, which allows us to conceptualize Heuristic @ This starts with the obser-
vation that, by Krasner’s lemma, there exists an enumeration {E;};cn of all p-adic
fields with residue field F, (up to isomorphism), and as 7 tends to infinity, the ab-
solute ramification index of FE; also tends to infinity. We use this to construct a
topological ring E such that

e the topological space |Spa E| is naturally homeomorphic to the one-point com-
pactification N U {oco} of the discrete space N,

e for all 7 in N, the residue field of Spa E at i is F;, and the residue field of Spa F
at oo is B/ == Fy((t).

4Gan-Harris-Sawin work with the Genestier-Lafforgue correspondence [20] for G, but this
agrees with the Fargues—Scholze correspondence by [30, Theorem C].
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Therefore Spa F can be regarded as the moduli space of nonarchimedean local fields
with residue field F,. We prove that finite étale E-algebras are spread out from
finite étale E’-algebras in a way that is compatible with Deligne’s isomorphism, so
the finite étale site of Spa E' geometrizes the Galois side in our main theorems.

What about the automorphic side? First, using the above results, we spread
out quasisplit connected reductive groups G’ over E’ to reductive group schemes G
over F in a way that is compatible with Deligne’s isomorphism. Next, we refine our
construction of E to produce a ring topological space E over NU{oo} that recovers E
after taking global sections. We use this to construct a group topological space G(E)
over NU{oo} that interpolates between p-adic groups for different nonarchimedean
local fields, as well as to define a compact open group subspace K* C G(E) over
NU{co} that interpolates between n-th congruence subgroups. Finally, we introduce
and study a notion of smooth representations of G(E) with A-coefficients, which are
sheaves of A-modules on NU{oco} equipped with certain continuous actions of G(E).
An important example is the compactly supported induction c—IndggE) A; crucially,
we prove that its endomorphism sheaf

End g, (c-Indg\™ A)

is isomorphic to the constant sheaf H(G'(E’), K'*)x on NU {co} in a way that is
compatible with Ganapathy’s isomorphism.

From here, we geometrize the above theory as in work of Fargues—Scholze [14].
Write O C FE for the subring of powerbounded elements. We begin by constructing
a generalization of Witt vectors for O-algebras that interpolates between O;-typical
Witt vectors for all ¢ in N, where O; denotes the ring of integers of F;. Next, we
use this to define and study a generalization X¢ — Spa E of the relative Fargues—
Fontaine curve for any perfectoid space S over NU {oo} . Restricting to perfectoid

- a

test objects S puts us in the world of diamonds [36]E| and here we define a space
Divy = NU {oo}

of degree 1 relative effective Cartier divisors on Xg. By reducing to the situation
considered in Fargues-Scholze [14], we prove a version of Drinfeld’s lemma for Div’;.
Continuing as in work of Fargues—Scholze [I4], we introduce the moduli stack

Bung —NU {oo}_

of G-bundles on Xg. To study Bung, we reduce many statements to the case of
vector bundles by proving a Tannakian description of G-torsors, which is subtle
because F is non-noetherian. We then handle the case of vector bundles by using
our generalization of Witt vectors to prove an explicit version of Lubin—Tate theory
over E, generalizing arguments of Fontaine [I5] and Fargues—Fontaine [13].

At this point, we prove a version of the geometric Satake equivalence for G/FE
with Z-coefficients. This requires working over non-noetherian rings like

Cont(NU {oo}, Zy),

which seem inaccessible to Tannakian identification results, so we instead use an
elaborate argument to reduce to the situation considered in Fargues—Scholze [14].

5Via the tilting equivalence and almost purity, perfectoid spaces provide another example of
Heuristic . Hence their appearance here should be unsurprising. See [35} p. 470].
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Our geometric Satake equivalence lets us spread out geometric Hecke operators T¥,
from the stack Bung studied in Fargues—Scholze [14] to our stack Bung.

We can now put everything together to prove Theorem A. Recall that LLCE,
is defined using excursion algebras, which are certain Z,-algebras with canonical
generators indexed by tuples (J,V,x,&,~.), where J is a finite set, V is a represen-
tation of the J-th power (LG’)J of the L-group, z and ¢ are elements of V and V'V,
respectively, that are fixed by the image of the diagonal map G’ —(f@)’, and ~,
is a J-tuple of elements of the absolute Weil group of E’. Any such tuple induces

an endomorphism of A’ = c—Ind%ELE )Fg via the composition

(%) A= TY(A) 5 T (A) 25 Ty, (A) S5 T (A) = A,

where we view A’ as an étale Fy-sheaf on the open locus of trivial G’-bundles
Buné, C Bungr. Using the geometric Hecke operators Ty, on our stack Bung, we

can spread out to an endomorphism of A := C—IndH%(LE) F, via the composition
A= Ty(A) =5 Ty (A) 25 Ty (4) <5 Ta(4) = 4,

where we similarly view A as an étale Fy-sheaf on the open locus of trivial G-bundles
Buné C Bung. Then part i) follows from compactness properties of Ty, and part
ii) follows from our isomorphism

H(G'(E'), K™)g, = End g (A).

Finally, let us sketch the proof of Theorem B. Work of Bernstein [3] reduces us to
proving part ii) for individual irreducible cuspidal representations n’ of G'(E") over
Q. After twisting 7’ by an unramified character, we can assume that 7’ is defined
over Zg, which implies that the corresponding irreducible smooth representation
7 of G(E) is also defined over Z,. By applying (the excursion algebra version
of) Theorem A, the desired result then follows from comparing LLCE (7') and
LLCE(7) mod ¢ and using the fact that the kernel of G(Zy¢) — G(F,) is (ind-)pro-L.

Outline. In we develop a theory of smooth representations over profinite sets.
In §2] we introduce our moduli space of nonarchimedean local fields and study its
Galois theory. In we construct a generalization of Witt vectors over O, which
we use to define a version of relative Fargues—Fontaine curves. In we prove
an explicit version of Lubin—Tate theory over F, and we apply this in §5|to study
vector bundles on Fargues—Fontaine curves in our context.

In §6] we introduce the connected reductive group G over E, and we prove that
Hecke algebras for the resulting family of p-adic groups over N U {oc} geometrize
Ganapathy’s isomorphism. (Actually, we use an isomorphism whose construction
differs from that of Ganapathy; see Appendix ) We also define the moduli stack
Bung. In §7 we introduce Beilinson-Drinfeld affine Grassmannians in our context,
and in §8| we prove a version of the geometric Satake equivalence for G/E. Finally,
we put everything together in §9] to prove Theorem A and Theorem B.

Notation. We endow all finite free Z-modules with the discrete topology. For all
rings R and affine groups G over R, write Rep G for the category of representations
of G on finite free R-modules. We view all functors between derived categories as
derived functors, and starting in we view derived categories as co-categories.
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Starting in §3} we freely use definitions from perfectoid geometry as in [36] and
[14]. We work over SpdF, (unless otherwise specified) until after which we
work over SpdF,,. For all small v-stacks Z on Perfr, and rings A that are {-power
torsion, write Shve(Z,A) C De(Z,A) for the heart of the standard ¢-structure.
Write Dyo(Z, A) for the full subcategory of D¢t (Z, A) given by objects that are étale-
locally constant with perfect fibers, and write LocSys(Z, A) for the full subcategory
of D¢t (Z,A) given by objects that are étale-locally constant with finite projective
fibers.
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1. SMOOTH REPRESENTATIONS OVER PROFINITE SETS

In this section, we develop a theory of smooth representations for certain group
topological spaces over a profinite set. The group topological spaces that we con-
sider are a relative version of locally compact totally disconnected (or lctd) topo-
logical groups. Examples will include the analogues of absolute Galois groups in
§2] absolute Weil groups in §3] and p-adic groups in §6]

This section is elementary and self-contained; although nobody would want to,
it can be read independently of the other sections.

1.1. We start with some recollections about topological spaces S. Recall that the
étalé space construction yields an equivalence from the category of sheaves on S to
the category of étale topological spaces over S, with a quasi-inverse given by the
sheaf of continuous sections [32], II.6, Corollary 3]. For any topological space X
over S and open subset U of S, write X (U) for the set of continuous sections of
Xy—U.

For the rest of this section, assume that S is profinite. Then compact open
subsets U of S form a basis for the topology of S, and because U is also profinite,
every open cover of U splits. Hence when evaluating on this basis, it suffices to
check the sheaf condition for S on pairs of disjoint compact open subsets of S.

1.2.  We study the following generalization of lctd groups in the sense of [27], 2.2].

Definition. Let G be a group topological space over S. We say that G is lctd over
S if G is Hausdorff and

a) there exists a family {K®}, of compact open group subspaces of G over S that
is cofinal among neighborhoods of the identity section in G,

b) for all s in S and g, in the fiber Gy, there exists a neighborhood U of s and g
in G(U) such that g(s) = gs.
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For the rest of this section, let G be a group topological space over S that is lctd
over S, and let {K%},, be a family of compact open group subspaces of G over S
satisfying Definition [1.2a).

For all s in 9, evaluation at s yields a homomorphism evg : li UG(U) -G,
where U runs over compact neighborhoods of s. Note that Definition b) is
equivalent to evg being surjective.

1.3.  While evg need not be bijective, it does satisfy the following relationship with
open group subspaces H of G. Note that any such H is Hausdorff and satisfies

Definition b).

Lemma. For all s in S, the kernel of evs lies in ligU H(U), where U runs over
compact neighborhoods of s. Consequently, evy induces a bijection

lig G(U)/ limy H(U) = G/ H,.
U U

Proof. Let g be in kerevg, and view g as a continuous map g : U — G for some
compact neighborhood U of s. Then g=*(H) is a neighborhood of s, so it contains
a compact neighborhood U’ of s. Hence g|ys lies in H(U'). Finally, the last
statement follows from Definition b) applied to G and H. ]

1.4. Since H is open in G, we expect the “quotient” of G by H to be “discrete.”
We make this precise as follows. Write G and H for their associated sheaves on .5,
and consider the quotient G/H of sheaves on S.

Proposition. For all compact open subsets U of S, we have
GU)/H(U) = (G/H)(U),

and for all s in S, we have G3/H, = (G/H)s. Moreover, the map q : G—G/H
over S whose fiber at s equals the quotient map Gs — Gs/Hs is continuous.

Proof. Let U and U’ be disjoint compact open subsets of S. Then
GUUU)/H(UUT") = (G(U) x GU)/(HU) x HU)
= [GU)/HU)]| = [GU")/HU")],
SO shows that, when evaluating G/H on compact open subsets of S, we do not
need to sheafify. Lemma [1.3|immediately implies that G5/Hs, = (G/H)s.
To see that ¢ is continuous, it suffices to show that, for all compact open subsets
U of S and o in (G/H)(U), the preimage under ¢ of o(U) is open. Now o = gH (U)
for some g in G(U), so this preimage equals the union of g(u)H, for all uin U. But
this is precisely the image of the open subset Hy C Gy under the homeomorphism

GUZUXSG&M)GUXSGLGU. U

1.5.  The notion of discrete spaces with continuous actions (and consequently of
smooth representations) generalizes to our setting as follows. Let A be a ring,.

Definition.

a) An étale G-space is an étale topological space X over S along with a continuous
action a : G xg X — X over S.

b) A smooth representation of G over A is a A-module étale topological space V
over S along with a continuous A-linear action a : G xg V —V over S.
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Write Rep(G, A) for the category of smooth representations of G over A, and write
A for the constant topological space over S along with the trivial action of G.

For all smooth representations V' and V' of G over A, write Hom(V, V") for
the sheaf of A-modules on S that sends compact open subsets U of S to the set of
morphisms Viy — V{; of smooth representations of Gy over A.

1.6. We now translate the various ways of interpreting discrete spaces with con-
tinuous actions (and consequently of smooth representations) into our more general
setting. Let X be an étale G-space, and consider the continuous map

p:GXSXM)GXSX

of étale topological spaces over G.

Lemma. This association induces an equivalence of categories between
a) étale G-spaces X,
b) G-equivariant sheaves (X, p:pr* X Spr* X) on S.

Proof. By checking on fibers, we see that p: G xg X — G x g X satisfies the cocycle
condition and is bijective. Since G xg X is étale over G, the latter implies that p
is a homeomorphism, as desired.

In the other direction, let X be a sheaf on S along with an isomorphism

p:pr* X Spr* X
of sheaves on G satisfying the cocycle condition. Then the composition
a:Gxs X L 5Gxg X 225 X
is continuous, and checking on fibers shows that a is an action over S. O

1.7. Let X be an étale G-space, and consider the action G x X — X of sheaves on
S induced by the continuous map a: G xg X — X.
Proposition. This association induces an equivalence of categories between

a) étale G-spaces X,

b) sheaves X on S along with an action G x X — X of sheaves on S such that, for
all compact open subsets U of S and T in X(U), there exists an o with K*(U)
stabilizing T.

Proposition implies that Rep(G, A) is naturally an abelian category, so we
can form its derived category D(G, A).

Proof. Since a is continuous and 7 is an open embedding, the cartesian diagram

stabgT — U

|

GXSU o

lid XT

GxgX 25X



ON CLOSE FIELDS AND THE LOCAL LANGLANDS CORRESPONDENCE 9

shows that stabg 7 is a neighborhood of the identity section in Gy. By Definition
a), there exists an a with K{j lying in stabg 7, so our action G x X — X of
sheaves on S satisfies the property in part b).

In the other direction, let X be a sheaf on S along with an action G x X — X of
sheaves on S satisfying the property in part b). For all s in S, taking stalks yields
an action of lim G (U) on X, where U runs over compact neighborhoods of s. We
claim that this action factors through evy : @U G(U) — G,. To see this, let g be
in kerevg, let 7 be in X, and view 7 as an element of X (U) for some compact
neighborhood U of s. Lemma represents g as an element of K*(U’) for some
compact neighborhood U’ C U of s, so g stabilizes 7|y, as desired.

The claim induces an action G5 x Xg — X, and taking the disjoint union over
s yields an action a : G xg X — X over S. As U and 7 vary, the open subsets
G xg7(U) of G xg X form a cover, so it suffices to check the continuity of a by
restricting to G xg 7(U). Then Proposition and checking on fibers show that
a:G xg 7(U)— X equals the composition

G xs7(U) 2 QIR x5 7(U) —— X,
so it suffices to show that the right map is continuous. Because G/K® is étale over
S, as o varies through (G/K%)(U), the open subsets o(U)xs7(U) of G/ K*x g7(U)
form a cover. Therefore it suffices to restrict to o(U) xg 7(U). Finally, Proposition
[-4)identifies 0 = gK*(U) for some g in G(U), and we see that a : 0(U)xg7(U) = X
equals the map g -7 : U — X. This is indeed continuous. (I

1.8. Endow the category of étale G-spaces with the Grothendieck topology whose
coverings are given by jointly surjective collections of étale maps.

Corollary. The site {étale G-spaces} is subcanonical, and the Yoneda embedding
{étale G-spaces} — { sheaves on {étale G-spaces}}
is an equivalence of categories.

Proof. Note that surjective étale maps are quotient maps, which implies the first
statement. For the second statement, let F be a sheaf on {étale G-spaces}, and
write X for the presheaf on S given by U — ligqa F(G/K%|y) for all compact open
subsets U of S. For all disjoint compact open subsets U and U’ of S, we have

ling F(G/K*|pupr) = lim F((G/K|y) U (G/EK*|r))
= lim (F(G/K®|y) x F(G/E*|r)) = [lim F(G/K"|v)] x [liy F(G/K*[u)],

SO shows that, when evaluating X on compact open subsets of S, it is already
a sheaf.

Let g be in G(U), and write g~ K@g for the image of the open group subspace
K§ C Gy under the homeomorphism

“Ixid xg

Kg =UxgK*xgU 2" K@ xg K* xg K — 22— K¢.

Because g~ 'Ky is a neighborhood of the identity section in Gy, Definition a)
yields an o/ such that K {}/ lies in g~!K“g. Therefore right translation by g induces
a map G/K®|y —G/K® |y of étale Gy-spaces. Taking lim F(—) yields a map
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X(U)— X(U), and as U varies, we obtain an action G x X — X of sheaves on S. By
construction, this action satisfies the property in Proposition b)7 so Proposition
[[.7]endows X with the structure of an étale G-space. Finally, the image of X under
the Yoneda embedding is naturally isomorphic to F, as desired. (]

1.9. Next, we introduce our generalization of compactly supported induction. For
the rest of this section, assume that H is closed in GG. By taking intersections, this
implies that H also satisfies Definition a), so H is also lctd over S.

Let W be a smooth representation of H over A.

Definition. Write c-Ind$; W for the sheaf of A-modules on S that sends compact
open subsets U of S to the set of continuous functions f : Gy — W over S such
that

a) the square

HXSGUL}GU

rdxf lf

HxsgW—"5W

commutes,
b) there exist g1, ..., g in G(U) such that, for all u in U, the function f,, : G, = Wy,

is supported on Uj_, Hug;(u).
1.10. Lemma. For all s in S, restricting to G yields a bijection

(c-Indf W), 5 c-Ind e (W),
Proof. For injectivity, let U be a compact neighborhood of s, let f be in
(c-Ind§ W)(U),

and let g1, ..., g, be the elements of G(U) provided by Definition [L.9]b). Suppose
that f|lg, = 0. Then, for all 1 < j < r, the preimage under f o g; of 0(U) C

(C—Indg W)y is a neighborhood of s, so there exists a compact neighborhood U’ of
s contained in all of them. Definition [1.9\b) indicates that f|g,, = 0.

For surjectivity, let fs : G5 — W, be in C—Indgi (Ws). Since restricting to Gy is
additive, it suffices to consider fs of the form

. (rs95 ws  if x4 lies in Hygs,
B otherwise,

for some wg in Wy and g5 in G5. By Definition b), there exists a compact
neighborhood U of s and g in G(U) such that g(s) = gs, and after shrinking U,
there exists w in W(U) such that w(s) = ws.

Write Hyg for the image of Hy C Gy under the homeomorphism

GU:GXSUMGXSGUL)GU.

Write f : Gy — W for the continuous function over S whose value on Hy g equals
Hyg—sHy = HxsU % HxgW -5 W

and whose value on Gy — Hyg equals 0 o pr, which is well-defined because Hy g is

clopen in Gy. By checking on fibers, we see that f lies in (c-Ind$ W)(U), and its

restriction to G equals fs, as desired. O
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1.11. We get an action G x c—Indg W — c—Indg W of sheaves on S as follows. For
all compact open subsets U of S, g in G(U), and f in (C—Indg W)H(U), define g - f
to be the composition

Gu =G xsU -5 G xg Gy —" Gy —— W
Note that this action is A-linear.
Lemma. For all f in (c-Ind§; W)(U), there exists an o with K®(U) stabilizing f.

Combined with Proposition Lemma yields a continuous A-linear action
G Xg c—Indg W — c—Indg W over S, so we obtain a functor

c-Ind$ : Rep(H, A) — Rep(G, A).

Proof. Let g1, ..., g be the elements of G(U) provided by Definition [1.9b). For all
1 < j < r, the subspace gj_1 stabg (fog,)g; C Gy is a neighborhood of the identity
section in Gy, so Definition [1.2la) yields an « such that K lies in

g; ' stabu (f © g;)g;
for all 1 < j <r. By using Lemma to check on fibers, Definition a) implies
that every g in K*(U) stabilizes f, as desired. O

1.12.  We need the following separatedness property of G/H.

Lemma. Let U be a compact open subset of S, let o1 and o2 be in (G/H)(U), and
let w be in U. If 014 # 024, then there exists a compact neighborhood U' C U of u
such that o1, # 09y for all v’ in U'.

Proof. By Proposition there exist g; and g2 in G(U) such that o1 = g1 H(U)
and o9 = ¢goH(U). Proposition also indicates that g1(u)H, # g2(u)Hy, so
(97 g2)(u) does not lie in H,. Since g 'gs : U — G is continuous, the preimage
under g; 9o of G— H is a neighborhood of u, so it contains a compact neighborhood
U’ of u. Hence g1 (v )H, # go(v')Hy for all w' in U’, as desired. O

1.13. We want to prove that c—Inde is left adjoint to restriction, so we start by
constructing the counit. Let V be a smooth representation of G over A, and consider
the map

e:c-IndG (V) =V
over S whose fiber at s equals
fs Z Us_lfs(as)v
Os eHS\GS
where the sum is finite by Definition [T.9]b), and its terms are well-defined by Defi-
nition a).
Proposition. The map € is a morphism of smooth representations of G over A.

Proof. Let U be a compact open subset of S, let f be in (c-Ind% (V|z))(U), and let
g1,---,9gr be the elements of G(U) provided by Definition b). Note that Defini-
tion b) depends only on the images o1, ...,0, in (H\G)(U) of the g1,..., g
Let u be in U. We claim that there exists a compact neighborhood U’ C U of
u and representatives gi,..., g, in G(U') of the o1|y/,..., 0|y’ such that, for all
L < ji,je <7y if Hygj (u') = Hyg),(u') for some v’ in U, then g} = g7,. To
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see this, note that Proposition [[.4] and Lemma [[.12] yield a compact neighborhood
U" C U of u such that, if 6, = 0,, for some v’ in U’, then 0, |¢» = 0j,|y. Then
take gi,...,g. in G(U’) to be representatives of the o1|y/,..., 0|y such that, if
Jj1|U/ = UJ‘2|U/7 then g;l = g}z.

By construction, the restriction of eo f to U’ equals the sum of the compositions

—1
(95 ".95)

id x
U GxsGy —L GV —"v
as g} runs over distinct elements in ¢f,. .., g.. Therefore the restriction of € o f to

U’ is continuous, and as u varies, this implies that € o f is continuous. As U and
f vary, this implies that ¢ is continuous. Finally, using Lemma to check on
fibers shows that ¢ is a morphism of smooth representations of G over A. ([

1.14. We now turn to the unit. Let W be a smooth representation of H over A.
For all compact open subsets U of S and w in W(U), write n(w) : Gy — W for the
continuous map over .S whose value on Hy equals the composition

HxsU-L% B oW —2 W,
and whose value on Gy — Hy equals 0 o pr, which is well-defined because Hy is
clopen in Gy.

Proposition. The map n yields a morphism W —(c-Ind$, W)| g of smooth repre-
sentations of H over A. Moreover, C—Indg 1s left adjoint to the restriction functor
()| : Rep(G, A) = Rep(G, A), with counit given by € and unit given by n, and
c—Indg 1s exact.

Now (—)|g is also exact, so (—)|x and c-Ind$ agree with their derived functors.

Proof. Checking on fibers indicates that 7(w) lies in (c-Ind$ W)(U). Then Lemma
lets us check on stalks to see that the induced map 7 : W—)c—Indg Wis a
morphism of smooth representations of H over A, that ¢ and 7 satisfy the counit-
unit equations for ¢-Ind$ and (—)|, and that ¢-Ind% is exact. O

1.15.  We define finite generation in terms of c-Ind as follows.

Definition. Let V be a smooth representation of G over A. We say that V is
finitely generated if there exists a surjective morphism @;:1 c—Indf(aj A—V of
smooth representations of G over A for some ay, ..., a,.

If W is a finitely generated smooth representation of H over A, then Proposition
implies that c-Indg W is a finitely generated smooth representation of G over
A.

1.16. We will need the following lemma.

Lemma. Let V and V' be smooth representations of G over A, and assume that
V' is finitely generated. For all s in S, restricting to Vs yields an injection

Hom,(V, V'), < Homg, (Vi, V).
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Proof. Let @;.:1 c—Indgaj A —V be the surjective morphism provided by Defini-
tion Because Lemma [I.10] induces a commutative square

Hom; (V, V'); —— Homg (P)_, c-IndFe; A, V'),

J |

Homg, (Vs, V) —— Homg, (P]_, c—Indf('%j A VD)

with injective rows, it suffices to consider V = @;:1 C—Indf(aj A. Then we have
Hom (D), e-Ind%a; A, V'), = D_, Hom, (c-Ind$a; A, V'), by finitude
= @j_, Homeo; (A, V'[gs)s by Proposition
= @, (V)<
= @;:1 HOIHK:]' (Aa Vvs,|K;"j )
= @’_, Homg, (C'Indf(zﬁ A,V]) by Proposition [I.14]
= Homg, (B)_, C—Indf(}j AV, by finitude
as desired. O

1.17. Let W be a smooth representation of H over A. To compute the endomor-
phisms of c—Indg W, we will use the following generalization of Hecke algebras.
Write End, (W) for the sheaf of A-module endomorphisms of W.

Definition. Write H(G, W) for the sheaf of A-modules on S that sends compact
open subsets U of S to the set of continuous functions ¢ : Gy — End, (W) over S
such that

a) the square
HxsGyxsH—" 3Gy
lid X pxid Jd:
H xgEnd) (W) xg H—— End, (W)
commutes, where the bottom arrow is the map over S whose fiber at s equals
(hs, Vs, hl) = hgovsohl,

b) there exist g1,...,g, in G(U) such that, for all w in U, the function ¢, :
G, — Endx (W,,) is supported on U;=1 H,g;j(u)H,.

When W = A, write H(G, H)a for H(G, W).

1.18. In the generality of this section, we can only prove the following injectivity
result. However, in our case of interest, we actually upgrade it into a bijectivity
result: see Theorem [E.8

Proposition. We have a natural morphism of sheaves on S
s : H(G, W) — End(c-Ind§ W).
When W is finitely generated, < is injective.
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Proof. Proposition[l.14]identifies End; (c-Ind$ W) with Hom ;; (W, (c-Ind% W)| ),
so it suffices to construct a morphism from H(G,W) to the latter. Let U be a
compact open subset of S, and let ¢ be in H(G,W)(U). For all w in W(U),
consider the map ¢(¢)(w) : Gy — W over S whose fiber at s equals

(o7tw)ws if 24 lies in o4 H,
0 otherwise,

‘7;8 ’_> Z (bs (US)

os€Gs/H,

where the sum is finite by Definition b)7 and its terms are well-defined by
Definition a). Definition a) and Definition [.17]b) also imply that ¢(¢)(w)
satisfies Definition [I.9}a) and Definition [I.9]b), respectively.

We turn to the continuity of ¢(¢)(w). Let g1,...,¢g, be the elements of G(U)
provided by Definition [1.17]b), and write o1,..., 0, for their images in (G/H)(U).
Let u be in U. The proof of Propositionmwelds a compact neighborhood U’ C U
of u and representatives ¢/, ..., g. in G(U’) of the o1|y-, ..., 0|y’ such that, for all
1 <ji,ja <, if gi (u')Hy = gj,(u')Hy for some v’ in U’, then g7 = g . Write
fi : Gy — W for the continuous function over S whose value on g;-HU/ equals

(&% wopr) EndA(W) xXg Hyr xg W — W

g; HU’
and whose value on Gy — g;-H v+ equals 0o pr, which is well-defined because g;-H U
is clopen in Gy. By construction, the restriction of ¢(¢)(w) to U’ equals the sum
of the f; as g} runs over distinct elements in ¢, ..., g.. Therefore the restriction of
¢(¢)(w) to U’ is continuous, and as u varies, this implies that ¢(¢)(w) is continuous.
Note that ¢(¢) yields a morphism Wy %(C—Indflg Wu)| i, of smooth represen-
tations of Hy over A. To see that the resulting morphism ¢ of sheaves on S is
injective when W is finitely generated, it suffices to check on stalks. For all s in .S,
restriction to the fiber at s yields a commutative square

H(G, W)y —— End (c-Ind§ W),

| |

H(G,,W,) — Endg, (c-Indfy W).

The bottom arrow is a bijection, and Lemma [I.16] and Lemma [I.10| show that the
right arrow is injective. By using Definition b) instead of Definition b)7 the
proof of Lemma [1.10] implies that the left arrow is injective, so the top arrow is
injective, as desired. U

1.19. Later, we will need the following fact. Let g be in G(S), and write HgH for
the image of the composition

id xgxid

HxgSsxH GXSGXSGL)G.

Lemma. The subset HgH C G is open.

Proof. Let s be in S, and let hsg(s)h, be in the fiber of HgH at s for some hg and
R, in H,. By Definition [1.2]b), there exists a compact neighborhood U of s and h
in H(U) such that h(s) = hs. Then (hg)Hy is a neighborhood of hy(g)h, that lies
in HgH, as desired. [



ON CLOSE FIELDS AND THE LOCAL LANGLANDS CORRESPONDENCE 15

1.20. We conclude this section by providing a way to construct group topological
spaces over S. Let R be a ring topological space over S. For all sets I, write R’
for the I-fold fiber power of R over S.

Proposition. There exists a unique functor
(=)(R) : {affine schemes over R(S)} —{topological spaces over S}

that preserves fiber products and, for all sets I, sends the affine space Agz(s) to
RY. Moreover, for all affine schemes X over R(S), we have a natural identification
X(R)(S) = X(R(S5)).

In particular, for all affine group schemes X over R(S), we naturally obtain a
group topological space X (R) over S. Write R* for G,,(R).

Proof. Let X = Spec A be an affine scheme over R(S), and fix a presentation
A = R(S)[Ti]icr/a. Because R is a ring topological space over S, elements of
R(S)[T]ier induce continuous maps R — R over S. Applying this to every element
of a yields a continuous map R — R® over S; define X (R) to be the fiber product

X(R) —— R!

|, |

S—% Re

Now let Y = Spec B be another affine scheme over R(S). Fix a presentation
B = R(S)[Uj]jes/b, and let f : Y — X be a morphism over R(S). For all ¢ in
I, choose a lift to R(S)[U;]jes of f*T;. As i varies, this yields a continuous map
R’ — R! over S. Checking on fibers indicates that the diagram
Y(R) —— R’

-
X(R) —— R!

|

5—2 s Re
commutes, which induces a continuous map Y (R) — X (R) over S. This shows that
our construction is functorial, as well as independent of the presentation.

Our construction evidently sends AE( g to R!. Let Z = SpecC be yet another
affine scheme over R(S) along with a morphism Z — X over R(S). By choosing
presentations of B and C' over A, we see that our construction preserves fiber
products. The cartesian square

X ———Apg

L]

Spec R(S) SN AR

indicates that these properties uniquely determine the value of X(R). Finally,
the fiber product definition of X (R) immediately yields the desired description of
X(R)(9). a
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2. LOCAL FIELDS IN FAMILIES

In this section, we conceptualize Heuristic (ED by converting sequences {E; };en of
p-adic local fields into nontrivial families over NU{oco}. We begin by constructing a
ring topological space E over NU {oo} whose fibers recover the E;. Next, we define
the topological ring F to be the global sections of E, and we study finite étale
E-algebras. We prove that E enjoys a version of Galois theory over NU{oo} that is
compatible with Deligne’s isomorphism. Finally, we conclude by extending various
constructions (e.g. maximal unramified extensions, adjoining ¢g-th power roots of a
uniformizer, separable closures, and Lubin-Tate extensions) to the context of E.

2.1. When forming families of local fields, it will be convenient to work in the
following generality. Let x be a perfect field. Let { E;};cn be a sequence of complete
discretely valued fields of characteristic 0 with residue field x, and write F., for
k((t)). For all ¢ in NU {00}, write v; : E; = Z U {00} for the (normalized) valuation,
write O; for the ring of integers of E;, and write p; for the maximal ideal of O;.
For all positive integers n, write Tr,, (E;) for the triple as in [I0, (1.2)].

When ¢ lies in N, write e; for the absolute ramification index v;(p), assume that
e; — o0 as i — oo, and fix an isomorphism Tr.,(E;) = Tr.,(E). Note that
this includes an isomorphism O;/p;" = O /p%. Write mo for ¢, and choose a
uniformizer 7; of F; whose image in O; /pfi >~ O /pS equals the image of 7.

2.2. View N as a discrete topological space, and write N U {oo} for its one-point
compactification. Note that NU {oco} is profinite; in fact, it is homeomorphic to

y%n{ieNUgd}U{oo},

where d runs over natural numbers, and the transition map
{ieN|i<d+1}U{oo}—={ieN|i<d}U{co}
sends d + 1 to co and equals the identity otherwise.
First, we construct our family as a ring topological space over N U {occ}.
Definition.

a) Let n be a positive integer. Write Q,, for the ring topological space over NU{oco}
given by @ 4 of the discrete ring topological spaces

(TT0i/we) 1O /p%

i<d

over {i € N |i < d} U{oco}, where, for large enough d, the transition map

((IT ou/pr) 110 /pz— (K]_Eoi/p?) [10x /b

i<d+1

sends Oay1/pj,; t0 O /pl, via the isomorphism (’)dﬂ/pflff > O /post™
(since d is large enough) and equals the identity otherwise.

b) Write O for the ring topological space over NU {oco} given by @n Oy, where n
runs over positive integers, and the transition map Q,4+1 — O, is induced from
reduction mod 7.
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¢) Write 7 for the continuous section of @ — NU {oco} whose value on ¢ in NU {co}
equals 7;. Write E for the ring topological space over NU {oco} given by li_n% Q,
where r runs over non-negative integers, and the transition maps are given by

0 = (NU {00}) Xnugoo} O 255 0 Xy oo} O —2 O.

Note that O, is locally constant over N U {c0}, so O is Hausdorff. Because E
is an increasing union of open subspaces homeomorphic to Q, it is also Hausdorff.
Finally, we see that E is independent of the choice of ;.

2.3. We have the following version of the valuation map for E* over N U {o0}.
Write v : EX - Z x (NU {oc}) for the map over N U {oo} whose fiber at i equals
v;. Note that O is an open group topological subspace of E* over NU {oo}.

Proposition. The map v is a morphism of group topological spaces over NU {o0},
and kerv equals O*.

Proof. Now m induces a morphism Z — E* /O of abelian sheaves on NU{co}. By
using Proposition to check on stalks, we see that this is an isomorphism. Its
inverse yields an isomorphism EX /O* 5 Z x (NU {oo}) of group topological spaces
over NU {oo}, and v equals the composition

EX 5E* /0% 37 x (NU {c0}).

Proposition shows that E* —E*/OQ* is continuous, and checking on fibers
shows that it is a morphism of group topological spaces over NU{co}. So the same
holds for v. Finally, the above work also shows that ker v equals Q. O

2.4. Next, we study the topological ring associated with E. Write E for E(NU{oo})
equipped with the compact-open topology, which is a topological ring. Similarly,
write O for the topological ring O(NU {oco}). Note that O is an open subring of E,
equals the subset E° of powerbounded elements, and contains 7.

Lemma. As topological rings, O is naturally isomorphic to
limlin ([T Oi/p7) X Occ /0%,
n d i<d

and E s isomorphic to (9[%} Consequently, O carries the w-adic topology and is
complete, and we have O /7" = lim , (Higd Oi/p1) x Oco /p = O (NU {00}).

Proof. Since O = @n 0,, and O, is locally constant, we have

O = Contyyoo} (NU {00}, 0) = @ContNu{m}(N U{oc},0,)

n

_ @11% (Hoi/p?) X Ooo /P

i<d
as topological rings. Because N U {oo} is compact, we also have

E= COHtNU{OO}(N U{oc}E) = @COH‘LNU{W}(N U {0}, 0) = hﬂ@ = O[%} O
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2.5. For all i in NU {00}, evaluation at ¢ yields a continuous ring homomorphism
ev, : E— E;. Note that ev;(O) = O;, so ev; is surjective and ker ev; is maximal.

Proposition. FEvery closed prime ideal of E equals ker ev; for some i in NU{oo}.
Thus |Spa E| is naturally homeomorphic to NU {oco}, and Spa E is an adic space.

Proof. For all i in N, write b; for the continuous section of E — NU{oo} whose value
on i in NU {oc} equals 1 if i = ¢ and 0 otherwise. Let a be a closed prime ideal
of E, and first assume that a does not contain b; for some 7 in N. Since b;z = 0 for
all x in kerev;, a being prime implies that it equals ker ev;.

Next, assume that a contains b; for all ¢ in N. Because a is closed and O is
m-adically complete, this implies that a contains ),y fib; for all sequences {f; }ien
with f; in E; such that v;(f;) — oo as i — oo. The set of such ) . fib; is precisely
ker evo, so a equals ker ev.

Since [Spa F;| is a singleton, the above discussion identifies |Spa E| with NU{oo}
as sets. Note that rational open subspaces of Spa E correspond to compact open
subsets of N U {oo}, so this identification is a homeomorphism. In fact, for any
compact open subset U of N U {oo}, the corresponding rational localization of E
equals E(U), and this implies that Ogpa g is a sheaf. a

2.6. Let us recall the setup of Deligne’s isomorphism. For all ¢ in NU {oc}, fix a
separable closure E; of E;, and write I'; for Gal(E;/E;). Write C; for the completion
of E;, and recall that C; is algebraically closed.

For all positive integers n, write I7* for the n-th ramification subgroup of I'; in
the upper numbering. Using our isomorphism Tr.,(E;) = Tr., (Fo ), we obtain a
canonical isomorphism T';/I7* = T’ /IS of topological groups (up to conjugation)
[10, (3.5.1)]. Fix an isomorphism in this conjugacy class.

We now introduce the analogue of the absolute Galois group for E.

Definition.

a) Write I'™ for the group topological space over N U {oco} given by 1&1 , of the
group topological spaces
(TTre/m) LTao /12
i<d
over {i € N | i <d} U{oo}, where, for large enough d, the transition map
((TT ro/m) Ureo/zz— (TTTe/2) LT/ 12
i<d+1 i<d

sends T'gy1 /17, to Too/IZ via the isomorphism Tgy /157 2 Do /1SS (since
d is large enough) and equals the identity otherwise.

b) Write I" for the group topological space over NU{co} given by ]&nn '™, where n
runs over positive integers, and the transition map I'**! —TI'™ is induced from
quotienting by I

Because I'™ is profinite, so is I'. Moreover, note that I" is lctd over NU {oo}.
2.7. We will use the following fiberwise criterion to construct étale maps over E.

Lemma. Let (A, AT) be a sheafy complete Huber pair over (E,O), and let (A’, A'F)
be a finite free Huber pair over (A, A%). Then A’ is étale over A if and only if, for
all i in NU {oo}, the base change A’ @ E; is étale over A Qg E;.
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Proof. Write Z for Spa(A, AT), and write Z’ for Spa(A’, A’T). By [23, (1.7.5)],
the morphism f : Z’' — Z is étale if and only if, for every rank-1 point z of Z, the
fiber f~1(z) is étale over z. Gathering rank-1 points z according to their images
in |Spa E| 2 NU {oo} and applying [23] (1.7.5)] again shows that this holds if and
only if Z' Xgpa g Spa E; — Z Xgpa g Spa E; is étale for all ¢ in NU {co}.

Because E is Tate, the morphism (£, Q) —(A, A1) is adic. Therefore [22, (3.7)]
shows that Z' Xgpa g Spa E; and Z Xgpa g Spa E; are affinoid, with global sections
equal to A’ ®g FE; and A g E;. Combined with the above criterion, we get the
desired result. O

2.8.  Via Deligne’s isomorphism, finite étale F-algebras spread out from finite étale
FE-algebras as follows.

Proposition.

i) Base change induces an equivalence of categories
lim, {finite étale E(U)-algebras} ={finite étale E -algebras},

where U runs over compact neighborhoods of co.

ii) Let Fo be a finite étale Eo-algebra such that 17 acts trivially on its associated
T'w-set. For any compact neighborhood U of oo and finite étale E(U)-algebra
F with F @gy Few = Fu, there exists a compact neighborhood U' C U of
oo such that, for all i in U’, we have e; > n, and the finite étale extension
(F®@g@wy Ei)/E;i corresponds to Fuo [ Es via the isomorphism T /1] = Too /17,

Proof. Because Ogspa 00 = hﬂU E(U), base change induces an equivalence
liﬂU{ﬁnite étale E(U)-algebras} —{finite étale Tgp, g oo-algebras}.

Note that the residue field of Ogpap,co 18 Ex. Since Ospa koo is henselian [20],
Lemma 2.4.17 (a)], part i) follows from [40, Tag 09ZL].

We turn to part ii). Part i) indicates that it suffices to find one U and F' satisfying
the desired property for U = U’. By taking finite products, we can assume that
F is a field. The maximal unramified subextension of Fy, is handled by repeating
the construction of F (except that in we replace k with a finite extension, and
we replace F; with its corresponding unramified extension).

Thus we can assume that Fi,/Fo is totally ramified. Then F,, is generated by
an element with minimal polynomial

foo =T"+ Woo(arfl,ooTT_l ++ aO’OO)’

where the a,_1 oo, . . ., 40,00 lie in Oss. Choose a,_1, ..., ap in O such that eve,(a;) =
0j,00 for all 0 < j <r —1. Let U be a compact neighborhood of co such that, for
all ¢ in U, we have e; > n, and for all 0 < j <r — 1, the image of ev;(a;) in O;/p}
equals the image of a; o in O /Pl under the isomorphism O;/p? = O /P .

Let F be the finite free E(U)-algebra obtained via quotienting E(U)[T] by

f=T +mlar T+ +ap).

For all 4 in U, [10, (1.3)] shows that (F'®g) E;)/E; is the finite separable extension
corresponding to Foo /Eo via the isomorphism I'; /I = T' /1% . Therefore Lemma
implies that F' @ E(U) is étale over E(U), as desired. O
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2.9. Proposition 2.8 implies that E enjoys the following version of Galois theory.

Corollary. The category of finite étale E-algebras is naturally anti-equivalent to
the category of finite locally constant topological spaces X over NU {oo} along with
a continuous action I' Xny{soy X — X over NU {oo}.

Proof. Let F be a finite étale E-algebra. Let n be a positive integer such that I}
acts trivially on the I's-set associated with F @ Fo, and let U’ be a compact
neighborhood of co as in Proposition ii). Write X for the finite locally constant
topological space over N U {oo} along with a continuous action I' Xyy(ey X — X
over NU {oo} such that

a) for all ¢ not in U’, its fiber X; at ¢ is the I';-set associated with F @ F;,
b) Xy is the pullback to U’ of the ', /I -set associated with F @ Eo (since
'Yy, =T /1% x U’ as group topological spaces over U’).

By Proposition [2.8]i), the assignment F' — X is functorial. This functor is fully
faithful by Proposition i) and essentially surjective by Proposition ([

2.10. Later, we will need to spread out finite Galois extensions from F., to E as
follows. Let Fi,/E be a finite Galois extension, and let n be a positive integer
such that the image of I, in Gal(Fu/FEx) is trivial. Write ¢ : [-1,00) =[—1,00)
for the Hasse-Herbrand function associated with Fi,/E as in [39, Chap. IV, §3].

In this subsection, assume that e; > n for all ¢ in N. Write F;/E; for the finite
Galois extension corresponding to Fi/Fo via the isomorphism I'; /I =2 T'oo /I,
and recall that our isomorphism Tre,(E;) = Tr.,(F«) induces an isomorphism
Try(e,)(Fi) = Trye,)(Foo) [10, (3.4.1)]. Because ¢(x) — oo as & — oo, repeating
Definition (except that in we replace xk with the residue field of F,, and we
replace E; with F;) yields ring topological spaces O ,,, Op, and F over NU {o0}.

Corollary yields a natural finite étale F-algebra F such that, for all 7 in
N U {co}, the E;-algebra F ®p E; is isomorphic to F;. Note that Op(N U {oco}) is
naturally isomorphic to F°, and F(N U {co}) is naturally isomorphic to F'.

Finally, Corollary implies that the above construction is functorial in F.
Therefore we obtain actions of Gal(Fu/Ex) on Qf ., Op, and F over NU{co}. By
checking on fibers, we see that the natural closed embedding E — F of ring topo-
logical spaces over NU {oo} identifies E with the fixed point locus of Gal(Fu/Exo)
in F.

2.11. For the rest of this paper, assume that x = F, is a finite field. Then
O, is finite locally constant over NU{oc}, so O is profinite and E is locally profinite.

Let us describe the analogue of (the completion of) the maximal unramified
extension of E. For all ¢ in NU {oo}, write E; for the completion of the maximal
unramified extension of E;, and write O; for its ring of integers. Applying — ®r, F,
to Tre, (E;) 2 Tre, (Eo) induces an isomorphism Tre, (E;) 2 Tr. (Es), so repeating
Definition (except that in we replace r with F,, and we replace E; with EU‘Z)
yields ring topological spaces O and I over NU {o0}. Write E for E(NU{cc}), and
write O for O(N U {oo}).

Finally, write ¢ : E— E for the map over NU{oo} whose fiber at i equals the lift
©i : E; — E; of absolute g-Frobenius. Note that ¢ is a morphism of ring topological
spaces over NU{oo} and preserves 0. By checking on fibers, we see that the natural
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closed embedding E < E of ring topological spaces over N U {oo} identifies E with
the fixed point locus of ¢ in E.

2.12. We now consider the analogue of (the completion of) adjoining all g-th
power roots of 7 to E. For all i in N U {oo}, write EP*" for the completion of
Uz, Eil(x) /") Our choice of uniformizer m; induces an identification (EP®T)’ =
EPet such that m; = Wﬁo. Choose a system of ¢g-th power roots of m; in C;, which in-
duces a map E} et _y C; over E. Since E? °rf is perfectoid and this realizes C; as the
completion of its separable closure, the tilting equivalence induces an identification
C = C.

Write OPf for the m-adic completion of J°2, O[r/7"], and write EP*f for
OPef[L] Note that O is a direct summand of OP*! as topological O-modules, and
EPef @ E; is naturally isomorphic to EY erf,

2.13. The following is the analogue of (the completion of) the separable closure
of E. Let {K%},, be a directed family of compact open group subspaces of I' over
N U {oo} that is cofinal among neighborhoods of the identity section in I". Then
I'/ K is finite locally constant over NU{oo}. Write F* for the finite étale E-algebra
corresponding to I'/K® via Corollary write O¢ for the w-adic completion of
Ua(F*)°, and write C for O¢[1]. By cofinality, Oc is independent of the {K“},.

Proposition. The ring C is perfectoid, and our identifications C? = C. induce
an identification C* = Cont(N U {00}, Cs) such that it = 7.

Proof. For all i in NU {oco}, write F}* for the finite étale E;-algebra F'* @ F;, and
note that F* corresponds to the I';-set I';/K*. Now C° = O¢, and we have

O¢/m = M(F&)O/ﬂ = @@HOF;*/M X OF&/WOO,
« a d i<d
where d is large enough with respect to a. Since {K{}, is a cofinal family of
open compact subgroups of I';, we see that HLQQ Ope /T = O, /mi = Oc, /T Our
identification C? = C, induces an identification O¢, /7; = O /Too, S0 switching
the order of the direct limits yields

limlim [ [ Ore /7 % Opa /oo = lim [ [ Oc. /o0 X O, /7o
d

a i<d d i<d
= Cont(NU {00}, Oc_ /oo )-

This description implies that the absolute g-Frobenius map O¢/p— O¢/p is sur-
jective, so C' is perfectoid [36, Remark 3.2]. Moreover, the above work identifies O%
with Cont(N U {c0}, Oc..), so C” is naturally isomorphic to Cont(N U {00}, Cs).
Finally, the fact that 7% = 7; under the identification Ci.’ = C implies the desired
description of 7 in C. O

2.14. Finally, we define the analogues of Lubin—Tate extensions over E as follows.
(In we will explain their relationship with Lubin-Tate theory over E.) For all i
in NU{oo}, write Eix for the profinite completion of E, and write Art; : E‘ix N
for the local Artin isomorphism normalized by sending uniformizers to geometric
g-Frobenii. For all positive integers n, note that Art; and our choice of uniformizer
m; induce a surjective continuous homomorphism I';/I* —(O;/pl')*. Write EZL Tom
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for the corresponding finite abelian extension of E;. Write EXT for the completion
of Uno, EiLT’", and recall that EXT is perfectoid.
Note that Oy is finite locally constant over NU {co}.

Lemma. The map I'™ — Q) over NU{oo} whose fiber at i equals T'; /I —(O; /p})”™

is continuous. Consequently, there exists a natural finite étale E-algebra E¥T" such
that, for all i in NU {oo}, the E;-algebra E¥T'" @ E; is isomorphic to ElLTn

Write OT for the m-adic completion of |J;~, (E™™)°, and write EVT for OT[1].

Proof. Because Proposition [I.20]is compatible with inverse limits in S, we have
0 = lim [(TT(©:/#)*) 11O /02)" .
d i<d

as group topological spaces over NU {oc}. Next, consider the continuous map

(TTr/m) Teo/12 — ([1(0:/81)°) L(Ow /o)
i<d i<d
over {i € N | i < d} U {oo} given by the disjoint union of the I';/I"* —(O;/p})*.
Now [10, (3.6.1)] shows that this is compatible with the Hm - in Definition [2.6la),
so taking &in 4 yields a continuous map I'™ — Q. with the desired property.
By checking on fibers, we see that I — Q)¢ is a morphism of group topological
spaces over N U {oo}. Therefore precomposing with I' - T'" yields a continuous

action I' Xyyujeo} @) = Q) over NU {oo}. Finally, the corresponding finite étale
E-algebra E'T" from Corollary has the desired property. ([

3. FARGUES—FONTAINE CURVES

To carry out Fargues—Scholze’s program [I4] in our context, we need to define a
version of relative Fargues—Fontaine curves over E. This is the goal of this section.
First, we construct a generalization of Witt vectors for O-algebras, which specializes
to O;-typical Witt vectors when applied to O;-algebras. We prove that various
properties of O;-typical Witt vectors extend to our generalization, and we also
construct a version of Witt bivectors over O (which will be needed for computations
in .

Next, we use this to define a relative Fargues—Fontaine curve Xg over Spa F
for any affinoid perfectoid space S over NU {oco}. After proving basic facts about

Xg, we show that S-points of Div}, = (Spd E)/¢” induce closed Cartier divisors
on Xg, where ¢ denotes the relative g-Frobenius morphism. Finally, we prove a
version of Drinfeld’s lemma for (Div&)?q by reducing to the situation considered in

Fargues—Scholze [14].

3.1. We start by constructing the analogue of Witt vectors over O. For all non-
negative integers j, write w; for the polynomial in O[Ty, ..., T;] given by

Y R S
For all O-algebras A, view w; as a function
w; : {sequences (agp,a1,...) in A} A

by sending (ag,a1,...) — w;(ao, ..., a;).
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Proposition.
i) Let A be an O-algebra that is w-torsionfree and has an O-algebra endomor-
phism ¢ whose reduction mod m equals absolute q-Frobenius. Then the map
(wo, w1, ...) is injective with image equal to

{sequences (bo,by,...) in A | for all j >0, bj+1 = ¢(b;) (mod 77 +1)}.
it) The functor {O-algebras} —{sets} given by
A — {sequences (ag,ay,...) in A}

factors uniquely through a functor W : {O-algebras} —{O-algebras} such that,
for all non-negative integers j, the map w; : W(A) — A is an O-algebra homo-
morphism.

Proof. For part i), A being 7-torsionfree implies that (wg, w1, .. . ) is injective. Next,
—i'+1

aj, = ¢(a;j) (mod m) implies that a?f = gp(aj/)q-f—j/ (mod 77—7+1) for all

0 < j’ <7, so the image of (wp,ws,...) lies in the above subset.
In the other direction, let (bg, b1,...) be a sequence in A satisfying b;11 = ¢(b;)
(mod 7/ F1) for all j > 0. Define ag := by, and inductively apply

bit1 = o(by) = p(ao)” +mp(ar)”  +- 4+ p(a;) (mod 7t

i+ g ; -
_ 1
=aj +mal +---+7a] (mod 7,

. j+1 j .
which implies that w71 divides b;41 — (agJ+ +mal 4+ 9a?), to define

- . _
A )
Then the image of (ag,a1,...) under (wp,ws,...) equals (bg,by,...), which yields
the desired result.
For part ii), note that part i) uniquely determines the value of W when A is a
polynomial O-algebra. Finally, reducing to this universal case uniquely determines
the value of W on any O-algebra. O

3.2. Proposition. Let A be an O-algebra.
i) The map [—]: A—=W(A) given by a — (a,0,...) is multiplicative,
it) There exists unique maps ¢ : W(A) > W (A) and V : W(A) - W (A) such that,
for all non-negative integers j, we have w; o ¢ = wjy1 and

0 ifj=0,
wj oV = .
m-w;_1 otherwise.

Consequently, ¢ is an O-algebra homomorphism, V is O-linear, and poV = .
iii) Let m be a positive integer. Then im V™ is an ideal of W(A), and the map
W(A)— A" given by (ag,a1,...) — (ao,...,an—1) induces an identification
from W (A) == W(A)/im V™ to A™.
iv) Assume that A is an O/mw-algebra. Then Vop =7, and ¢ equals the O-algebra
homomorphism W (A) — W (A) induced by absolute q-Frobenius A— A.

Proof. First, assume that A is w-torsionfree and has an O-algebra endomorphism
whose reduction mod 7 equals absolute ¢-Frobenius. Then Proposition i) iden-
tifies W(A) with its image under (wg, w1, ...). This uniquely determines ¢ and V,
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as well as verifies part i), part ii), and the first statement in part iii). Note that V'
sends (ag, ai,...) to (0,aq, a1, ... ), which implies the second statement in part iii).

The above includes the case where A is a polynomial O-algebra. Reducing to
this universal case uniquely determines ¢ and V', as well as verifies parts i)-iii), for
any O-algebra. Similarly, reducing to the universal case and taking reduction mod
7 verifies part iv). O

3.3.  When restricted to perfect O/m-algebras A, our Witt vectors satisfy the fol-
lowing usual properties. Proposition [3.2lii) and Proposition [3.2/iv) imply that
" W"(A) — W(A)/7" is an isomorphism for all positive integers n. Proposition
iii) identifies W(A) with lim W™(A), so this shows that W(A) is m-adically

complete and m-torsionfree. Note that (ag,ar,...) in W(A) equals Y 07 [a}/q“]w".

For all m-adically complete O-algebras B, recall that the tilt B” is naturally
isomorphic to the inverse limit perfection of B/7 [B, Lemma 3.2(i)].

Proposition. Consider the functor
W : {perfect O/m-algebras} —{m-adically complete O-algebras}.

i) It is left adjoint to the tilt functor (—)°. The unit A— W(A)® is an isomor-
phism, and the counit 0 : W(B”) — B sends Yoo o [rp]m™ to Y00  rha™.

n=0
i) It is fully faithful, and its essential image consists of m-adically complete, m-

torsionfree B such that B/w is perfect.

Proof. For part i), our candidate for the unit is the isomorphism
A=1imA = lim W(A)/r = W(A),

where r runs over non-negative integers, and the transition maps are given by
absolute g-Frobenius.

We turn to our candidate for the counit. Let n be a positive integer, and recall
that the O-algebra homomorphism w,,_; : W"(B) — B is given by

(Bos -+ but) > 08 b

Forall 0 < j < n—1, wesee that b =¥/ (mod ) implies that b’ = ¢ (mod 7/+1),
so the composition W"(B) — B — B/xn" factors through an O-algebra homomor-
phism 6,, : W"(B/xw) — B/n". Proposition [3.2}ii) implies that the square

Wt (B/n) —— W t(B /1) —— W"(B/x)

J/Gn+1 l&n

B/antl B/m™

commutes, so taking lgln yields an (O0-algebra homomorphism
6:W(B’) =limW"(B/x) = lim B/z" = B.
n n

Tracing through our identifications shows that our candidates satisfy the counit-
unit equations for W and (—)°, as well as the desired description of 6.

For part ii), full faithfulness follows from part i), so we focus on the essential
image. When B/7 is perfect, note that (—)? yields a section B/r = B’ — B of
B — B/w. Therefore, when B is also m-torsionfree, every element of B equals
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S  rha™ for uniquely determined r,, in B/7. This shows that 6 : W (B") — B is
an isomorphism, so B lies in the essential image of W. (]

3.4. In this subsection, assume that A is a perfect O/m-algebra.
Corollary. Reduction mod 7 induces an equivalence of categories

{finite étale W (A)-algebras} ={finite étale A-algebras}.
Moreover, it has a quasi-inverse given by W.

Proof. The first statement follows from the m-adic completeness of W(A), since
W(A)/m = A. For the second statement, let A’ be a finite étale A-algebra, and
B’ be a finite étale W (A)-algebra satisfying B’ /m = A’. Since W(A) is m-adically
complete and 7w-torsionfree, so is the finite projective W(A)-module B’. Moreover,
[26, Lemma 3.1.5] shows that A’ is perfect. Hence Proposition |3.3}ii) implies that
B' 2 W(A"), as desired. O

3.5. Later, we will need the analogue of Witt bivectors over O, so first let us
introduce the analogue of Witt covectors over O. Write CW*(A) for the O-module
lim W™ (A), where the transition maps are given by V : W"(A) — W"T1(A), and
write V : CW*(A) - CW*(A) for the map given by lim = of the composition

Wn(A) —L WnHl(A) —— W (A).

Identify CW™(A) with the set of sequences (...,a_1,a9) in A satisfying the follow-
ing property: there exists an M > 0 such that a_,,, = 0 for all m > M. Under this
identification, V sends (...,a_1,a9) to (...,a_2,a_1).

3.6. Write CW(A) for the set of sequences (...,a_1,a9) in A satisfying the fol-
lowing weaker property:

(<) there exists an M > 0 such that the ideal (a—y,)m>n of A is nilpotent.

Lemma. The O-module structure on CW"(A) naturally extends to CW(A), and
the natural extension of V to CW(A) is O-linear.

Write BW(A) for the O-module Jm_ CW (A), where r runs over non-negative
integers, and the transition maps are given by V : CW(A) — CW(A). We identify
BW (A) with the set of double sequences (...,a_1,a9,a1,...) in A satisfying (ED

Proof. Note that [15, n° II.1.5, lemme 1.2] holds after replacing p with g. Therefore,
for the polynomials S; that compute the j-th coordinate of addition on W, the
analogue of [15, n° I1.1.5, lemme 1.3] also holds, and the bound depends only on g.
Thus the desired result follows from the proof of [I5, n° I.1.5, proposition 1.1]. O

3.7.  Crucially, our Witt vectors specialize to the usual Witt vectors as follows.
For all ¢ in N U {co}, write W; for the ring of O;-typical Witt vectors as in [12]
Proposition 1.1], and view O; as an O-algebra via the surjective ring homomorphism
ev; . O — 07,

In this subsection, assume that A is an O;-algebra.

Proposition. The O-algebra W (A) is naturally isomorphic to W;(A).
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Proof. First, assume that A is w-torsionfree and has an O-algebra endomorphism
whose reduction mod 7 equals absolute ¢-Frobenius. Then Proposition i) iden-
tifies W(A) with its image under (wg, w1, ... ), and this satisfies the characterizing
property in [I2] Proposition 1.1]. Therefore uniqueness in [12, Proposition 1.1]
implies that W (A) is naturally isomorphic to W;(A).

The above includes the case where A is a polynomial O;-algebra. Finally, reduc-
ing to this universal case shows that W(A) is naturally isomorphic to W;(A) for
any O;-algebra A. |

3.8. Note that O/ = Cont(NU {oo},F,) and that Spd Cont(NU {oo},F,) equals
the v-sheaf NU {oo} on Perfr,. Hence Spa yields an anti-equivalence from the
category of perfectoid Huber pairs over O /7 to the category of affinoid perfectoid
spaces over I, equipped with a morphism to NU {oo}.

We can now define the analogue of relative Fargues—Fontaine curves over O. Let
S = Spa(R, RT) be an affinoid perfectoid space over F, equipped with a morphism
S — NU {oc}. Choose a pseudouniformizer w of R, and write ||—|| for the associated
spectral norm on R normalized by |w| = %. Endow W(R™) with the (m,[=])-
adic topology, write Vg for the complement of the vanishing locus of (r, [w]) in
SpaW(R™"), and note that Vg is the analytic locus of Spa W(R™).

We have a continuous map rad : |Yg| —[0, o] given by

log |[w](7)|
log | (Z)] '
where Z denotes the unique rank-1 generalization of x in Jg. For any closed interval
Z in [0, oo] with rational endpoints, write Ys 7 = Spa(Bs 1, B;I) for the associated
rational open subspace of Spa W (R™), which lies in Yg. More generally, for any
subset Z of [0, oo, write Vg 7 for the open subspace | J;, Vs 7 of Vg, where I’ runs
over closed intervals in Z with rational endpoints. Write Y for Vg (0,00), and note
that Vs [0,00) is the complement of the vanishing locus of [w] in Spa W (R™).
Write ¢ : S — .S for the absolute g-Frobenius automorphism, as well as the
induced automorphisms of W (RT) and Ys. Note that radop = ¢ - rad, so ¢ acts
freely and totally discontinuously on Yg over Spa E. Write Xg for the quotient

Vs /9"
3.9. Write W/(RT) for the ring W (R™) endowed with the m-adic topology.

Lemma.
i) The ring W'(RT)[2] is sousperfectoid,
ii) The pre-adic space Vg |1, is sousperfectoid and hence adic.

Proof. For part i), we claim that W/(R1)®0 P! is integral perfectoid. Note that

oo

ortjm = J Ot/ jm = | J(O/m)E N/t

r=0 r=0

where t1/9" equals the image of /9", so we get

(W' (RMBo0OP™) /1 = RT @0, (0P /m) = | | RF[t/7"] /1.
r=0
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Replacing 7 with 71/7 yields (W'(RT)®00P) /nt/4 = | J22 , RT[tY/4"]/t1/4. Since
R is integral perfectoid, these descriptions imply that the absolute g-Frobenius

(W' (RT)@o0P) /al/t —(W'(RT)@00P™) /1

is an isomorphism, so [, Lemma 3.10(ii)] yields the claim. From here, [5, Lemma
3.21] indicates that (W' (RT)@00P)[L] = W/(R*)[2]@ 5 EPe! is perfectoid, which
shows that W’(R*)[1] is sousperfectoid.

For part ii), note that the (7, [ww])-adic topology on W (R™')[[ww]/7] equals the
m-adic topology. Therefore Bg [1 o) equals the global sections of the rational open

subspace {|[@]| < || # 0} of Spa W'(R¥)[L], which is sousperfectoid by part i). [
3.10. Proposition. For all non-negative integers r, the pre-adic space

yS,[O,q’"] XSpa O Spa Operf

is affinoid perfectoid, and our choices of m and w induce an identification between
(Vs,]0,q7] Xspa 0SpPa orerhY? and the closed perfectoid unit disk over S. Consequently,
Vs, Ys, and Xg are sousperfectoid adic spaces.

Proof. We claim that BS7[071]®oOperf is perfectoid. To see this, write A for the [w]-
adic completion of |Jox_, (W (R*)&00P)[(1/[w])}/9"]. Because Bgo 1] equals
W(RT)(r/[w])[X], we see that Bg [g11@00P" equals A[Z:]. Now

[=] (=]

(G

Allwl = | (WERHBooP)[(n/[@])/*"]/[e]

m=0

m m m

((B* /) @oyx (OP fm) (X" (17" — 14" X107,

I
(G

m

where X/9" equals the image of (7/[w])!/4". The proof of Lemma i) identifies
orert /1 with |22, (O/7) [t/ 9] /t, so the above expression for A/[w] becomes

o0 oo oo

U (U@t )/ /) (7)o" — b/ X0 = | (R )X /")

m=0 r=0 m=0

Replacing @ with @/ yields A/[w]"/7 = (Joo_ (R /w!/9)[X/7"]. Since R is in-
tegral perfectoid, these descriptions imply that the absolute g-Frobenius morphism
A/[w]*1 = A/[w] is an isomorphism, so [5, Lemma 3.10(ii)] shows that A is inte-
gral perfectoid. From here, [5, Lemma 3.21] indicates that A[[;l]] = By [0,1] 000"
is perfectoid, as desired.

The claim shows that Yg, o, 1) is sousperfectoid. Because Vs is covered by Vg (0,1
and Vs [1,00], combining this with Lemma ii) indicates that )g is sousperfectoid.
Moreover, the above work identifies A” with RT(X'/?™) and hence identifies

(Vs,0.1] Xspao SpaOPe)?

with the closed perfectoid unit disk over S. Since ¢" induces an isomorphism
Vs,j0,1] = Vs,j0,q]> the same holds for (Vs [o,qr] Xspao Spa operty?, O
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3.11. As usual, relative Fargues—Fontaine curves enjoy the following “diamond
formula.” Because O” = O/, we get a natural morphism Spd © — N U {co}.

Proposition. The v-sheaves yfg [ and Spd O Xnu{se} S are naturally isomorphic

0,00)
over Spd O. Consequently, we get a natural continuous map |y57[0700)| —15].

Proof. For the first statement, let 7' = Spa(A, A™) be an affinoid perfectoid space
along with an untilt 7% = Spa(A*, A**) of T over Spa ©. A morphism 7% — Vs,[0,00)
over Spa @ is equivalent to an O-algebra homomorphism W (R™) — A* such that
the image of [w] is invertible in A*. By Proposition i), this is equivalent to an
O /7-algebra homomorphism Rt — AT such that the image of w is invertible in
A, i.e. a morphism of Huber pairs (R, R*) —(A4, A1) over O/7. This yields the
desired result. By [30, Lemma 15.6], the second statement follows from applying
|—| to the composition yg’[oyoo) = Spd O Xnu{oo} s g O

3.12. Relative Fargues—Fontaine curves are open-local in the following sense. Let
U be a rational open subspace of S.

Proposition. The morphism Yy [0,00) = Vs,0,00) S an open embedding, and its
image is the subset |y57[0,oo)| X9 |U| of |y5,[0,oo)|.

Proof. Write U = {|f;] < |g] # Oforalll < j < m} for some g, f1,..., fm in
R such that the ideal generated by fi,..., fi is open. Write Y(U) for the open
subspace {|[f;]| < |[g]| # 0 for all 1 < j < m} of Vg 9,), and note that the image
of Vi 10,00) = Vs,]0,00) lies in Y(U). The proof of Propositionshows that Y(U)°
is naturally isomorphic to Spd O xny{ee} U over Spd O, so [36, Lemma 15.6] implies
that [Y(U)] = [Vs,[0,00)| X5 [U].

Now Vu,j0,00) = V(U) equals the increasing union of its restrictions

Vu,jo,gr1 = YU) N Vs 0,475

where 7 runs over non-negative integers. Thus it suffices to prove that these re-
strictions are isomorphisms. Both sides are affinoid, so it suffices to check on global
sections, and because O is a direct summand of OP'f as topological O-modules, it
suffices to show that

V0.10,47] Xspa© Spa O™ —(V(U) N Vs, [0,47]) Xspao SpaOPt

is an isomorphism. Proposition indicates that both sides are perfectoid, so it
suffices to check after applying (—)°. Finally, this follows from Proposition O

3.13. Next, we turn to divisors on relative Fargues—Fontaine curves over O. Let
S —Spd O be a morphism over NU {co}, and write S* = Spa(RFf, R**) for the
associated untilt of S over Spa O.

Proposition. The O-algebra homomorphism 6 : W(R™) — R is surjective. Its
kernel is generated by an element of the form w+ [ww]a for some pseudouniformizer
@ of R and o in W(R™"), and ker @ induces a closed Cartier divisor S* < Vs,[0,00) -

Proof. Choose a pseudouniformizer @ of R such that @ divides 7 in R**. Since
W(RT) and R*F are [w]-adically complete, it suffices to check the surjectivity of
# mod [w]. There, # becomes RT — R*" /o which is surjective because R is
integral perfectoid.
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The fact that R!T is integral perfectoid also shows that there exists § in Rt
such that 8% = 7/w? (mod ), so w!Bf = 7 (mod whr). The surjectivity of § then
yields Y07 [rp]7™ in W(R') such that w?B* = 7 + win Y 07 i7", By setting
a =[] = >0 [ra]m™ T, we see that £ == 7 + [w] lies in ker 6.

Note that ¢ is not divisible by [w@], so W(R™')/{ remains [w]-adically complete
and [w]-torsionfree. Therefore, to show that the induced map W (R*)/& — R** is

an isomorphism, it suffices to check mod [w]. There, it becomes
W(RH)/(, [w]) = W(RY)/(m,[@]) = BT Jw — R [,

which is indeed an isomorphism.
Finally, suppose that £ [sn]7" for some >~ [s,]7™ in W(R™). Then

Z[Sn]w"'H = Z[sn]ﬂ" = §Z[sn]7r” =0 (mod [w]),

so the s,, are divisible by w. By repeatedly replacing the s,, with s, /o, this shows
that the s, = 0. Hence ¢ is a non-zerodivisor. Finally, by using Proposition |3.10
instead of [14, Proposition I1.1.1] and the fact that the tilt of S* — Spa O equals
S — N U {oo}, the proof of [14, Proposition I1.1.4] shows that the induced Cartier

divisor S* — Vs,[0,00) 18 closed. ([

3.14.  Write Divy for the v-sheaf Spd E over N U {oo}, and write ¢ : Divy, — Divy,
for the absolute g-Frobenius automorphism. By Proposition the S-points of
Div%/ naturally induce closed Cartier divisors S% < Yg. Note that ¢ sends S¥ — Yg
to its image under ¢ : Yg — Yg, so ¢ acts freely on Div%/.

Write Div§( for the quotient Div%/ /@%. Since ¢ acts totally discontinuously on
Ys, the S-points of Divﬁc naturally induce closed Cartier divisors S* — Xg.

Lemma. Our Div& —NU{oo} is representable in spatial diamonds and proper.

Proof. Because absolute ¢g-Frobenius is compatible with products and acts trivially
on underlying topological spaces, we have

’Divﬁ( xNU{w}S’ - ’Div%, XNU{OO}S’/((;S xid)” = ‘Div%/ XNU{OO}S‘/(id x)”.

Proposition indicates that Divi— XNU{oo} S = YS<> . Therefore the above implies

that Div& XNu{ec}S has an open cover by v-sheaves of the form yg_z for small

enough closed intervals Z in [1, ¢], so [36, Lemma 15.6] shows that Div’ XNU{oo} S 18
a locally spatial diamond. Similarly, we get a surjective continuous map |V (14| —
| Div Xnuoo} S, so the latter is qegs. Hence [36, Proposition 11.19 (iii)] shows that

Divﬁf XNU{oc}S s spatial, and properness follows from [36, Proposition 18.3]. O
3.15. Write (—)g, for the fiber product — xspar, SpdF,,.
Lemma. We have a natural isomorphism Spd = (Spd O)Fq over Spd O.

Proof. Note that O is m-adically complete, m-torsionfree, and satisfies

O/r = Cont(NU {oc},F,).
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Hence Proposition ii) implies that O = W (Cont(N U {o0},F,)), so a morphism
St — Spa O over Spa O is equivalent to an O-algebra homomorphism

W (Cont(NU {oc},F,)) — R**.
By Proposition i), this is equivalent to an O/m-algebra homomorphism
(O/m) @r, Fy = Cont(NU {oo},Fy) — RT.

Applying Proposition i) again shows that this is equivalent to an (O-algebra
homomorphism W (Q/7) — R** along with an F,-algebra homomorphism F, — R™.
Finally, Proposition [3.3}ii) implies that W(O/m) = O, and this yields the desired
result. O

3.16. To state the analogue of Drinfeld’s lemma in our context, we need the ana-
logue of the absolute Weil group for E. For all i in NU{oo}, write W; for the absolute
Weil group of E;/E;, write I; for its inertia subgroup, and write v; : W;/I; — Z for
the isomorphism that sends geometric g-Frobenius to 1. By repeating Definition
(except that we replace I'; /I with W; /I or I;/I") we obtain natural group
topological spaces W and I over N U {oco} whose fibers at ¢ are isomorphic to W;
and I;, respectlvely Note that W and T are lctd over NU {oc} as in Definition
View E as an E-subalgebra of C. Because O° = Cont(N U {c0},F,), we get
natural morphisms Spd C' — Spd E — N U {oo}ﬁ .
- 4

Proposition. We have a natural action of W on Spd C' over NU {oo}? such that
¢
Spd C' — Spd E induces an isomorphism (Spd C)/W g(Divk)Fq over NU {OO}F .

Proof. Arguing as in the proof of Lemma [2.14] shows that the maps
W—-Zx (NU {oo}) and W—T

over NU{oo} whose fibers at i equal W; — W;/I; 2+ Z and W; < T';, respectively,
are continuous. By checking on fibers, we see that they are morphisms of group
topological spaces over NU {o0}.

Corollary and [36] Lemma 15.6] imply that Spd C — Spd E is a I-torsor.
Therefore precomposing with W — T yields an action a of W on Spd C over NU {co}.
Since absolute ¢g-Frobenius ¢ is an automorphism of Spd C over N U {oo} that com-
mutes with a, it induces an action of Z x (NU {oc}) on Spd C' over N U {oc} that
commutes with a. By precomposing with W —7Z x (NU {oco}) and multiplying by
a, we get our candidate action of W on Spd C' over NU {oo}. .

Because the image of T under W — Z x (NU{oo}) is trivial, qthe restriction to I of
our candidate action equals a. Hence (Spd C')/I is naturally isomorphic to Spd E.
Under the identification Spd E = (Div%/)@q from Lemma we see that the

resulting action of W/I 5 Z x (NU {oo}) on (Div%/)ﬁq is induced by ¢ x idg . Thus
further quotienting by W/I yields an natural isomorphism (Spd C') /WQ(Divﬁ()@q,
as desired. 0
3.17.  'We conclude this section by proving some analogues of Drinfeld’s lemma in

our context. In this subsection, we work over Spd Fq. For any group topological
space G over NU {oo}, write BG for the v-stack NU {oo}/G. Proposition

shows that Spd C'— N U {oc} induces a morphism Div — BW.
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Let A be a ring that is f-power torsion.
Proposition. For all small v-stacks Z over NU {oc}, the pullback functor
Dt(Z Xnugoo) BW, A) = Det(Z Xnugoo) Divi, A)
is fully faithful. Moreover, it is essentially surjective when the pullback functor
D¢ (Z,N) — D (Z Xnu{oc} SPAC, A)
is essentially surjective.

Proof. Note that NU {c0} = BW and Spd C' — Divﬁ( induce simplicial v-hypercovers
W* — BW and W*® Xyyfooy SpdC — Div, respectively, and this yields a commu-
tative square

Dét(Z XNU{co} BW, A) R — Dét(Z XNU{oo} W', A)

J J

Dét(Z XNU{oo} Divﬁ(, A) — Dét(Z XNU{oo} W. XNU{oo} Spd O, A)

The top and bottom functors are fully faithful by [36, Proposition 17.3]. Proposition
identifies Spd C' with NU {co} X SpaC, so applying [36, Theorem 19.5 (ii)]
to F, < Cs shows that the right functor is also fully faithful. Therefore the left
functor is fully faithful, which yields the first statement.

For the second statement, consider an object of Dgt(Z Xnufoo} Divﬁ(,A), and

write A for its image in D¢t (Z Xnufoo} W* Xnufoo} SPAC,A). Then A is carte-

sian, and by assumption its @ = 0 part lies in the image of D¢ (Z,A). Since the
right functor is fully faithful, this shows that A arises from a cartesian object of
De(Z Xnugooy W, A), so [36, Proposition 17.3] indicates that A lies in the essential

image of the top functor, as desired. ([l

3.18. In this subsection, we work over Spd?q. For any small v-stack Z over
N U {co} and finite set J, write Z7 for the J-fold fiber power of Z over N U {oo}.

Corollary. For all small v-stacks Z over NU {oo} and finite sets J, pullback
Die(Z Xnufoo} BWY, A) = Dic(Z Xnujooy (Divk)7, A)
is an equivalence of categories.

Proof. By induction on #.J, we can assume that #.J = 1. Full faithfulness follows
from Proposition [3.17} so we focus on essential surjectivity. Now full faithfulness
and descent [36, Proposition 17.3] indicate that, after replacing Z with a v-cover,
we can assume that Z is strictly totally disconnected. Then Lemma|3.14|shows that
Z XNU{oo} Div is a spatial diamond. Hence [36, Proposition 20.15] implies that,

after replacing Z with a connected component, we can assume that Z is a geometric
point. Finally, the image of |Z| in N U {oo} equals {i} for some i in N U {oo}, so
the result follows from Proposition and [14, Proposition IV.7.3]. (]
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4. LUBIN-TATE THEORY

In this section, we develop a version of Lubin—Tate theory over E. We begin
by using our generalization of Witt vectors to construct an analogue LT over O of
Lubin—Tate formal group laws, as in work of Fargues—Fontaine [13]. This yields a
natural choice of coordinates for LT, which we use to explicitly define an analogue
of the logarithm map. We also show that LT satisfies the expected relationship
with the Lubin-Tate extensions defined in

This version of Lubin—Tate theory has the following consequences. First, after
computing the global sections of &x,(1) on Xg using Witt bivectors as in work of
Fontaine [15] and Fargues—Fontaine [13]E| it lets us reinterpret sections of Ox (1)
in terms of Divy. Second, it lets us prove that the morphism Divi — N U {co} is
cohomologically smooth of dimension 1, which will be needed in

4.1. Recall that Spec yields an anti-equivalence from the category of (O-algebras
A where 7 is nilpotent to the category of affine schemes over Spf O. Write W for
the infinite-dimensional formal disk over Spf O whose A-points equal

{(ag,a1,...) € W(A) | the a; are nilpotent, and cofinitely many a; are zero}.

Note that V' preserves w. Also, for all non-negative integers j, we see that the
polynomials that compute the j-th coordinate of O-module operations on W are
homogeneous of degree ¢’, where T has degree qj’j/ for all 0 < 5/ < 7, so W is
naturally a formal O-module.

Write LT for the O-module object coker(V —1 : W W) over Spf 0. By the
discussion on [13] p. 158-159], we have an isomorphism Spf O[X,] = LT of sheaves
over Spf O given by sending ag — [ag], so LT is a 1-dimensional formal O-module.
Moreover, for all ¢ in NU {oo}, Proposition and the discussion on [I3], p. 156—
158] show that LT Xgpr 0 Spf O; is a Lubin—Tate formal O;-module LT; over Spf O;;
in particular, the element f, of O[X,] that computes multiplication by 7 on LT
satisfies fr = X{ (mod 7).

4.2. View LT as the pre-adic space Spa O[Xy]. Write (—)g for the fiber product
— Xgpao Spa E, and note that LT g is isomorphic to the open unit disk over Spa F.
Recall from the group topological space Q. over NU {oo}.

Our formal group LT is related to the E-algebras E¥T'" from as follows.

Proposition. For all positive integers n, multiplication by ©™ yields a finite étale
cover LTg — LT g of degree q™. Its kernel LT g[n"] is the finite étale cover of Spa E
corresponding to OQ,, via C’orollary where T' acts on @y, throughT —T" = Q).

Proof. Note that LT equals the increasing union of open subspaces

LT = | Spa E(Xo, X /),
r=1
where each Spa F (X, X[ /7) is preserved by multiplication by 7™ on LT g. Because
the element frn of O[X(] that computes multiplication by 7™ on LT satisfies frn =
X¢ (mod ), the analogue of Weierstrass division for F (X, X[ /) implies that
the resulting map E(Xo, X{/7) — E(Xo, X(/m) is finite free of degree ¢.

6Seefor the definition of the line bundle Oy, (1) on Xg. In particular, there is no circularity.
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To show that E(Xo, X{/7) — E(Xo, X{ /) is étale, Lemmal[2.7)indicates that it
suffices to check after applying —®g E; for all ¢ in NU{oo}. Now LT g Xgpa g Spa E;
is isomorphic to LT; X gpa 0, Spa Fj, so this follows from Lubin-Tate theory over E;.
Similarly, Lubin—Tate theory over E; yields the desired description of LTg[r"]. O

4.3. Next, we consider the “universal cover” of LT in the sense of [37, p. 170].
Write LT for ILmn LT, where n runs over non-negative integers, and the transition
morphisms are given by multiplication by 7 on LT. As in identify the n-th
copy of LT with Spf O[X,]. Since multiplication by 7 on LT is invertible, LT is a
formal E-module over Spf O.

Write O[X1/4™] for the m-adic completion of Uz, o[x/.

Lemma. We have an isomorphism ﬁ%SpfO[[)?l/qoo]] of formal schemes over

Spt O given by sending (an)n>0 — (limnﬁoo a‘}ln_T)TZO.

Proof. Note that LT = Spf B, where B denotes the m-adic completion of h_H)ln o[X,.],
and the transition maps send X,, — fr(X,+1). For any non-negative integer r, we
claim that the sequence (X¢" "),>, converges in B. To see this, observe that

X, = fo(Xn41) = X2, (mod ) implies that X¢" " = X7, (mod 7"+1-7),
which yields the claim.

The claim indicates that sending X — lim,, o0 Xg" induces a map of O-algebras
O[X'/47] - B. Since O[X'/7™] and B are 7-adically complete and 7-torsionfree,
to show that O[[)?l/ff”]] — B is an isomorphism, it suffices to check mod 7. There, it
becomes the map of O /m-algebras | J°°,(O/m)[ XY/ ] — U, (O/m)[X;/*"] given

by sending X — X, which is indeed an isomorphism. [

4.4. Using our choice of coordinates for LT g from we can explicitly define its
logarithm as follows. By the proof of [I3, Proposition 4.3.1], we have a morphism
of O-module objects log : LT — G5" over Spa E given by sending

o0

q"

ap = Y aj/m
r=0

Note that log sends {|Xo| < |7|} C LTg to {|X]| < |x|} C G2

Proposition. The induced morphism log : {|Xo| < |7|} ={|X| < |7|} is an iso-
morphism. Consequently, we get a short exact sequence
> 1
O
0—— | J LTg[r"] LTg —= Gan 0,

n=1

where log s étale-locally surjective.

Proof. Since the power series > oc (79 /n" lies in T - E[T] and has linear term 7,
it has a compositional inverse exp in T - E[T]. Expanding the coefficients of exp
shows that it lies in E(T'/7), so the morphism given by sending a — exp(a) induces
the desired inverse to log : {|Xo| < |7|} ={|X]| < |7|}.

We turn to the short exact sequence. By checking on fibers over Spa E, we see
that, for all positive integers m, the intersection of {|X0|qm71(q_1) < x|} C LTg
with (J,2, LT g[7"] equals LT g[x™]. This implies that |J,- , LTg[n"] - LTg is a
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closed embedding. Similarly, checking on fibers indicates that |J;- ; LT g[r"] is the
kernel of log.

To show that log is étale-locally surjective, let a be an (A, AT)-point of G3".
Because Spa(A, AT) is compact, the image of a lies in {|X| < || """} C Ga»
for some positive integer n, so 7™a lies in {|X| < |7|}. The invertibility of log
on {|X| < |n|} lets us lift 7™a to an (A, AT)-point py of LT, and Proposition
indicates, after replacing (A4, AT) with a finite étale cover, that there exists an
(A, AT)-point ag of LT g satisfying fr=(ag) = po. Since log is O-linear, we get

7" log(ao) = log(fx~(a0)) = log(po) = "a,

and the invertibility of 7 on G2" indicates that log(ag) = a, as desired. O

4.5. Using the identification from Lemma view LT as the pre-adic space
Spa O[X/4™]. Write log : LT g — G2 for the composition LT g ~-% LT Log, Ga".

Corollary. We have a short exact sequence

log

0—— lim ( G LTE[wm]) [Tp Ga» 0,
n m=1

where f&g 18 pro-étale-locally surjective.

Proof. Proposition [4.2]identifies | J)-_, LT g[r™] with the disjoint union

(ﬁ SpaELT’]) [ISpakFE.

Jj=1

Under this identification, multiplication by 7 on LT restricts to the morphism
o0 o0
U LT[ = | LTg[x"™]
m=1 m=1

that sends Spa E to Spa E and Spa E*T+J to Spa E¥T~1! via the natural morphism
Spa E¥T7 — Spa EYT9~1 where EFT:0 denotes E. In particular, this is surjective.
Since multiplication by m on G" is invertible, we can identify lim GZ" with Gg"
via pry. From here, taking l'mn of the short exact sequence from Proposition
and applying the Mittag—Lefller criterion yield the desired result. ]
p=m
5,[1,00]
Write BW (R*) for the O-module im BW(R" /w™), where m runs over positive

integers. Note that we can identify BW (RT) with the set of double sequences
(...,a—1,0a0,a1,...) in R" satisfying limsup,,_, _ ||an|| < 1. Therefore we have

4.6. We now use Witt bivectors to compute B , as in [I3] Proposition 4.2.1].

an O-linear map W(R*) — Bg,[1,00] given by sending
(...,a-1,a0,a1,...) Z[a}/qn]wn.
neL

For all i in NU {oo}, write S; for the fiber of S — NU {oc} at {i}. Note that
S, is affinoid perfectoid; write S; = Spa(R;, R}), and for all r in R, write r; for its
image in R;.
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Proposition. The map BW(R') — Bg 1, is injective, and it induces a bijection
BW (R)%=" %5 BE}

S,[1,00]"

Consequently, the map @ . _,[a'/9"|x" yields a bijection R°® =5 BE

neZ 3[1,00]"
Proof. First, suppose that Znez[ayqn]ﬂ” = 0 for some (...,a_1,a9,a1,...) in
BW(RY). Then its image in Bg, |1 00) is 0, and Proposition shows that this

image equals Znez[ai{ iqn]ﬁ?. Hence [13], p. 95] indicates that a,; = 0 for all n in

Z. As i runs over NU {co}, [38 Theorem 5.2.1] implies that a,, = 0 for all n in Z.
Next, write [@!/?”] for the ideal of Bg 1, generated by [w'/?] for all non-
negative integers r. We claim that reduction mod [wl/ qm] induces an injection

B o) = (Bs .00/ [0 )P,

and precomposing with BW (RT)#=" < Bg?foo] yields a bijection. For injectivity,
suppose that z in Bngﬂ—oo] lies in [@@!/9"]Bg [ o) for some non-negative integer r.

Then z = 7~ *k(x) lies in [quﬂ‘]B&[lm] for all non-negative integers k, so taking

k — oo shows that = 0.

For bijectivity, note that W (R")[L] surjects onto Bg,[1,o0)/[/?" ]. Therefore it
suffices to consider Z in W(R*)[2] such that y := 71 (Z)—Z lies in [@"/? | Bg [1 o)
Then y also lies in W(R*)[1], so y even lies in [w!/4" ]W (R*)[1]. Hence ¢*(y) lies
in [qu_r]W(Rﬂ[%]. Because the m-adic valuation of 7~*¢*(y) decreases linearly

in k and we have
nm DG (E) — 7 R (@) = 7R (@) - ) = 7RO (),

this shows that z := limy_,oo 7 *@"(Z) = T+ 5oy ™ F¢"(y) converges in W(R*).
By construction, = lies in BW (R+)?=" and satisfies z = & (mod [@/9”]), which
yields the claim.

The claim yields the first bijection. For the second bijection, note that 7 = oV
implies that W(R‘*)Wzﬂ equals the set of constant double sequences (..., d,a,a,...)
satisfying ||al| < 1. Now {@ € R™ | ||a]| < 1} equals R°°, as desired. O

4.7. See for the definition of the line bundle O'x,(1) on Xg. Let us interpret
Proposition in terms of Ox (1) and LT as follows. Write (=)o, for the fiber

product — Xgpa o Spa(O/7). Lemma identifies ﬁo/ﬂ and LT 5 with the open
perfectoid unit disk over Spa(Q/m) and Spa E, respectively.

Corollary. Under the identification from Lemma[].3,

i) the map @ — Y, ,[a? ]/ induces an E-linear bijection
LT(8) 5 HO(Xs, 0x5 (1)),

i) the map log : LT — G2 sends (@7 ),50 = D orez a? /7" on (A, AT)-points,



36 SIYAN DANIEL LI-HUERTA

i) for all untilts S* = Spa(Rﬁ,RH) of S over Spa E, the square

L) HO(XS’ ﬁXs(l))

.

[T(sh) — Rt

commutes, where the left arrow is R°° = @T(Rﬁ)"", and the right arrow is
given by pullback to the closed Cartier divisor S* < Xg from .

Proof. For part i), we identify H°(Xg, Ox (1)) with Bgi’foo} by Proposition
Bijectivity follows from Proposition and E-linearity follows from the proof of
[13, Proposition 4.4.5].

For part ii), let (a,)n,>0 be an (A, A*)-point of LTy. As log is O-linear, we get

log(ag) = log(frn (an)) = 7" log(ax) Z al "
for all non-negative mtegers n. The proof of Lemma [4.3| indicates that

grtntt

a% YnT = al /7" (mod 7r"+1),

so taking lim,,_,, shows that

oo
log(ao) = nh_{go Z GI?LT.+7L/7TT _ Znh_{go ag;'#»n /71'7" _ ZaqT/ﬂ'r-

r=—n reZ re’l

This yield part ii). Finally, because the composition R°° = @T(Ru)oo Pho Rt equals
(—)¥, part iii) follows immediately from part ii), part i), and the description of # in

Proposition [3.3]i). O

4.8. Next, we turn to study E“T. For this, we use the following analogue of bases
for the Tate module of Lubin—Tate formal groups.

Lemma. There exists a sequence (tn)n>1 in (EYT)°° such that, for all positive
integers n,

LT,1 LT,n

e 11 generates over E, and t, 1 generates ELTnt1l oper
tn lies in (E¥T)°° we have fr(tn41) = t,, and we have fr(t1) = 0.

Proof. Note that f, is divisible by Xy, and f./Xo = Xg_l (mod 7). Therefore
[29, Chapter IV, Theorem 9.2]|Z| yields a monic polynomial g; in O[Xy] such that
fr/Xo = u1g1 for some unit u; in O[Xy]. Since fr = Xouig1, one can use [29]
Chapter IV, Theorem 9.1] to identify LT g[n] with Spa E[X,]/(X0g1), which iden-
tifies LT p[r] — {0} with Spa E[X,]/g:. Proposition [4.2]identifies LT g[r] — {0} with
Spa E¥T1 50 the image t; of Xy in EVT! is a generator over E. By checking the
image of ¢; in EiLT’1 for all i in NU {co}, we see that ¢; lies in (E¥T1)°° which lets
us evaluate fr(t1) = tiui(t1)g1(t1) = 0.

To inductively obtain ¢,,1; from ¢,, note that f —t, = XJ (mod ¢,). Therefore
[29, Chapter IV, Theorem 9.2] yields a monic polynomial g,y in (E¥T")°[X,]
such that fr —t, = Up11gns1 for some unit u,4q in (E¥T7)°[X,]. Arguing as in

"Note that [29) Chapter IV, Theorem 9.1] and [29, Chapter IV, Theorem 9.2] hold for any ring
o and ideal m C o such that is m-adically complete (with the same proofs).
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the proof of Proposition [4.2| identifies E¥T'"+1 with EYT%[X(]/g,41, so the image
tnp1 of X in BVt ig a generator over EVT"". By checking the image of ¢,
in EFT" for all i in NU {00}, we see that #,41 lies in (EYT"+1)°° which lets us
evaluate fr (tn+1) = un+1(tn+1)gn+l(tn+1) +tn =ty U

4.9. Fix a sequence (t,),>1 as in Lemma For all ¢ in NU {co}, write ¢, ; for
the image of ¢, in EILT" Recall from the topological field EP°, and note
that E2° equals the completion Fy(t1/97) of (o, Fy(t1/9")).

Proposition. The ring EYT is perfectoid, and our choice of (tn)n>1 induces an
identification (E"T)” = Cont(N U {oc}, ERT) such that 7t = lim, o t2".

Proof. Since 7 is a multiple of ¢, and t = fr(t2) = t1 (mod =), we see that t3 is a
unit multiple of ;. Now (EX)° = O and we have

OLT/tl — @(ELT,n)O/tl = h_n}hg H OELT,n/tLi X OEI;QT,n/tLOO,
n n d i<d ‘
where d is large enough with respect to n. Because h_I)nn OEPT,n/t17i = Oprr [t1i,
switching the order of the direct limits yields
hg%n H OE;T,n/tLi X OEg;T,n/tl’oo = hérl H OELT/tl,i X OEI;OT/tLOO'
d n i<d ‘ d i<d

Replacing t; with t5 yields O¥/ty = @d Higd Oprr [ta,; X Opur /t2,00- Since Oprr
is integral perfectoid, these descriptions imply that the absolute g-Frobenius map
O/t — 0¥/t = OF1/t, is an isomorphism, so ET is perfectoid.

We have 7' = f.(t)/t1 = 0 (mod 7) and thi1 = fr(tng1) = t, (mod ).
Therefore our choice of (t,),>1 induces an identification

@WW=GKWWW“”“Wﬁ=QMOWHwLOFﬁW“W*WO

where t1/4" " (a=1) equals the image of ¢,,. Taking the inverse limit perfection yields
(OYT)’ = Cont(N U {oc}, (ERT)°),

oo

where 7o, equals (..., tY/2@=1) ¢1/(@=1) 0) in the inverse limit perfection of OVT/x.
This implies the desired description of (ELT)b. Finally, because the sequence
(...,t2,t1,0) in OYT is a lift of the sequence (..., Y= 1/(a=1) () in OV /7,
we see that wgc =lim, o t%", as desired. [l

4.10. At this point, we can explain the relationship between Ox (1) and divisors
on Xg. See(5.2|for the definition of the E-module v-sheaf BC(€(1)) over NU {co}.

Proposition. Our choice of (t,)n>1 induces an isomorphism over N U {oo}
Spd E¥ S Bc(0(1)) — {0}.

Proof. Since fr(t1) = 0 and fr(tn4+1) = t,, for all positive integers n, our choice of

(tn)n>1 induces a morphism Spa E'T — LT. Therefore precomposing with an untilt
Sf = Spa(Rf, R*) of S over Spa E'T yields an element of

LT(5%) = LT(S) 5 HO(Xs, Ox5 (1)),
and this induces a morphism Spd EXT — BC(&(1)) over N U {oo}.
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Proposition[d.9|shows that E'T is perfectoid. Moreover, Proposition[4.9]identifies
Spd EXT = Spa(ET)” = Spa Cont(N U {oc}, EPST),

and under the identification from Corollaryi)7 the morphism Spd E¥T — BC(0/(1))
sends S* — Spa E*T to the image of 7o in R. Hence the image of this morphism lies
in BC(0(1)) — {0}. Corollary [A.7}i) even identifies BC(€(1)) — {0} with the punc-
tured open perfectoid unit disk Spa Cont(NU {oo}, Fy(X1/77)) over N U {0}, and
Spd EXT — BC(0(1)) — {0} corresponds to the map of O/r-algebras

Cont(N U {oo}, Fy(X/97)) = Cont(N U {oc}, )
that sends X — 7. This is indeed an isomorphism. O

4.11. Let o be an S-point of BC(£(1)) — {0}. By Proposition o corresponds
to an S-point of Spd EXT, whose image under Spd E*T — Divy — Divﬁ( naturally
induces a closed Cartier divisor S* < Xg by

Proposition. We get a short exact sequence
0—— Oxy —2— Ox (1) —— Ogs —— 0
of sheaves on Xg.

Proof. Write #g: for the ideal of Ox, corresponding to the closed Cartier divi-
sor S* < Xg. Note that the morphism Spa ELT —>ﬁ‘E induced by our choice of
(tn)n>1 lies in the kernel of log, so Corollary iii) indicates that the image of
0:0xs— Oxy(1) lies in Fgx(1).

Since Zq¢ (1) is a line bundle, to show that o : Ox, — Fg:(1) is an isomorphism,
it suffices to check after pulling back to geometric points 5 of S. Now the image of 5
in NU {00} equals {i} for some ¢ in NU {00}, so the result follows from Proposition
and [14, Proposition 11.2.3]. O

4.12. We want to use our study of Spd E*T to prove that Divi —NU {oco} is
cohomologically smooth of dimension 1. This requires the following generalization
of [36, Lemma 10.13], which will also be useful later. Let G be a group topological
space over NU{oo} that is lctd over NU{oco} as in Definition[I.2} and let {K*}, be
a family of compact open group subspaces of G over NU {oo} satisfying Definition

=)

Lemma. Let S— S be a G-torsor in the category of v-sheaves. For all c, the
morphism K\G x& S — S is separated étale, and the natural morphism

~ N ¢z
S—lim K*\G x= S
is an isomorphism. Consequently, S—Sisa pro-étale cover and universally open.

Proof. First, assume that S is the trivial G-torsor G XNU{oo} S+ Lemma implies

that the étale topological space K*\G over NU {oco} is Hausdorff, so the morphism
KNG X8 = KN\G xufoc) § =

is separated étale. Moreover, Definition a) indicates that G — yLna K*\@G is an

isomorphism, so the same holds for S — yila Ko‘i\G x<¢ S = l'&na KNG XNU{oc} S.
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In general, S is trivial after replacing S with a v-cover, so the above and [36]
Proposition 10.11 (iv)] show that K*\G x& S — S is separated étale in general.
Because isomorphisms of v-sheaves can be checked after a v-cover, the above also
shows that S — %igla K°\G x% § is an isomorphism in general.

The presentation S = @a K\G x¢ S implies that S—Sisa pro-étale cover.
Since the morphisms K*\G xES S are universally open and every open subspace

of S arises via pullback from K*\G x< S for some «, this also indicates that S8
is universally open, as desired. ([l

4.13. We also need the following variant of [36, Proposition 24.2]. Write (O*)™
for the kernel of 0 — Q). Note that O* is lctd over NU {co}, and {(0*)"},,>1
forms a family of compact open group subspaces of @* over N U {00} satisfying
Definition [1.2}a).

Let f: Z' — Z be a morphism of small v-stacks over N U {oo}, and let

QN xy 72/ =27

be a free action of (0*)! on Z’ over Z. For all positive integers n, write

fQX n
VA In Z//(@X)n ©* VA

for the natural morphisms. Let A be a ring that is ¢-power torsion.

Proposition. If f is representable in locally spatial diamonds, separated, and co-
homologically smooth, then the same holds for fgx)1. Moreover, there is a natural

transformation g7 — q!1 of functors

Det(Z'/(0%)', A) = Dat(Z', A)

such that qff(!@x)1 —>q!1f(!©x)1 = f' is an isomorphism.

Proof. Let S— Z be a morphism over NU {oo}. Then S xz Z’ is a locally spatial
diamond, S x z Z/(0*)! is a diamond, and S xz Z' — S x z Z/(0*)! is an (0*)'-
torsor. By replacing S x 7 Z/(0*)! with a v-cover by an affinoid perfectoid space,
we can use Lemmato see that Sxz 72" — Sx 4 Z/M is open, so [30, Lemma
2.10] and [36], Proposition 11.15] imply that S xz Z/(0*)! is locally spatial.

The separatedness of f(gx)1 follows from [36, Proposition 10.9]. Note that the

Z -
relative compactification Z'/(0* )1/ is naturally isomorphic to (Z’/Z)/(@X)l, and
arguing as above shows that

7| = 7))

is a quotient map. Because f is compactifiable, this implies that fgx) is compact-
ifiable.

Next, we turn to our candidate for ¢ —>q!1. Since ¢; is proper, it suffices to
construct a natural transformation ¢i.q7 —id. For all positive integers n > m,
write gn,m : Z'/(0*)" = Z' /(0*)™ for the quotient morphism, which is finite étale
of degree ¢"~™. Lemma identifies ¢; with mn Qn,1, SO G1+qi is naturally
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isomorphic to hﬂn dn1x4y, 1. Because gni1., is finite étale of degree g, the trace
natural transformation try, : gn,1.q;, ; — id satisfies the commutative square

In+1,15004+11 — Gn, 155 1

Jtrnﬂ»l Jtru

id —5id.
Hence taking h%mn of ¢7™ tr,, yields a natural transformation ¢.¢7 — id.

We claim that the natural transformation g3 f(!(@x)1 — f' is an isomorphism. To
see this, after replacing Z with a v-cover, we can assume that Z is strictly totally
disconnected. Then Z is a locally spatial diamond, and since the claim is open-local
on Z', we can assume that Z’ is spatial. Because Z is strictly totally disconnected,
[36, Proposition 20.17] indicates that it suffices to show that

(1) Hom(B, ¢ f{gx)1 A) — Hom(B, f'A)
is an isomorphism for all B in Dg; ,.(Z', A) and A in D¢ (Z, A). Lemma identi-
fies Z’ with lim Z'[(0*)™, so [36], Proposition 20.15] implies that B is isomorphic
to ¢, By, for some positive integer m and By, in Dg pe(Z'/(0*)™, A). Therefore
the left-hand side of ({{) becomes
Hom(Q;LBma q{ f(ltl)>< )t A)
= HOIH(Bm, Qm*qif('@x)lA)

= Hom(By, i gn,m 5y 1.f{g 11 4) since B Gnmsd), 1~ Gt
= hgnn Hom(B,,, qn,m*qj;’lf(l@x)lA) by [36l, Proposition 20.10]
= hﬂn Hom(B,,, qn,m*thf(lgx)lA) because gy, ;1 is étale
= h%nﬁln HOH’I(Bm, Qn,m*f(!@x )'n.A)

= h_r)nn HOHI(f(@X )"!qz,mBWH A)’

where n runs over positive integers satisfying n > m. Next, note that

N1B = fox)ym1qmiGm Bm = f(0x)ym1@m+0m Bm because ¢, is proper
= hgln f(@>< ym1dn,mx q;,mBm since @n Qn,m*qz,m = Qm*qa
= hﬂn J@xym1qn,m % mBm because ¢y, is finite

= lim  f(o)"1q5,mBm,
and the transition morphisms in the directed system { fgx )71,q;7mBm}n have split-
tings given by normalized traces as above. Since f is quasicompact cohomologically
smooth, fiB lies in D¢ (Z,A) by [36, Proposition 23.13 (ii)], so [36, Proposition
20.17] implies that the directed system {fx)n1q;; ,, Bm}n is eventually constant
with value fiB. Therefore the left-hand side of ([{) becomes

lim Hom(f(ox)ma} 1B, A) = Hom(fiB, A) = Hom(B, f'A),

which is precisely the right-hand side of . This yields the claim.

To show that f(gxy1 is cohomologically smooth, [36, Proposition 23.15] indicates
that, after replacing Z with a v-cover, we can assume that Z is strictly totally
disconnected. Then it suffices to check condition (iii) in [36, Proposition 23.4], and
this follows from the claim and applying [36, Proposition 23.4 (iii)] again to f. O
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4.14. The proof of Lemma shows that W(O/7) = O, so the composition
F, < Cont(NU {00}, F,) 2 O/n b w(0/m) = 0

induces a morphism F* x (NU{oo}) — Q™ of group topological spaces over NU{oo}.
By using profinitude and checking on fibers, we see that the induced morphism

F; X (NU {OO}) XNU{oo} (@X)l — 0%

of group topological spaces over NU {oco} is an isomorphism.
We conclude this section by proving the promised smoothness result.

Corollary. Our Divﬁ( — N U {oo} is cohomologically smooth of dimension 1.

Proof. Proposition identifies Spd E¥T with the punctured open perfectoid unit
disk over NU {oc}. This identifies Spd EXT XNU{oo} SPd C' with the punctured open
perfectoid unit disk over Spd C, so Spd BT XNU{oo} SPA C' — Spd C' is cohomolog-

ically smooth of dimension 1.
Corollaryand [36, Lemma 15.6] imply that Spd EXT — Spd E is an O*-torsor.

Therefore Spd BT —(Spd ELT)/IFqX is a finite étale cover, so the above and [36]
Proposition 23.13] show that (Spd ELT)/IF; XNU{oo} SPd C'— Spd C' is cohomolog-
ically smooth of dimension 1. Since (Sp?ELT)/Fg — Spd EYT is a (0*)'-torsor,
Proposition indicates that Spd ' Xnu{s} SpdC' — Spd C' is cohomologically

smooth of dimension 1. From here, Lemma and [36, Proposition 23.15] im-
ply that Spd E — N U {oo} is cohomologically smooth of dimension 1. Finally, the

proof of Lemma shows that the same holds for Divy — N U {oo}. O

5. VECTOR BUNDLES ON FARGUES—FONTAINE CURVES

In this section, we study vector bundles on Xg. First, we prove that they satisfy
v-descent with respect to S. Next, we define the analogue of absolute Banach—
Colmez spaces over F, and we use results from §4]to prove various facts about them.
We also define general Banach—Colmez spaces over E, and we use an ampleness
result to extend the aforementioned facts to this setting. Finally, we apply these
facts to prove properties about the Harder—Narasimhan filtration in our context,
as well as to generalize a theorem of Kedlaya—Liu [26].

5.1. Let & be a vector bundle on Xg. Write BC(&") for the presheaf of E-modules
on Perfp, over S whose S’-points equal H°( X, Elxg )

Proposition. The presheaf of categories on Perfr, over NU {oco} given by
S +— {vector bundles on Xg}
satisfies v-descent. In particular, BC(&) is a v-sheaf.

Proof. Because X5 = Yg/¢?, vector bundles on Xg are equivalent to vector bundles
on Yg equipped with a (-semilinear automorphism. Therefore it suffices to prove
that S — {vector bundles on Y} satisfies v-descent. Let S’ —.S be an affinoid
perfectoid v-cover. Since Ys = (J; Vs z, where 7 runs over closed intervals in (0, c0)
with rational endpoints, it suffices to prove that vector bundles satisfy descent with
respect to Vs 7 — Vs 1.
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Let &’ be a vector bundle on Vg 7 with a descent datum « with respect to

Vs 7 — YVsz. Pullback yields a vector bundle &' on YVs' .7 Xspao© Spa orert with
commuting descent data & with respect to
Vs .1 Xspa o SpaOP™ — Vg 7 X gpa 0 Spa OPf
and B’ with respect to Vs 1 Xgpa© Spa operf Vs 1.
Proposition indicates that the V_ 7 Xgpa o Spa Orerf are affinoid perfectoid.
Hence [38, Lemma 17.1.8] enables us to descend (£’,&) and (f’,@) to a vector

bundle & on Vs 1 Xspao Spa Orerf with a descent datum /3 with respect to
Vs.7 Xspao SpaOPt — Vg 7.

Because O is a direct summand of OP*™f as topological O-modules, [40, Tag 08XA]
and [40, Tag 08XD] enable us to descend (&, ) to a vector bundle & on Vg 7. This
yields the desired result. U

5.2. Next, we study the analogue of absolute Banach—Colmez spaces in our con-
text. Let A be a rational number, and write A = § for coprime integers c¢ and d
such that d is positive. Write Ox () for the rank-d vector bundle on Xg given by
descending 6’;‘,9: along Y — Xg via

d
o %4,

1

and write BC(O())) for the presheaf of E-modules on Perfg, over NU {oo} whose
S-points equal H?(Xg, Ox4(\)). Since Ox4(\) is compatible with base change in
S, Proposition [5.1] implies that BC(&())) is a v-sheaf.

Proposition. If \ is positive, then H°(Xg, Ox(\)) is naturally isomorphic to
B and HY(Xg, Ox4(N\)) is zero.

:T(‘C
S,[1,00]’
Proof. By repeating the construction of F (except that in we replace F, with
Fqa, and we replace E; with its corresponding unramified extension), we obtain
a topological ring E?. Write Xg(E?) for the adic space associated with E? as
in By construction, we have a degree d finite étale morphism Xg(E9) — Xg
given by quotienting by ¢, and Ox()) is the pushforward of O'x(gay(c). Therefore
Shapiro’s lemma lets us assume, after replacing £ with E¢, that A = c is an integer.

Note that Xg is obtained from Vg1 4 by using ¢ to glue Vg1 %ys,[w].
Because the Vg 7 are affinoid, we see that RI'(Xg, Ox,(c)) is quasi-isomorphic to

p—7°
Bs,[1,q) — Bs,j11)-
We claim that restriction yields a quasi-isomorphism to this complex from
p—7°
Bs [1,00) = Bs,[1,00]-

To see this, recall from [3.9] the topological ring W/(RT). Now SpaW’'(R*)[1] is
covered by the rational open subspaces

{Im| < |[=l| # 0} and {[[w]| < |«| # 0},
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and the proof of Lemma ii) shows that the global sections of the latter equals
Bs[1,00)- Arguing similarly shows that the global sections of the former equals
BS,[OJ][%], and the global sections of their intersection equals Bg 1 1). Using the
two-sided 7-adic expansions of elements of Bg |1 1], we see that the difference map
Bgs0.1][2] X Bg,[1,00] = Bs,1,1) is surjective, so Lemma i) yields a short exact
sequence

0 —— W(R")[%] —— Bs,j0,1][£] X Bs,1,00) — Bs,j1,11 = 0.

Replacing {|7| < |[w]| # 0} with {|7?| < |[ew]| # 0} instead yields

0 —— W(R)[L] — Bg j0,q[%] X Bs 1,060 — Bs,[1,q — 0,
and ¢ —7° induces a map from the bottom row to the top row. By the snake lemma,
it suffices to see that the maps W (R™)[2] - W (R")[1] and Bg,9,q — Bs,j0,1] are
isomorphisms. Now Y °_ 7m™¢p converges on W (RT)[2] and Bg o1}, which
provides the inverse to ¢ — ¢ on W(R¥)[L] and Bg [ 1. This yields the claim.
The claim yields the first statement. For the second statement, note that Bg |1 o
is spanned by W (R™)[1] and [e] Bg [1 o], and the above work shows that W (R™)[2]

s

—1-m

lies in the image of ¢ — 7¢. Now — >_>°_ w(=1=m)epym converges on [@]Bs,1,00]5
which implies that [@]Bg [1 o] also lies in the image of ¢ — 7°.

5.3. Proposition. Let A be a rational number.
i) If \ is positive, then the morphism BC(O(X)) = NU {oo} is representable in
locally spatial diamonds, partially proper, and cohomologically smooth.
it) If X is zero, then BC(O(X)) is naturally isomorphic to E, and the pro-étale
sheafification of the presheaf on Perfr, over NU {oo} whose S-points equal
HY(Xs,Ox,(\) is zero.
iii) If \ is negative, then H°(Xg, Ox4()\)) is zero.

Proof. The proof of Proposition lets us assume that A = c is an integer. Under

the identification from Corollary i), any pseudouniformizer of R yields an S-
point o of BC(&(1)) — {0}. By Proposition [4.11] we get a short exact sequence

0—— Oxy —2— Ox (1) —— Ogs —— 0

of sheaves on Xg, where S¥ < X is the closed Cartier divisor from associated
with the image of o under BC(€0(1)) — {0} = Spd E*T — Divy, — Div). Since the
pullback to Ys of Ox(1) is trivial, the same holds for S*, so twisting by Ox,(c)
yields a short exact sequence

(>) 0 —— Oxgy(c) —2— Oxs(c+ 1) —— Ogs — 0.

First, suppose that c is positive. If ¢ = 1, the result follows from the identification
in Corollary [4.7]i). To inductively get the case of c+1 from the case of ¢, Proposition
shows that the long exact sequence induced by (]ED yields a short exact sequence

0 —— BC(Ox () — BC(Oxs(c+1)) — (G,)? —— 0,

where the morphism BC(Ox,(c+ 1)) —( Z?sﬁ)o is surjective on S-points. Because
BC(Ox4(c+1))—( 2?5,1)0 is also a BC(Ox(c))-torsor, the result for BC(Ox(c))
implies that BC(Ox,(c+1)) —(G}s: )® is representable in locally spatial diamonds,
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partially proper, and cohomologically smooth. Now (GZ‘,‘Sﬁ )¢ — S is a locally spatial
diamond, partially proper, and cohomologically smooth, so [36, Proposition 23.13]
shows that the same holds for the composition BC(Ox(c+ 1)) %(GZ?S)O — 5.

Next, suppose that ¢ is zero. Then Proposition [5.2] shows that the long exact
sequence induced by (]ED yields an exact sequence

OHHO(Xs,ﬁXS) *}HO(Xs,ﬁXs(l)) *}Rﬂ *}Hl(Xs,ﬁXs) *)O,

and Corollary iii) and Corollary identify its first four terms with

R " .
0%@( | LTalr ])(S”)—>LT(S¢¢) %8 L Rt
m=1

n

Corollary indicates that lofvg is pro-étale-locally surjective, so our exact se-
quence implies that the pro-étale sheafification of S + H'(Xg, Oxg) is zero. As
for H°(Xg, Ox,), Proposition shows that LT g[7™](S*) is a pseudotorsor for
ContNu{oo}(|Su|,(O)n). Now o induces a morphism S* — Spa EXT — Spa E¥T'™ | so
Proposition [f.2] also shows that this pseudotorsor is naturally trivial. Therefore the
compactness of |S| = |Sﬁ| yields the desired description

COHtNU{OO} (|S|, @n) = ContNU{oo}(|S|, E)
1

T Ce

i ( U LTp[r™]) (5%) = lim

n

Finally, suppose that c is negative. Then the long exact sequence induced by (E[)
yields an exact sequence

0—— HO(Xs, Ox (C)) — Ho(Xs, ﬁXS(C-‘r 1)) S Rﬁ,

so if ¢ = —1, the result follows from part ii) and the injectivity of E—(G™;)°.
This exact sequence also indicates that the case of ¢ + 1 implies the case of c. [

5.4. To extend our discussion to general Banach—Colmez spaces, we use the fol-
lowing ampleness result for Ox(1).

Proposition. Let & be a vector bundle on Xs. Then there are positive integers c
and m such that there exists a surjective morphism Ox,(—c)®™ — &.

Proof. After replacing the usual Witt vectors with our Witt vectors, the proof
proceeds as in [I4] Theorem II.2.6] verbatim. O

5.5. Note that O = lim O is profinite, and the morphism Z x (NU{oo}) = E*
of group topological spaces over NU {oco} arising from 7 induces an isomorphism

[Z X (NU {OO})] XNU{OO} 0 :)EX

We now consider the analogue of projectivized Banach—Colmez spaces in our con-
text. For all vector bundles & on Xg, Proposition [5.3lii) shows that BC(&) is
naturally an E-module over S.

Corollary. The morphism BC(&)— S is representable in locally spatial diamonds
and partially proper. Moreover, the morphism (BC(&) — {0})/EX — S is repre-
sentable in spatial diamonds and proper.
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Proof. Applying Proposition [5.4] twice yields an exact sequence
ﬁxs(—CQ)@m2 E— ﬁxs(—cl)@ml — &Y ——0

of sheaves on Xg, where the ¢y, co, m1, ms are positive integers. From here, taking
duals and global sections yields an exact sequence

0 BC((?) BC(ﬁXS(Cl))@ml %BC(@XS(CQ))@WW.

Now BC(Ox(c2))®™2 — S is separated by Proposition [5.3]1), so its zero section is a
closed embedding. Hence our exact sequence implies that BC(&) — BC(Ox 4 (c1))®™
is a closed embedding. Proposition i) indicates that BC(Ox,(c1))®™ — S is
representable in locally spatial diamonds and partially proper, so this shows that
the same holds for the composition BC(&) — BC(Ox(c1)®™ — S.

We turn to the second statement. We claim that |BC(&’)| and the automorphism
arising from 7 satisfy the conditions in [I4] Lemma I1.2.17]. The first paragraph
is satisfied by [I4] Remark I1.2.18], and since BC(&) is a closed subspace and sub-
sheaf of E-modules of BC(Ox(c1))®™, it suffices to check conditions (i)-(ii) for
|BC(Ox4(c1))®™|. The proof of Proposition [5.3}i) identifies BC(Ox,(c1)) with
an iterated extension of (ﬁ Xgpa0/x S)° and (Gz?su)o, which themselves satisfy
conditions (i)—(ii). This yields the claim.

Because the fixed point locus of 7 is precisely the zero section, the claim and
[14, Lemma I1.2.17] imply that

(BC(&) = {0})/n" = (BC(&) — {0})/Z x (NU {o0})

is a spatial diamond. Note that O* acts freely on (BC(&") — {0})/Z x (NU {oo})
over S, so [36, Remark 11.25] shows that

(Be() — {01)/Z x (VU {c))) /8% = (BE(&) — {01)/[Z x (NU {0})] Xnuoe) O
= (Be() - {0})/B*

is a spatial diamond. Finally, we see that (BC(&) —{0})/E* — S remains partially
proper, so [36, Proposition 18.3] indicates that it is proper, as desired. a

5.6. Let us recall the notion of Harder—-Narasimhan polygons. Let & be a vector
bundle on Xg. For any geometric point § of S, the image of 5 in N U {oco} equals
{i} for some i in NU {00}, so Proposition [3.7 and [14, Theorem II.2.14] imply that
&|x, is isomorphic to

Ox.(M) @ @ Ox.(\)

for some rational numbers Ay > .-+ > A,. For all 1 < j <r, write d; for the rank
of ﬁXg()\j)'

Definition. The Harder—Narasimhan polygon of & is the function
pe : |S| —{convex polygons in R?}
sending S to the polygon with vertices given by

(0,0), (dl,dl)\l), RN (dl 4+ o4 dp,diA -+ dr)\r).
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5.7.  As usual, the properness of projectivized Banach—Colmez spaces has the fol-
lowing consequence for Harder—Narasimhan polygons.

Proposition. Let & be a vector bundle on Xg.

i) The function pg is upper semicontinuous.

ii) If pe is constant, then there exists a decreasing filtration {2} xeq of & such
that, for all geometric points 3 of S, the pullback {&2*|x.}req equals the
Harder—Narasimhan filtration of &|x.. Moreover, there exists an affinoid per-
fectoid v-cover S’ — S such that, for all rational numbers X, there is a non-
negative integer m and an isomorphism

(e22/ U 62| =oxavem
> s’
Proof. For part i), after replacing S with a clopen cover, we can assume that & has
constant rank d. Note that ps(35) equals the convex hull of

{(j,m) € Z* |0 < j < dand H* (X5, (N &) ® Ox,(—m)|, ) is nonzero},
so it suffices to show that, for all vector bundles .% on Xg,
{5€|9|| H°(Xs, #|x.) is nonzero}

is a closed subset of |S|. Now the latter equals equals the image of the morphism
(BC(Z)—{0})/E* — S, which is proper by Corollary[5.5] Hence its image is indeed
a closed subset of |S]|.

For part ii), suppose that pg is the polygon with vertices given by

(0,0), (d1,d1 A1), ..., (di+ -+ dp,didi + -+ drAy)

for some rational numbers Ay > --- > \,.. We claim that there exists an affinoid
perfectoid v-cover S’ — S and an isomorphism

éD|XS/ = ﬁXS/ ()\1) @ Tt @ ﬁXS’ ()\r).

To see this, consider the vector bundle .7 = J#fom(Ox,(A1),&) on Xg. The mor-
phism (BC(.#)—{0})/EX — S is quasicompact by Corollary[5.5 and by assumption
it is surjective on geometric points. Therefore [36, Lemma 12.11] indicates that
(BC(F) —{0})/EX — S is a v-cover. Since BC(F) — {0} —=(BC(ZF) — {0})/E* is
also a v-cover, we see that, after replacing S with a v-cover, there exists a mor-
phism o : Ox (A1) — & whose pullbacks to geometric points § of S are nonzero.
Because Ox_(—A1) is irreducible, checking on geometric points 5 of S shows that
oV 1 &V = Oxg(M)Y = Oxs(—\1) is surjective, so o is injective and has a vector
bundle cokernel. By induction on rk &, after replacing S with a v-cover, we have
an isomorphism cokero = Ox (X2) @ -+ ® Oxg(Ar). The resulting extension

0—— Oxs(\) —2= & —— Ox,(\) @@ Ox,(\) ——0

splits after replacing S with a pro-étale cover by Proposition [5.2] and Proposition
[5.3lii). This yields the claim.

Let S’ — S be as in the claim, and for all rational numbers \, write &’ for
the sub-bundle 69/\12/\ Ox. () of &|x,, = Ox,, (M) ®--- @ Ox,, (). Note that
&| x4, has a descent datum a with respect to Xs» — X5. Proposition iii) implies
that a preserves the sub-bundles &Z*, so Proposition enables us to descend
(&'2* a) to a sub-bundle &2 of &. By construction, &2 satisfies the desired
properties. O
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5.8. We conclude this section by using Proposition [5.7] to prove the analogue of
[26, Theorem 8.5.12] in our more general setting.

Corollary. We have an exact tensor equivalence of categories

vector bundles & on Xg }

{pro-étale E-local systems on S} — { with slope-zer0 pe

given by L — L ®g Ox,.

Proof. Note that —®g Ox 4 preserves tensor products and duals. Therefore internal
homs let us reduce full faithfulness to proving that, for all pro-étale E-local systems
L on S, the map Homg(E, L) = Homg, _(Ox,,L ®E Ox,) is a bijection. Now L
is trivial after replacing S with a pro-étale cover, Homg(E, L) satisfies pro-étale
descent on S, and Home, _(Oxg,L ®E Ox) satisfies pro-étale descent on S by
Proposition [5.1] Hence we can assume that L = E, where the result follows from
Proposition |5.3}ii).

For essential surjectivity, let & be a vector bundle on Xg with slope-zero pe.
After replacing S with a clopen cover, we can assume that & has constant rank d.
Then Proposition and Proposition ii) indicate that the presheaf S on Perfy,

over S whose S’-points equal Iso(&|x,,, ﬁ;’?j/) is a pseudotorsor for GL4(E) =

GL4(E), and Proposition ii) shows that S is a torsor. Proposition and
Proposition indicate that GLg(E) is lctd over NU {oo}, so Lemma shows
that S — S is a pro-étale cover. This yields an affinoid perfectoid pro-étale cover
S"— S and an isomorphism &|x, = ﬁ;‘?i. By full faithfulness, the resulting
descent datum on ﬁ;‘?:l with respect to Xg» — Xg induces a descent datum « on
E®? with respect to S’ — S, and (E@d, «) descends to the desired pro-étale E-local
system on S. |

6. REDUCTIVE GROUPS IN FAMILIES

In this section, we study p-adic groups over E. We start with some recollections
about Chevalley groups over Z. Then we combine this with results from §2]to spread
out quasisplit connected reductive groups over E, to reductive group schemes G
over E. Using a construction from the latter yields a group topological space
G(E) over NU {00}, which we show is lctd over N U {co} as in Definition We
also define the analogue K" of congruence subgroups of G(E), and we prove that

End g (c-Indg (™ A)

is isomorphic to the constant sheaf H(G o (Fo ), K% ) A in a way that recovers Gana-
pathy’s isomorphism on stalks.

Next, we turn to the study of G-bundles on Xg. After proving a Tannakian
description of G-torsors, we define the moduli stack

Bung — N U {0}

of G-bundles on Xg. Using results from 5. we prove that the locus Buné C Bung
of trivial G-bundles is open, and that Bung, is isomorphic to the classifying stack of
G(E) over NU {oo}. Finally, we prove an invariance property of D¢ (Bung, A) when
base changing to Bung Xnu{s} Spd C, by reducing to the situation considered in

Fargues—Scholze [14].
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6.1. Let (G, 15, X*(T®), A, {xz}zea) be a pinned split connected reductive group
over Z as in [9 Definition 6.1.1], and recall that the global sections &gs of G® is a
free Z-module [0, 4.9]. Write B® for the Borel subgroup of G® associated with the
base A, and note that Ops is also a free Z-module.

Let § : Too = Auwt(G®, T%, X*(T°), A, {x5}aea) be a continuous homomorphism,
and write Fi,/Fo for the finite Galois extension such that Gal(Fi/Fo) is the
image of §. Descending (G%_,T%_, By, {7a}aea) along the étale Gal(Fio/Fx)-
torsor Spec Fi, — Spec F, via d yields a quasisplit connected reductive group G,
over Eo, with a pinning (Beo, Two, {Za}aea) over Es as in [24) Definition 2.9.1].
Recall that every quasisplit connected reductive group over F., arises this way for
a uniquely determined § (up to conjugation).

6.2.  We now spread out G, to a connected reductive group over E as follows. Let
n be a positive integer such that the image of I in Gal(Fx/Fw) is trivial. For
the rest of this paper, assume that e; > n for all ¢ in N. Recall from [2.10] the
function 1 : [—1,00) =[—1, 00), the finite Galois extensions F;/E;, the finite étale
E-algebra F', and the ring topological spaces O, O, and F over NU {oo}.

Corollaryimplies that Spec F' — Spec FE is an étale Gal(F, / Ex )-torsor. There-
fore descending (G5, T5, B%., {zz}aea) along Spec F'— Spec E via ¢ yields a con-
nected reductive group G over E, a maximal subtorus T of G, a Borel subgroup B
of G containing T', and generators z of the rank-1 free F-module (Lie Gr)z for all
ain A.

For all ¢ in N U {oo}, write (G;, T}, B;,{xz}sea) for the base change to F; of
(G, T, B,{zz}aea). Then G; and (B;,T;,{zz}zea) are the objects associated with
Goo and (Boo, Too, {T5}aen) as in In particular, when ¢ = oo this agrees with
the notation of [B.11

6.3. By Proposition the affine group G over E = E(NU{oo}) induces a group
topological space G(E) over NU {o0}.

Proposition. The group topological space G(E) over NU{oo} is Hausdorff, locally
profinite, and satisfies Definition . b).
Proof. Since E is Hausdorff, the same holds for G(E). Similarly, because G is of
finite type over E and E is locally profinite, the same holds for G(E).

We turn to Definition [1.2]b). Let i be in NU{oco}, and note that the fiber G(E);
is G(E;). Moreover, the evaluation map ev; : lim  G(E)(U) — G(E);, where U runs
over compact neighborhoods of 7, equals the composition

hﬂG(E)(U) = th(E(U)) — G(Ospar.i) = G(E;) = GE),,
U U

where the first equality follows from Proposition [I.20] The first arrow is an isomor-
phism because Ogpa i = @U E(U) and G is of finite presentation over E. The
second arrow is surjective because E; is the residue field of Ogp, i, the latter is
henselian [26, Lemma 2.4.17 (a)], and G is smooth over E. O

6.4. To construct our family of congruence subgroups over NU {oco}, we use The-
orem For all 4 in NU {oo}, write B(G;/E;) for the (reduced) building of G;
over F;, and write o; for the vertex in B(G;/E;) corresponding to the adjusted
Chevalley valuation associated with the pinning (B;, T;, {zz}aca) over E;. Write
IC; for the smooth affine model of G; over O; such that K;(O0;) C G;(F;) equals the
open compact subgroup Gl(Ei)i [24, Proposition 8.3.1], which is maximal.
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Let n be a positive integer. For large enough 4, Theorem [A-6] indicates that our
isomorphism Tre, (E;) 2 Tre, (Ew ) induces an isomorphism (K)o, /pr = (Koo)o, /pn,
of groups over O;/p? = Ou /P
Definition. Recall from our presentation of NU {oo}.

a) Let n be a positive integer. Write K, for the group topological space over
N U {oco} given by @ J of the discrete group topological spaces

(TLKO/p1)) LT Kuc(Ouc/p2)

i<d
over {i € N|i < d}U{oco}, where, for large enough d, the transition map
(T K(0i/81) LK (One /o) = (TTKO:/81) TN Ko (Occ /)
i<d+1 i<d

sends Kg11(Oar1/pjy1) t0 Koo (Ooo/pL,) via the isomorphism

(Kat1)oaa o, = (Koo)ow /o,

(since d is large enough) and equals the identity otherwise.

b) Write K for the group topological space over NU{oo} given by I&nn K., where n
runs over positive integers, and the transition map K, 11 — K, is induced from
reduction mod 7.

¢) Write K" for the kernel of K —K,,.

Note that K, is finite locally constant over NU{oo}, so K is profinite. Moreover,
{K"},>1 forms a family of compact open group subspaces of K over N U {oco}
satisfying Definition a). We see that K also satisfies Definition [L.2]b), so it is
letd over NU {oo0}.

6.5. For all ¢ in NU {oo}, note that the fiber K; is I;(O;). Write + : K— G(E) for
the map over N U {oo} whose fiber at i equals the inclusion C;(O;) C G(E;).

Proposition. The map ¢ is an open embedding of group topological spaces over
NU{oco}. Consequently, G(E) satisfies Definition[1.4.a), so it is lctd over NU{oo}.

Proof. Because G® is of finite type over Z and Qp is an open ring topological
subspace of IF, Propositionyields an open embedding G*(Op) — G*(F) of group
topological spaces over NU {oo}. Endow G*(F) with the action of Gal(Fu/Ex)
arising from § and Proposition [[.20] Then taking Gal(Fu/Ex)-invariants yields
an open embedding

GS(@F)Gal(Foo/an) N GS(F)Gal(FOO/E(X,) _ G(]E)

of group topological spaces over NU {oo}.
For all i in NU {oco}, we claim that there exists a natural morphism

Ki—=Roy, j0,(Go,,)
of groups over O; such that the resulting diagram

Ki(0;) G*(Op,)

i

|

Gi(Ei)—— Gi(F)) ——= G"(F))
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commutes. To see this, consider the image of o; in B(G;/F;). Note that G%, Is the
smooth affine model of (G;) F, over OF, such that G5(OF,) C G;(F;) equals G ( Des
Now K;(0;) equals the intersection of G;(E;) with G;(F;)? , so K; is the smoothen-
ing as in [24, Definition A.6.3] of the Zariski closure of G; in Ro,, 0,(G,. ). This
yields the claim. '
Because Proposition [1.20]is compatible with inverse limits in R and S, we have

G*(0s) = Jim G*(Op,.) = lim i [ ([] 6*(Or. /p3) ) L1 GO /9.)
i<d

as group topological spaces over NU {oco}. For all 7 in NU{oo}, the claim induces a
homomorphism /C;(O;/pi) — G*(OF, /pF, ), so taking im lim [ i<dpuqooy Yields
a morphism K — G®(Qp) of group topological spaces over N U {oco}. By checking
on fibers, the above work shows that the image of this map is G%(Qg )@ (Foe/Foc),
Moreover, we see that the composition

K — G®(Qg) e/ F) s G(R)

equals ¢, so ¢ is a morphism of group topological spaces over N U {co}. Finally,
since K is compact and G(E) is Hausdorff, ¢ is a homeomorphism onto its image.
We already saw that this image is the open subspace GS(@F)Gal(FW/Ew). (]

6.6. We have the following version of the valuation map for T'(E) over N U {oo}
Recall from [2.11f the E-algebra E, as well as the ring topological spaces O and
E over NU {oo} Note that the pullback to Spec F' of Hom(T, G,,) is naturally
Gal(Fw /Ex)-equivariantly isomorphic to the constant Z-local system with fiber
X*(Tw), so elements of X* (T )t induce morphisms 7' — G, of groups over E.
Similarly, elements of X*(T,,)> induce morphisms Ty — Gy, of groups over E,
and elements of X, (7T ) induce morphisms G,, — Tz of groups over F.

For all compact open subsets U of NU {oo} and f in T(E)(U), write

v(f) : X*(Too)'> = Z(U)
for the map that sends w in X*(T ) to the composition

Ui 2Ok 27 % (NU {oo)).

Note this yields a morphism v : T(E) — Hom (X *(Th)'>, Z) of abelian sheaves on
NU{oo}. Identify Hom(X* (T )’>, Z) with the Z-torsionfree quotient X, (Too) 1. tf
of Xu(Too)1 Ing

Write T'(E)! for the subspace of T'(IE) whose fiber at i equals T;(E;)!, and write

T(E)! for the subspace of T(E) whose fiber at i equals T;(F;)*. Proposition
shows that T(E)! is an open group topological subspace of T(E) over N U {oc}.
Similarly, arguing as in the proof of Proposition shows that T(IE‘])1 is an open
group topological subspace of T (IET) over NU {o0}.

Lemma. The morphism v induces an isomorphism
T(E)/T(E)" 5 Xo(Too) 1.0t

of abelian sheaves on NU {oco}. Moreover, v restricts to an isomorphism

T(E)/T(E)" = (Xo(Too) 1, 48)




ON CLOSE FIELDS AND THE LOCAL LANGLANDS CORRESPONDENCE 51

Proof. By using Proposition [I.4] to check on stalks, the first statement follows from
[24, Corollary 11.6.2], and the second one follows from [24, Corollary 11.7.6]. O

6.7. In we compare elements of T'(E); for different values of ¢ in NU{oo}. To
carry out this comparison compatibly over all ¢ in NU {co}, we proceed as follows.

Choose a uniformizer g of Fi. For all 4 in N, choose a uniformizer 7z, of F;
whose image in Op, /p}{ifei) ~ Op, /p}{iﬁ:i) equals the image of 7 _, and write 7p
for the continuous section of F— NU {co} whose value on 7 in NU {00} equals 7, .

Choose a Z-basis i1, . . ., iy of Xu(Too) 1, tf, and choose representatives fig, . . . fiy
in X,(Ts) of the ui,..., .. Consider the morphism of abelian group topological
spaces over N U {oo}

v 9]

Vi Xo(Too) 106t % (NU {oo}) = T(E)
that sends the constant section y; to Nmﬁ/E(ﬁj omrp) forall 1 < j < r. By checking
on fibers, we see that V is a section of the composition
T(E) —— T(E)/T(E)" —— X (Too) 1o 4t X (NU {o0}).

Lemma [6.6] implies that this composition is a surjective morphism of abelian group
topological spaces over N U {co} with kernel T(E)!, so V induces an isomorphism
of group topological spaces over NU {oo}

[Xe(To) 1ctr X (NU {o0})] Xnugoey T(E)' 5 T(E).
6.8. Let A be a ring, and recall the notation of Definition Definition [.9} and
Definition For the rest of this paper, assume that e; is large enough

as in Theorem for all ¢ in N. For all 4 in NU{oo}, Theorem indicates
that our isomorphism Tr., (E;) 2 Tre, (Fs) induces an isomorphism of A-algebras

H(G(Boo), Koo )a = H(G(E:), K} ).
The following result is crucial for the spreading out argument in our main theorems.
Theorem. We have a natural isomorphism

¢ H(G(Ex), K2 )a 5 End ) (c-Indg (™ A)

of sheaves of A-modules on NU{oo} such that, for alli in NU{oo}, the stalk ¢; equals
the composition H(G(E ), K2 )a = H(G(E;), K} )a = Endg(g,) (c-Ind]g,g,E) A).

Proof. For all i in NU {oco}, Proposition yields a natural bijection
KING(E:) /K = KENG(Eoo) /KL

We claim that there exists a map T : K2 \G(Fw) /K% — G(E)(NU{co0}) such that,
for all ¢ in NU {oo}, the square

KNG(E:) /K ==K \G(Eoo) /KL,

T I

G(E;) +————— G(E)(NU {co})




52 SIYAN DANIEL LI-HUERTA

commutes. To see this, choose a Z-basis v1, ..., v, of (Xu(Teo)r, 4)¥>. By Lemma
there exist t1,...,ts in T(E)(NU {oco}) such that, for all 1 < j < s, the image
of t; under v equals the constant section v;. Write

Vi (X (Too) 1.0,46) 7> = T(E)(NU {oo})
for the homomorphism that sends v; — ¢; for all 1 < j <s.
For all i in NU {oo}, write T; for the Néron model of T; over O;, and note that

T; is naturally a subgroup of IC; over O; by Lemma i). For all 1 < j < s, write
t; for the composition

~

NU {00} —2 T(&) (X (Too) 1t % (NU {00})] Xniugooy TOE) 2225 T(R)L,

Because 7 is continuous, the image in 7;(O;/pl) = Too (Ono /p7%) of its fiber at i is
constant for large enough 3.

For all i in NU{oo}, write 77" for the kernel of 7;(O0;) — T;(O;/p}'). Now|[A.§indi-
cates that our choice of fi1, ..., &, in X,(Tw), along with our choice of uniformizers
g, and T _, induce an isomorphism T;(E;) /T = Too (Foo) /T2, and the above im-
plies that the images of ev;(t;) and eve(t;) in T;(E;) /T = Too(Es) /T coincide
for large enough i. Therefore, by modifying ¢; at finitely many 4, we can assume
that this holds for all i. As v runs over (X, (Tx)r t)?>'", using the resulting
ev;(V(v)) and eve(V(v)) in the proof of Proposition yields the claim.

Recall the notation of By checking on fibers, the claim identifies

G(E) = [[ K" T(gs0 )K"

as sets, where goo Tuns over K% \G(Es)/K%. Combining this with Lemma [T.19]
shows that K™Y (geo)K™ is clopen in G(E), so we can form the continuous function
hg. : G(E)— A whose value on K"Y(go,)K" equals 1 o pr and whose value on
G(E) — K"Y(goo)K™ equals 0 o pr.

By checking on fibers, we see that h,_ lies in H(G(E),K™")A(NU {oc0}). As g
varies, the hy_ induce a morphism of sheaves of A-modules

H(G(Bae), K2L)s — H(G(E) K")
on N U {oo}; take our candidate morphism ¢ to be the composition
H(G(Eoo), K2)a — H(G(E), K™)s < End g (c-Ind ™ A).

Finally, the desired result follows from Proposition and checking on stalks. [

6.9. Next, we turn to the study of G-torsors. More generally, let H be one of
{G, B}, and view Oy as a representation of H over E via right translation.

Lemma. The representation Oy is isomorphic to liéna Vi, for some directed family
{Val}a of objects of Rep H.

Proof. Because H® is an affine group over Z and Ops is a free Z-module, arguing
as in the proof of [I1 11.2.4] and taking Z-saturations show that &'y is isomorphic
to lim V& for some directed family {Vi}a of objects of Rep H*. Now the finite
group Gal(F/Ew) acts on Ops via §, so after replacing each V2 with the sum of
its Gal(Fuo/Es )-translates, we can assume that each V3 is Gal(Fu /Ex)-stable.
Note that @ps is isomorphic to liga(Vj) r. The above indicates that each
(V2)F descends to a constant rank finite projective E-module V, with a co-action
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of Oy, and that Oy is isomorphic to liga V.. Because |Spa E| is profinite, every
constant rank vector bundle on Spa E is free, so [26] Theorem 2.7.7] implies that

every constant rank finite projective E-module is free. Therefore V,, is an object of
Rep H, as desired. O

6.10. With Lemmal6.9)in hand, we can prove the following Tannakian description
of H-torsors. Let Z be a sousperfectoid space over Spa E, and let 5 be an étale
H*-torsor on Z. For all V' in Rep H, write p(V') for the locally free &z ¢-module

p(V) = xH" (V™ @p Ogq).

Now [26, Theorem 8.2.22 (d)] implies that p(V') is a vector bundle on Z, so this
yields an exact tensor functor p : Rep H —{vector bundles on Z}.

Proposition. This association induces an equivalence of categories between

a) étale H*-torsors I on Z,
b) exact tensor functors p : Rep H —{vector bundles on Z}.

Moreover, when Z = Spa(R, RT) is affinoid, the above are naturally equivalent to

c) étale H-torsors ™% on Spec R,
d) exact tensor functors p : Rep H —{finite projective R-modules}.

Proof. Both a) and b) are open-local on Z, so we can assume that Z = Spa(R, RT)
is affinoid. Let

p : Rep H —{vector bundles on Z} = {finite projective R-modules}

be an exact tensor functor, where the equivalence follows from [26, Theorem 2.7.7].
Lemma indicates that Oy = ligla V, for some directed family {V,}, of objects
of Rep H, so we can define p(0p) to be lim p(Va,). Because the V,, are finite free
E-modules, this is independent of the family {V,}q.

Note that Oy is an E-algebra with an H-equivariant co-action of Oy over F via
left translation. Since p is a tensor functor, this endows p(&y) with the structure
of an R-algebra with a co-action of &y over E. Moreover, p(Op) is a direct limit of
flat R-modules and hence itself flat over R. Because 0y contains E and p(E) = R,
the exactness of p shows that p(Oyr) is supported everywhere on Spec R, so p(Or)
is even faithfully flat over R.

Write .28 for Spec p(0p). The above implies that .8 has an action of H
over E, and we see that S8 X g,c. p #%8 is naturally H-equivariantly isomorphic
to H Xgpec E HM8 over 8. Since S8 — Spec R is faithfully flat, this shows
that £ is an fpqc H-torsor on Spec R. The smoothness of H indicates that
S8 is even an étale H-torsor on Spec R. Finally, because Z is sousperfectoid, the
analytification of J#8 over Z yields an étale H*'-torsor # on Z, as desired. [

6.11. We have the following analogue of the moduli of G-bundles on the Fargues—
Fontaine curve in our setting.

Definition. Write Bung for the presheaf of groupoids on Perfr, over NU {oo}
whose S-points equal the category of étale G*"-torsors on Xg.

Proposition [6.10land Proposition [5.1]imply that Bung is a v-stack, and the proof
of [I4, Proposition II1.1.3] shows that Bung is small.

For all 4 in NU {oo}, write Bung, for the v-stack as in [14, Definition II1.1.2].
Proposition identifies the fiber of Bung at ﬁ with Bung,.
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6.12. For all i in NU {oo}, write v; : [Bung, | =(X.(T3){)" = (X.(Too)d) > for
the Newton map as in [I4, Theorem III.2.3]. Because identifies the set |Bung|
with the disjoint union [[, |Bung, |, where ¢ runs over NU {oo}, the maps v; induce

a map v : |Bung| %(X*(Too)a)rx.

Proposition. The map v : |Bung| —>(X*(TOO)6)F°° is upper semicontinuous.
Proof. Let w be in X* (T, ) >*, write V, in Rep G for the associated Weyl module,
and write p, : G — GLg4 for the corresponding morphism of groups over E. For all
i in NU {oo}, write (V,,;, pu.i) for the base change to E; of (V,,, p,). Identify w
with its image in X*(T;)'"+ 2 X*(Tw )", and note that V,,; is an irreducible
representation of G; with highest weight w.

Let ¢ be a G*-torsor on Xg, and let vy be in (X, (Too)a)rm. By definition,

vi(9|x.) > vy, where {i} is }

{selsl|v(¥ the image of 5 in NU {co}

X5)>V0}:{ §€|S|

Now [34] p. 165] shows that this equals
_ Py x_(V.,) = Pw,i(ro) for all win X*(Ty)Fot,
5¢ |S| Xz\Vw,i -/ ) g . ,
where {i} is the image of 5 in NU {oo}
so the above implies that this equals

{5 € 18] Pev)(3) > puco(v)}

w

where w runs over X* (T, ) =T, Proposition [5.7}ii) indicates that this is a closed
subset of |S], and this yields the desired result. O

6.13. Write Bung, for the substack of Bung whose S-points consist of étale G*"-
torsors 4 on Xg such that, for all geometric points 5 of S, the pullback ¥|x_ is
trivial.

As usual, the trivial locus Buné admits the following description in terms of clas-
sifying stacks. Recall the notation of Consider the morphism N U {oo} — Bung
corresponding to the trivial G*"-torsor, which factors through a morphism

NU {oo} — Bung, .

Proposition ii) identifies G(E) = G(E) with NU {00} xp,,2, NU {oc} as group
v-sheaves over N U {oc}, so descent yields a morphism BG(E) — Bung.

Proposition. The substack Bunb C Bung is open, and the morphism BG(E) — Buné
is an tsomorphism.

Proof. Let 4 be a G*"-torsor on Xg. We claim that
{5 €19 | the pullback ¢|x, is trivial }

is an open subset of |S|. To see this, [36, Lemma 2.5] indicates that, after replacing
S with a pro-étale cover, we can assume that S is strictly totally disconnected. Now

{5 € |S|| the pullback ¥|x, is trivial} C {5 € |S]|v(¥|x,) = 0},

and the right-hand side is an open subset of |S| by Proposition Therefore, after
replacing S with the corresponding open subspace, we can assume that v(¥4|x.) =0
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for all geometric points 5 of S. For all V in Rep G, this implies that pg vy has slope-
zero, so Corollary shows that ¢ corresponds to an exact tensor functor

Rep G —{pro-étale E-local systems on S}.

Because S is strictly totally disconnected, Lemma implies that pro-étale E-local
systems on S are trivial. Hence the natural functor

{finite free E(S)-modules} —{pro-étale E-local systems on S}
is an exact tensor equivalence, so ¢ corresponds to an exact tensor functor
Rep G —{finite free E(S)-modules}.
Proposition shows that this corresponds to a G-torsor % on
Spec E(S) = Spec Contyy(ocy (I5], E) = Spec Contyy ooy (mo(|S]), E).
Since m(]:S|) is profinite, we can form the analytic adic space
Z =mo(|S]) XNU{oo} Spa E.

Note that Z is affinoid with global sections equal to Contyy s} (m0(|S]), E). For all
S in |S|, write z for the point of Z corresponding to the image of 5 in mo(|S]). Then

ﬁZ,z = hg ContNU{oo}(Ua E)7
U

where U runs over neighborhoods of 3 in m(]S]), and the residue field of & , is
Contyugoo} (5, E). Because Oz . is henselian [26, Lemma 2.4.17 (a)], the triviality
of .F | conty, (o) (5.5) implies the triviality of 7 | Conty,, (oo} (UE) for some U. Therefore

if ¢|x, is trivial, then ¢|y_ is trivial, where U denotes the preimage in |S| of U.
As 3 varies, this yields the claim.

The claim yields the first statement. For the second statement, note that the
above work shows that the morphism N U {co} — Bung, is a pro-étale cover. Hence
the second statement follows from descent. (|

6.14. In this subsection, we work over Spd F, and assume that A is -power torsion.
We conclude this section by proving that the second statement in Proposition [3.1
holds for Z = Bung, which will be needed in §9] Recall from the E-algebra
C, and recall from the morphism Spd C'— N U {co}.

Proposition. The pullback functor
D¢ (Bung, A) — Dy (Bung Xnugooy Spd G, A)
is an equivalence of categories.
Proof. Propositionidentiﬁes Spd C with NU {oco} x Spa Cy , so applying [36,
Theorem 19.5 (ii)] to Fq < C shows that our functor is fully faithful.
We turn to essential surjectivity. Since N is discrete, indicates that Bung|y

is naturally isomorphic to the disjoint union [[, Bung,, where ¢ runs over N. This
identifies the functor

Dgy (Bung |ﬁ, A) — Dgy (Bung|§ XNU{oc} Spd C, A)

with [], D¢t (Bung,, A) =[], Dét(Bung, x Spd C;, A), which is an equivalence by
[14, Corollary V.2.3]. Similarly, identifies the functor

Dét(Bung\@, A) — Dét(BunG|@ XNu{oc} Spd C, A)
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with D¢ (Bung__, A) = Dg(Bung_, x Spd Css, A), which also is an equivalence by
[14, Corollary V.2.3]. Therefore the essential surjectivity of our functor follows from
combining full faithfulness and the excision exact triangle associated with

Bung\N XNU{oo} SpdC’(—>BunG XNU{cc} SpdC’(—’Bung|{Oo} XNU{cc} Spd .0

7. BEILINSON—DRINFELD AFFINE GRASSMANNIANS

In this section, we introduce the analogue of Beilinson-Drinfeld affine Grass-
mannians Gré over E. After proving various basic facts about Gré and its affine
Schubert subvarieties, we study the analogue of semi-infinite orbits. This lets us
apply the machinery of hyperbolic localization as in [I4, Section IV.6] to define
the constant term functor CTp for étale sheaves on Gré. We conclude by giving,
in terms of CTp, criteria for étale sheaves on Gr{, to vanish or to be universally
locally acyclic.

Our arguments in §7 and §8] closely follow those of Scholze-Weinstein [38] and
Fargues—Scholze [I4]. For some statements, we can even reduce to the situation
considered in Fargues—Scholze [14] by working fiberwise over N U {co}. This lets us
avoid (direct) reduction mod 7 arguments over N U {oo}, for example.

7.1. Recall from the v-sheaf Div over NU {00}, and recall the notation of
3.18 Let J be a finite set. For all morphisms S —(Divk)” over NU {oc} and j in

J, write S; —>Div§( for the j-th projection, write S? — Xg for the closed Cartier
divisor from and write s for the corresponding ideal of Ox,. Write Dg

for the closed Cartier divisor 3, ; S — Xg, and write #p, for the corresponding
ideal of Ox,.

Lemma. The presheaf of categories on Perfg, over S given by
S" +— {wector bundles on Dg:}
satisfies v-descent.

Proof. Let S’ — S be an affinoid perfectoid v-cover. When S is a geometric point,
the image of | S| in NU{oo} equals {i} for some NU {00}, so the result follows from
Proposition [3.7)and [14, Proposition VI.1.4]. When S’ — S is finite étale, Corollary
implies that Xg — Xg and hence Dg: — Dy is finite étale, so the result follows
from [26] Theorem 8.2.22 (d)]. Combined with Proposition this shows that

P := {vector bundles satisfy descent with respect to Dg: — Dg}

satisfies the conditions in [26, Proposition 8.2.20], so [26, Proposition 8.2.20] indi-
cates that the result holds when S’ — S is étale.

In general, let & be a vector bundle on Dgs with a descent datum « with respect
to Dgr — Dg. For all geometric points s of S, the above enables us to descend
(&’ |Ds’ ,a|DS,) to a vector bundle &p_ on Ds. Because |Ds] is a disjoint union of

points, &p_ and hence its pullback &”|p, , is free. Therefore [16, Proposition 5.4.21]

implies that any basis of &p_ induces a basis of &’ |p, for some affinoid perfectoid
étale neighborhood U of S%; in particular, &”'|p,, is free. In these coordinates, a|p,,
corresponds to a matrix with entries in Op,, x, Dy, = Opy .- and after shrinking

U, we see that a|p,, — id has entries lying in the image of [w]075, , where r

Yuxgu,[0,q7]’
is large enough such that Dg lies in Vg jo,4-). Since O is a direct summand of @perf
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as topological O-modules, Proposition and [36], Proposition 8.8] show that the
v-cohomology group H}(S, ﬁy+[ ]) is annihilated by [e]'/¢™ for all non-negative
S,[0,q™

integers m. Hence the result follows from arguing as in the proof of [38, Lemma
17.1.8]. O

7.2.  Let us introduce the analogue of loop groups, affine Grassmannians, and local
Hecke stacks in our setting. Write B (S) for the global sections of m O [ID s

and write Bqr(S) for the global sections of (@1 Oxs/73.) [ﬁ] Lemma|7.1|in-
n s

dicates that the global sections of Ox /#f;. = Onpyg yields a v-sheaf over (Divy)”,

so the same holds for B;R and Bgr.
Let M be an affine scheme over E, and let H be one of {G, B}.

Definition.
a) Write LM, LT M, and L;M for the presheaves on Perfg, over (Divk )’ whose
S-points equal M (O, p,), M(Biz(S)) and M (Bar(S)), respectively.
b) Write Hck?, for the presheaf of groupoids on Perfy, over (Divy )’ whose S-points
parametrize data consisting of
i) two H-torsors ¢ and ¢’ on Spec Bi;(9),
ii) an isomorphism p : 5| g . (s) = H'|B,n(s) of H-torsors on Spec Byg(S).
¢) Write Gry; for the presheaf on Perfp, over (Divy;)” whose S-points parametrize
data consisting of
i) an H-torsor . on Spec Bj(S),
ii) an isomorphism p : J#|p, . (s) — H of H-torsors on Spec Bar(S).

Since M is affine, we see that L'} M, L}'M, and Lj;M are v-sheaves, and the
proof of [T4, Proposition I11.1.3] shows that they are small. We have a natural
morphism Grj; — Hcky, given by (2, p) — (A, H, p).

7.3. Let M be a smooth affine scheme over E.

Proposition. The morphism LM —>(Div§()‘] is representable in locally spatial
diamonds, partially proper, and cohomologically smooth of dimension n-#J-dim M.

Proof. First, assume that M = G%, and choose an enumeration J = {1,...,#J}.
The filtration 0 C Sn§+-~+siél,/jgs C... C fsni&‘]/jgs C Ohnp, shows that the

morphism L% M —(Div)” is the iterated extension of L, M-torsors, where j runs

over J, and the filtration 0 C f;}fl/ﬂgg C...C Jsg f;j - ﬁnsg shows that the

pullback to S of LY;, M —(Divy)” is the iterated extension of n many (Gz’:r;)o—
j

torsors. Because (GZ’?})O — S is representable in locally spatial diamonds, partially

)

proper, and cohomologically smooth of dimension 1, the result for M follows.
Next, let D —nDg be a quasicompact separated étale morphism. We claim that
the presheaf on Perfr, over S whose set of S’-points equal the set of lifts

D

nDg ——nDg
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is representable by a separated étale morphism S — S. To see this, [36], Proposition
9.7] indicates that, after replacing S with a pro-étale cover, we can assume that S
is strictly totally disconnected. For all geometric points 5 of nDg, the morphism
$XnDg D—3is quasicompact separated étale and hence a finite disjoint union of s.
Since S is strictly totally disconnected, [36, Lemma 15.6] and [36], Proposition 11.23
(iii)] imply that there exists an open neighborhood U of 5 such that U X, p, D — U
is a finite disjoint union of U. Therefore after replacing D with an open cover, we
may assume that D —nDg is an open embedding. Then Lemma shows that
the image C' of ‘nDS — ﬁ| in |S| is closed. The resulting open subspace S — C of
S satisfies the desired property, which yields the claim.

In general, after replacing M with an open cover, we may assume that M is
étale over G¢. By the Spec-global sections adjunction, morphisms S — L’} M over
(Divk)” correspond to morphisms nDg — M® over Spa E. Applying this to M
and G? shows that morphisms S’ — S x LnGd L} M over S correspond to lifts

nDS XGd,an MEn
a

nDg ——  nDg.

Now Ma“—HGg’an and hence nDg Xga.an M* —nDg is quasicompact separated

étale, so the claim indicates that LM — LG¢ is separated étale. Combined with
the case of G¢, this yields the desired result. O

7.4. Proposition. The presheaves ’HckiI and Gré are small v-stacks. Moreover,
the natural morphisms LJH—>GriI —>'Hckﬁ induce isomorphisms from the étale
quotients (LyH)/(LTH) = Gryy and (LYH)\(L;H)/(LTH) > Hcky,.

Proof. We claim that the presheaf of categories on Perfp, over (Divk)” given by
S — {finite projective Bl (S)-modules}
satisfies v-descent. To see this, note that base change induces an equivalence

{finite projective By (S)-modules} = yLn{ﬁnite projective €, p,-modules},
n

so the claim follows from Lemma F and [26] Theorem 2.7.7].

The claim and Proposition |6.10| indicate that /Hckil and Gr}]{ are v-stacks. For
the second statement, let " be an H-torsor on Spec B, (S). For all geometric
points 5 of S, note that Bqr(5) is a finite product of strictly henselian local rings,
so | BL.(3) and hence |, is trivial. Because H is smooth affine over E, [16,
Proposition 5.4.21] implies that there exists an affinoid perfectoid étale neighbor-
hood U of 5 such that 7|¢,,  is trivial. Since B, (U) is complete along #p,, and
H is smooth over E, this shows that %|BIR(U) is trivial. As 5 varies, we get an
affinoid perfectoid étale cover S’ — S such that 57| B (S") is trivial, which yields
the second statement.

Finally, the second statement implies that "Hck,‘]{ and Gr}]{ are small. [
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7.5.  Our affine Grassmannians and local Hecke stacks specialize to the usual ones
from [I4], which lets us reduce many facts to their “classical” analogues from [I4].
More precisely, for all ¢ in NU{co}, write Div}xi for the v-sheaf as in [I4] Definition
I1.1.19], write Hckéi for the v-sheaf over (Div,)” as in [I4}, Definition VI.1.6], and
write Gréi for the v-sheaf over (Divﬁ(i)‘] as in [14] Definition VI.1.8]. Proposition
identifies the fiber at {i} of Divk, Hck{, and Gr{ with DiV%{i, Hckéi, and
Gréi7 respectively.

7.6. In this subsection, assume that G is split. Let pe = (1) e be in (X, (Too) ™) 7.
We define affine Schubert varieties in this setting.

Definition.

a) Write Hckééu. for the substack of Hck{, whose S-points consist of (JZ, .7, p)
such that, for all geometric points s of S and j in J, the relative position of
P|Bar (s) at the completion of Xg along §§- is bounded by >, p1j:, where j' runs
over elements of J such that Eg., = 52».

b) Write Grg;é”. for the pullback to Gry, of Hckégm.
Note that the action of L} G on Grf preserves Gréé#..

7.7. In this subsection, assume that G is split. Write 2p in X*(T,) for the sum of
all positive roots, and for all p1e be in (X«(Tw)T)?, and write d,,, for > ier (20 1)
For all positive integers n, write (L} G)" for the kernel of LT G — L"G.

Proposition.
i) The substack ’Hckéjgu. C Hckl, is closed, and the morphism Grééu. —(Div)’
is representable in spatial diamonds, proper, and of finite dim. trg.

1) Assume that n is greater than all weights of ZjeJ:uj acting on Lie G. Then
(LYG)™ acts trivially on Gréé“..

iii) The natural morphism li_n}u Gré‘,iu. — Gré, where e Tuns over (X, (Too)t)”,
s an isomorphism.

w) Forpar in Z/2, write (Grl)P* for liglL Gré,gu., where Lo TUNS Over elements
of (Xu(Too)™)” such that the image of d,,, inZ/2 equals par. Then the subspace
(Gr)P> C Grd, is clopen.

Proof. Part i) follows from arguing as in the proof of [14, Proposition 20.4.5]. For
part ii), note that part i) indicates that the equalizer of

+ J 2 s ~T
(L7G)" X mivy)r G1g <pe — S G5 <41,
X proy

is a closed subspace of (LT G)" X (Divl )’ Grééu., so [36, Lemma 12.11] shows that,
to see that a and pr, agree, it suffices to check on geometric points. This follows
from and [I4, Proposition VI.2.8].

For part iii), the natural morphism ligm Grééﬂ. — Gr‘g; is injective, so we focus
on surjectivity. For any morphism S — Gr‘(]; over (Divk)”, note that its image in
GrY, lies in a finite union of subspaces of the form Gré)S e+ Then part i) implies
that ] e Gré’g e = Gré is a v-cover, which yields surjectivity, as desired. Finally,
part iv) follows from (2p, a) being even for all roots a in X.(T). O
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7.8. In this subsection, assume that G is split. For all j in J, let &; in B;’R(S)

be a generator of .7, and choose an enumeration J = {1,...,#J}. For all j, in
J

(X (Too) ), write [ue] : (Div)” — Grl for the morphism over (Divy)” given by

sending S H;#:Jl (Lyp)(&;), which is independent of the ;. When G is abelian

or #J =1, this is independent of the enumeration of J.

For the rest of this subsection, assume that #.J = 1. In this case, we also consider
affine Schubert cells. Proposition i) indicates that

HekG ) = HaliL, — ([ JHabL,
w

yields an open substack of ’Hckg}< ,.» Where 1’ Tuns over elements of X, (T )" such

that g < pu. Write Grg:i for the pullback to Gré*} of Hckgzi, and note that [u]

).

Proposition. The morphism [p] : Divy —>’Hckg,i s a v-cover, so it induces an

factors through a morphism [] : Div — Grg’i over Divy. Write (L}, G), for the
stabilizer of [u] in LE“*}G7 which is a closed subspace by Proposition i

isomorphism Divk/(L?‘*}G)ﬂ = Hckgii over Div.
Proof. This follows from the proof of [14, Proposition VI.2.4]. O

7.9. As usual, local Hecke stacks satisfy the following fusion property. For all
partitions P = {Jy,...,Js} of J, write (Div})? for the subsheaf of (Div} )’ whose
S-points consist of S —(Divy)” such that, for all geometric points 5 of S and
Jj # j in J lying in different Jj, we have 5; # 5;. Lemma implies that
(Div)? C (Div)” is an open subspace. Note that we have a natural identification

i

HCké‘kDivl P = (H Hckék)

X o1 (Divk )P
where [] denotes the product over NU {oo}. Under the above identification, when
G is split, the closed substack Hck‘ééu. |(Diviyr © HckékDiv&)p corresponds to

S S
HekTE_ )’ - ( Hcka)‘ .
<k1:[1 GSien ) |oivi e kl;[l ¢ /lmivir

7.10. In this subsection, assume that G is split. We need the following decom-
position of Gry. For all i in NU {oo}, write ; : |Gry,| = X.(T3) = X.(Tx)
for the continuous map as in [I4, (VI.3.1)]. Now H identifies the set |Gr'7{| with
the disjoint union [], |Gr£
21 |Gry| = Xo(Two).

, where 7 runs over N U {co}, so the ¥; induce a map

Lemma. The map 3 : ’Gr%’ — X.(Tw) is continuous.
For all v in X, (Tw), write Gr‘%’” for the preimage under ¥ of v.

Proof. As jie runs over X, (T )”, the [ie] induce a morphism

X.(Ts)” x (Divy)? — Gry.
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over (Divy )7 that is surjective on geometric points. Therefore [36, Lemma 2.5]
indicates that resulting continuous map X, (T )’ x |(Div )’ | — ’Gr% is a quotient
map. Checking on fibers shows that the continuous map

Xo(Too)” x |(Divk)!| —— X, (Too)” —2— X.(Tw)
factors through a map ’Gr%f — X, (Tw) with the desired description on fibers. O
7.11. In this subsection, assume that G is split. We turn to study the analogue of

semi-infinite orbits in our setting. For all v in X, (T ), write Gré"/ for the preimage
of Gr%"/ under Gri, — Gri.. Choose a regular element X of X, (Ts )", and consider
the action of G2 on GriI given by composing the conjugation action of L}rT with

(T I T L LT LTH
m Jm J J

Proposition.
i) The morphism Gr% %Gré is a closed embedding, and it identifies Gr‘{w with
the fized point locus of G3».
i) The morphism Gr — Gré induces a bijection on geometric points. Its restric-
Gr}é’”l‘ in

|Gré’ is closed, where V' runs over elements of X.(Tx) satisfying v < v.

tion to Gré" is a locally closed embedding, and the image of 1],

Finally, the action of G2 on Gr}; naturally extends to an action of (Al)2".

Proof. For part i), the first statement follows from arguing as in the proof of [38]
Lemma 19.1.5]. Write (Grg,)®m for the fixed point locus of G2, Now Gry — Grg,
factors through a morphism Gry. —(Grg)® , which is a closed embedding by the
first statement. Note that this closed embedding is a bijection on geometric points,
so the second statement follows from [14, Lemma 12.11].

For part ii), the first statement follows from the Iwasawa decomposition. The
action of G,,, on B given by composing the conjugation action of T' with A naturally
extends to an action of A', which implies the last statement. Finally, everything
else follows from the proof of [I4, Proposition VI.3.1]. O

7.12. In this subsection, assume that G is split. Proposition [7.11]enables us to use
hyperbolic localization as in [I4, Section IV.6] to define the constant term functor
as follows. Let A be a ring that is f-power torsion, and for all small v-stacks
Z over (Divy)”, write Dg (Grg|z, A)P? for the full subcategory of Dei(Gri|z, A)
consisting of objects arising via pushforward from a finite union of subspaces of the
form Grééu. |z

Note that the action of G2* on Grl preserves the subspace Gré,<u.' Write
Dei(Grl| z, A)PYEn for the full subcategory of Dy (Grg|z)P? consisting of objects
arising from G2'-monodromic objects as in [I4, Definition IV.6.11]. Write B for
the opposite Borel in GG, and write

q
Grf «——Gr}
J 4q J
Grg — Grip

for the natural morphisms over (Divi)”.
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Corollary. We have a natural transformation 5, G — piq* of functors
Dét(Gré|Z7 A)bd — Dét (GI“7]~|Z7 A)bd.

When restricted to Dg,(Grd|z, A)PSCn’ | this natural transformation is an isomor-
phism, and the resulting functor

CTp : Det(Grd|z, A)PYEw — Dy (Gri| 7, A)PY

is compatible with base change in Z and preserves universal local acyclicity over Z
as in [14, Definition IV.2.1].

Proof. For all ye in (X.(Ts)t)”?, Proposition i) shows that Grééu. —(Divy)”’
is representable in spatial diamonds, proper, and of finite dim. trg. We claim that
the action of G2 on Gré)gu. satisfies |14, Hypothesis IV.6.1]. Proposition i)
indicates that the fixed point locus of G in Gré)g 4. 18 its intersection with Cri,
and this intersection equals [], Grééﬂ. ﬂGr;"], where v runs over elements of
X, (Tw) such that the Weyl translate of v in X,(Tx)" is bounded by Eje]”i
There are only finitely many such v, so applying Proposition ii) to B and B
provides the desired decompositions

J _ J Jv J _ J Jv
Grg <, = HGTG,SM. NGrg~ and Grg <, = H Grg <, NGry .
v v

This yields the claim.

As i varies, the claim and [14] Definition IV.6.4] yield the natural transforma-
tion 7,7 — pig*, and its restriction to Dg(Grl|z, A)PEn is an isomorphism by
[14, Theorem IV.6.5]. The resulting functor CTp is compatible with base change
in Z by [14l, Proposition IV.6.12] and preserves universal local acyclicity over Z by

[14, Proposition IV.6.14]. O

7.13. In this subsection, assume that G is split. The constant term functor enjoys
the following conservativity property. Write Dei(Hcky|z, A)P? for the full sub-
category of De;(Hckd|z, A) consisting of objects whose pullback to Grl|z lie in
Dei(Grl|z, A)P4, and note that the image of the pullback functor

Dey(Hekl |z, AP — Dey (Grd| 7, A)P4

lies in Dy (Grl|z, A)PYER . Write CTp for the composition
an CT
Dey(Hekl|z, A)PY —— Dt (Grd| 2, A)PEm —25 Dy (Grf| 2, A)P9.

Proposition. Let A be in Dg(Hckl|z, A)Pd. If CTp(A) is zero, then A is zero.

Proof. To check that A is zero, [36, Proposition 14.3] implies that it suffices to
check on geometric points of Hcké| z. Hence Corollary indicates that we can

assume that Z is a geometric point. Then the image of | Z] in NU{oo} equals {i} for
some ¢ in NU {oc}, so the result follows from [7.5| and [I4, Proposition VI.4.2]. O

7.14. 'We will use the following to reduce many proofs to the case when G is split.
Recall that Gp is split. Write Xg(F) for the adic space associated with F' as in
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ﬁ and write Divk( ) for the v-sheaf over NU {oo} associated with F as in
Note that we have a cartesian square

Xs(F) e XS

|

SpaFF—— Spa F,
so the morphism Xg(F)— Xg is finite étale. This induces identifications
J J
HCkG‘(Din(F))J = HCkGF and Gré|(Div§((F))J = GréF
as v-stacks over (Divﬁ((F))J. Also, applying [36, Lemma 15.6] to Spa F'— Spa E

implies that Divk(F) — DivY is finite étale.
We even use the above to reduce definitions to the case when G is split:

Definition.
a) When G is split, write Dy (Grg|z, A)UM for the full subcategory of

Det(Grg| z, A)P?

consisting of universally locally acyclic objects over Z as in [I4, Definition
IV.2.1], and write Dg(HckZ|z, A)UEA for the full subcategory of

Dey(Hckg|z, )P
consisting of objects whose pullback to Grg|, lie in Dg (Grg|z, A)VEA.

b) Write Dg;(Hckg, A)UA for the full subcategory of Dei(Hcky|z, A) consisting of
objects whose pullback to

HCkékDivl

X(F))JX(Div}X)JZ
. J ULA . : I
lie in Dy (Hckg, ‘(Divif(p))"X(Divg()JZ’ A) as in Definition [7.14a).
¢) Write Dg(Hckl |z, A)P? and Dei(Grg |z, A)P? for the full subcategories of
Dey(Hckg| 7, A) and Dt (Grg |z, A),
respectively, consisting of objects whose pullback to

J
ck ;
H G|(D1v§((F))J><<DiV%()JZ

= H‘fké‘p |(Div1

X(F))JX(DW&)JZ

_ J
— HCkGF‘(D“’ﬁf(p))"X(mvg()JZ and

J
Grg |(Div1

- J
X(F))J X (Divk.)r’Z - HCkGF |(DiV1

X(F))J X (ivi)7 Zs
respectively, lie in

Dee(Hek, | it

x(F))']X(Di\g()JZ’
as in [7.13 and respectively.

7.15. Later, we will need the following fact. Write sw : Hckg, — Hcky, for the au-
tomorphism given by (57, ", p) — (', 5, p~'). When G is split, note that sw
restricts to an isomorphism Hcké,gu. ;HCké,wao(u.) for all e in (X.(Too)t)”,
where wq denotes the longest Weyl element. Consequently, for general G the functor

sw* preserves Dy (HckZ |z, A)Pd.

Lemma. Let A be in D¢y (Hckd |z, A)PY. Then A lies in Dg(Hckl |z, )P if and
only if sw* A lies in Dy (Hcks |z, A)UVA.

A)bd and Dét(GréF |(Div1

; )bd
X)) X(Div&.)‘]z’
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Proof. Definition [7.14]b) indicates that we can assume that G is split. For all e
in (X.(Too)")’, write (L;G)<,. for the preimage in L;G of Gré’<m. Proposition
and [14, Proposition IV.2.13 (ii)] show that an object of Dét(Gré$<H.|Z,A> is
universally locally acyclic over Z if and only if its pullback to (L;G)<,./(LTG)"
is universally locally acyclic over Z. As n varies, we have a natural isomorphism
between the pro-systems {(L;G)<,./(LYG)"}, and {(LTG)"\(L;G)<pu, }n, and
universal local acyclicity over Z on the two pro-systems is equivalent by Proposition
and [I4] Lemma VI.6.3]. Hence the result follows from the commutative square

(LsC)ep /(L5 T (LG (L)< )

| J

Hckégm - Hckééfwo(#.)

and applying the above to —wg(tte)- O

7.16. Write g : Grl, —(Divy)”? for the structure morphism, and for the rest of
this subsection, assume that G is split. Proposition i) indicates that we have a
functor 7g : Dét(Gré\Z, AP — Dy (Z, A) that agrees with 7.

We conclude this section by proving the following criterion for being universally
locally acyclic in terms of the constant term functor.

Proposition. Let A be in Dét(HCké|Z,A)bd. Then the following are equivalent:
a) A lies in Dey(Hckl|z, A4,

b) CTp(A) lies in Dg(Grih|z, A)VEA,

C) iwgl CTB(A) lies DIC(Z, A)

Proof. Now 7 is ind-finite by Proposition iii), so [14], Proposition IV.2.28] and
[14, Proposition IV.2.9] indicate that b) <= ¢). Corollary indicates that
a) = b), so we focus on b) = a). For all pe in (X, (Ts)")”, Proposition [7.7lii)
shows that the action of LYG on Grg <, factors through LTG — L'jG, where n is
any positive integer greater than all weights of Zje.] ; acting on Lie G. Then [14]
Proposition VI.4.1] and the proof of Proposition imply that pullback induces
an equivalence of categories

Dee((L3G)\Gr <12, A) = Dey(Hek <, |z, A).

By Proposition (Lf}G)\Gré’SHJZ is an Artin v-stack over Z. Therefore we
can apply [14, Theorem IV.2.23] to see that it suffices to check that the natural
morphism

(1) Homy (A, e N) Ky A— Aomy (pri A, pry A)

is an isomorphism. Note that ’HCkéXEG|Z = ’Hcké|z X g Hcké|z, and lies in
Dy (’HckéXEG|Z, A)P4. By applying Proposition to the cone of 7 it suffices
to check that becomes an isomorphism after applying CTg, p. Because hy-

perbolic localization is compatible with exterior tensor products, [14, Proposition
IV.6.13] shows that the left-hand side of ({fJ) becomes

CTg(Homp(A, mgA)) @ CTp(A) = Homy (CTp(A), mpA) @a CTp(A),
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while the right-hand side of () becomes

(p1 X Do)« (@1 X @) AHom(pr} A, prj A)
= (p1 X Pa)eom((g1 X G3)* pri A, (@1 X @) pry A) by [36, Proposition 23.3 (ii)]
1 X Po)w Hom(pri ¢i A, pry 3y A)

= ( )
= (p1 x id),(id xPy ) #om((id xPy)* pri ¢i A, pry g A)
= ( )*
= ( )*

p1 X id)..fom(pr ¢t A, (id XPy )« pry GhA) by [36, Corollary 17.9]
p1 X id),Aom(prt ¢i A, prh Py, Gy A) by [36], Proposition 23.16 (i)]
= (p1 x id),Hom(pri ¢i A, (p1 x i)' pry Py, G5 A)
= Hom((p1 x id) pri ¢i 4, pr!2 ﬁQ*Q!QA) by [36], Proposition 23.3 (i)]

= Som(pri CTp(A), pry CTp(A)).

Since CTp(A) is universally locally acyclic over Z, applying [14] Theorem IV.2.23]
again implies that this is indeed an isomorphism, as desired. (|

8. GEOMETRIC SATAKE

To construct geometric Hecke operators in our context, we need the analogue of
geometric Satake over E. This is the goal of this section. We begin by defining
the perverse t-structure on De;(Hcky |z, A)P? via characterizing its < 0 part. To
analyze its > 0 part, we prove a characterization of the perverse t-structure in terms
of (a shift of) the constant term functor CTp.

After defining the analogue of the Satake category in our context, we prove that
it enjoys all of the structures needed to apply Tannakian reconstruction. However,
computing the resulting Hopf algebra requires working over rings like

(X) Cont(NU {o0}, Zy),

which seem inaccessible to Tannakian identification results. Instead, we first prove
the result with Qg-coefficients by explicitly constructing objects and morphisms in
the Satake category, using the fact that Rep G, is semisimple, and then we deduce

the result with Z,-coeflicients, using a version of Hartog’s lemma for . In both
steps, we reduce to the situation considered in Fargues—Scholze [14].

8.1. Write pDéStO(HckaZ, A)P4 for the full subcategory of Dei(HckZ |z, A)PY con-
sisting of objects A such that, for all geometric points 3 of Z with image {i} in
NU {oo} and under the identification Hck|s = Hcky |5 from [7.5] the pullback to

Hckl|s of A lies in the full subcategory
PD5° (Hekl |5, A)P? C Dey (Heky |5, A)PY
as in [I4], Definition/Proposition VI.7.1].

Lemma. There ezists a unique t-structure on Dg(Hckd|z, A)Pd whose < 0 part
equals D5 (Hckl |z, A)P9.

Write pDio(HckaZ, A)Pd C Dey(Hekd| 7, A)P4 for the > 0 part of this t-structure,
and write Perv(HckZ |z, A) C Dei(Hckd| 7, A)PY for the heart of this t-structure.

Proof. This follows from [36], Proposition 17.3] and [31l Proposition 1.4.4.11]. O
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8.2. When G is split, write deg : |Gr7| — Z for the composition

|Gry | 2L X, (T) 2 7,

The perverse t-structure and the constant term functor (after shifting by deg) enjoy
the following exactness properties.

Proposition.

i) Let A be in De(Hekl|z, AP, and assume that G is split. Then A lies in
PDEY(Hekl| 2, )P or PDZ0 (Hekl| 2, AP if and only if CT(A)[deg] lies in
DéStO(GrﬁZ,A)bd or DéZtO(GrﬁZ,A)bd, respectively.

it) For all small v-stacks Z' over Z, the pullback functor

De(HekZ |z, AP — Dy (HekZ | 2/, A)P
is t-exact for the perverse t-structure.

Proof. For part i), let A be in ? D5 (Hckl| 7, A)P? or PDZ0(Hckd |z, A)Pd. To check
that CTg(A)[deg] lies in D5°(Gry|z, A)P? or DZ°(Gri|z, A)P4, respectively, [36,
Proposition 14.3] implies that it suffices to check on geometric points of Gri|z.
Hence Corollary indicates that we can assume that Z is a geometric point.
Then the image of |Z| in N U {oo} equals {7} for some ¢ in N U {oo}, so the result
follows from and [I4, Proposition VI.7.4].
Conversely, assume that CTz(A)[deg] lies in D°(Gr|z, A)PY or DZ%(Grih| 7, A)PY.

The above shows that applying CTp(A)[deg] to the exact triangles

+1
pr<04 A przl A

+1

Pr<=14 A 7204

yields exact triangles

750 CTp(A)[deg] —— CTp(A)[deg] —— CTp(Pr>1A)[deg] —

CTp(Pr<—1A)[deg] —— CT5(A)[deg] —— 720 CT5(A)[deg] —— ,
respectively. Therefore CT (P21 A)[deg] or CT(PTr<"1A)[deg] is zero, respec-
tively, so Proposition indicates that P72'A or Pr<"1A4 is zero, respectively.
This yields the desired result.

For part ii), right t-exactness holds by construction, so we focus on left ¢-
exactness. Then [4, 1.3.4] and descent [36, Proposition 17.3] show that we can
replace Z with a v-cover, so [7.14] indicates that we can assume that G is split.
Finally, the result follows from part i) and Corollary g

8.3. Corollary.

i) Let A be in De(Hckl|z, A)*d. Then A lies in PDZ°(Hckl|z, AP if and
only if, for all geometric points s of Z, the pullback to Hckék of A lies in
pD‘io(HCké|g7 AP, Therefore, A lies in Perv(Hckd|z, A) if and only if, for
all geometric points s of Z, the pullback to 'Hcké|g of A lies in Perv(?—lcké\g, A).
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1) For all open substacks U C Z, the x-pushforward functor
Dey(HekZ |, A)PY — Dey(Hekl | 7, A)P4
is left t-exact for the perverse t-structure.

Proof. For part i), the forward direction follows from Proposition ii). In the
other direction, [4, 1.3.4], and descent [36l Proposition 17.3] show that we can
replace Z with a v-cover, so indicates that we can assume that G is split. Then
the result follows from Proposition i), Corollary and [36], Proposition 14.3].

For part ii), write {i} for the image of 5 in NU {oc}, and identify Hck{|s with
'Hckéi |5 as in ﬁ Now pDio (Hckl|s, A)P? equals the full subcategory

pDio (HCkéi |§a A)bd - Dét (HCkél |§7 A)bd

as in [I4 Definition/Proposition VI.7.1], so the discussion on [14, p. 221] charac-
terizes ? DéZtO(Hcké|g, A)Pd in terms of certain !-pullbacks. Therefore the desired
result follows from part i) and [36, Proposition 23.16 (i)]. O

8.4. We now introduce the Satake category. Write Sat(Hck|z,A) for the full
subcategory of Dei(Hckl|z, A)UMA consisting of objects A such that, for all A-
modules M, the tensor product A @4 M lies in Perv(Hck{|z,A). In particular,
Sat(Hcks| 7z, A) lies in Perv(HckZ |z, A).

The Satake category can be described in terms of the constant term functor:

Proposition. Let A be in Dg(Hckd|z, AU, and assume that G is split. Then
A lies in Sat(Hckl|z,A) if and only if 7p CT(A)[deg] lies in LocSys(Z, A).

Proof. Proposition shows that w1 CT(A)[deg] lies in Di.(Z, A), and 7p is ind-
finite by Proposition iii). Therefore Proposition i) indicates that A ®, M
lying in Perv(Hckl |z, A) for all A-modules M is equivalent to

711 CTp(A ®p M)[deg] = (mm CTp(A)[deg]) @4 M
being concentrated in degree 0 for all A-modules M. The latter is equivalent to
711 CTp(A)[deg] lying in LocSys(Z, A) by [40, Tag 0658]. O
8.5.  Write 7 for the composition

Perv(Hckl |z, A) —— Dt (Grd |z, AP " Dy (Z, A).

The (relative) total cohomology functor on Perv(Hck{|z, A), which will be the fiber
functor we use to apply Tannakian reconstruction, satisfies the following properties.

Proposition. Let A be in Perv(Hcky|z, A).
i) When G is split, we have an isomorphism
P H(re1A) = 7 CTp(A)[deg].
dez

ii) The object Fz(A) = @ ep HA (T A) is concentrated in degree 0, and the
resulting functor Fz : Perv(Hckd|z, A) — Shve(Z,A) is conservative, exact,
and faithful.

iii) When Fy is restricted to Sat(Hckl| 7, A), its image lies in LocSys(Z, A). More-
over, Sat('Hcké|Z,A) admits and Fy reflects coequalizers of Fz-split pairs.
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When Z = (Divi)”’, write F/ for Fip,
en Z = (Divy)”, write or Fipiy1 )7

Proof. For part i), note that Gr, =[], Gré'/, where v runs over X, (T ). Therefore
CT(A) = @, pngiA, where p, : Gy’ — Gry and g, : Grg” — Grg, denote the
restrictions to Gré" of p and ¢, respectively. Proposition i) indicates that p,1q} A
is concentrated in degree (2p, V), and because 7r is ind-finite by Proposition [7.7}iii),
this implies that mp,1gf A is concentrated in degree (2p, v).

Proposition [7.11}ii) yields a stratification of GrZ by g, : Gry” —Grg. The
excision exact triangles associated with this stratification yield a filtration of A with
graded pieces ¢,1q) A, so applying wa yields a filtration of mg A with graded pieces
Te1qun s A = mripag,A. The proof of Proposition shows that the image of g,
lies in the clopen subspace (Gré)<2p”’> C Gré from Proposition iv), SO we can
restrict to v such that the image of (2p,v) in Z/2 is fixed. Then the above implies
that the spectral sequence associated with this filtration of w1 A degenerates, which
yields the desired isomorphism

P Hé (e A) = @ H*") (wripungA) = 711 CT p(A)[deg].
dez v

We turn to part ii) and part iii). Descent [36, Proposition 17.3] and [36, Propo-
sition 22.19] imply that we can replace Z with a v-cover, so[7.14] indicates that we
can assume that G is split. Then part i) shows that Fz(A) = 7y CTp(A)[deg]. By
Proposition [8.2]i), the object F(A) lies in Shvei(Z, A), and Fy is exact. Since 77
is ind-finite by Proposition iii), Proposition shows that Fz is conservative,
and by taking differences of morphisms, exactness and conservativity imply that
Fy is faithful. This yields part ii).

For part iii), Proposition [8.4] indicates that F(A) lies in LocSys(Z, A). Finally,
by taking differences of morphisms, it suffices to show that, for all morphisms
f: A= A" in Sat(Hcks|z, A) such that coker Fz(f) is a direct summand of Fz(A),
the object coker f in Perv(Hcky|z, A) lies in Sat(HckZ|z, A). This follows from

Proposition and Proposition O

8.6. We can use Proposition [8.5]to prove that Verdier duality preserves the Satake
category. More precisely, write I : Dei(HckZ |z, A)VA — Dy (Hekl| 2, A)VEA for
the Verdier dual as in [I4] IV.2.3.1] on HCkéKu. |z relative to Z/(L} G), where po
runs over (X, (Tw)*)”. -

Proposition. Let A be in Dy (Hcks|z, A)UEA.
i) The object A lies in P D" (Hckl|z, A)P? or PDZ0(Hckd |z, A)PY if and only if
D(A) lies in ngo('HckaZ, AP or pDio(’HckaZ,A)bd, respectively.
i) If A lies in Sat(Hckl|z,A), then D(A) lies in Sat(Hckl |z, A).

Proof. For part i), we start with the first equivalence. Corollary i) and [14}
Proposition IV.2.15] imply that we can assume that Z is a geometric point. Then
the result follows from [36] Proposition 23.3 (ii)] and the proof of Corollary [8.3}ii).
As for the second equivalence, it follows from [I4, Corollary IV.2.25] and the first
equivalence.

For part ii), Corollary i) implies that we can replace Z with a v-cover, so
indicates that we can assume that G is split. Part i) shows that D(A) lies in
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Perv(HckZ|z, A), so Proposition i) and [36, Proposition 23.3 (i)] indicate that
71 CTpp(D(A)) [deg] = @) HY(reaD(A)) = @) H (m.D(4))

deZ dez
= @Hd(%om/\(ﬂ'g!fl, A)) = %OmA<@Hd(7TG!A)7A)7
deZ deZ

since @ e, H (71 A) lies in LocSys(Z, A), by Proposition iii). Therefore
71 CT(D(A))[deg]
also lies in LocSys(Z, A), so the result follows from Proposition O

8.7. In this subsection, assume that G is split. The following construction provides

an important source of objects in the Satake category. Write j,, : ’Hck{Gfi — ’Hck{G*}
for the locally closed embedding from

Proposition. The objects PH(j,uA[d,]) and PHO (3, Ald,]) of Perv(?—[ckg}|Z,A)
lie in Dét(Hckg}\Z,A)ULA, and their values under CT gldeg] are locally constant

with finite free fibers. Consequently, the same holds for their values under Fyz, and
PHO(3,uA[d,]) and PHO (3, Ald,]) lie in Sat(Hcks |z, A).

Proof. The first sentence follows from the proof of [14, Proposition VI.7.5]. The
second sentence follows from Proposition [8.5i) and Proposition O

8.8. We now give our first definition (via convolution) of the monoidal structure
on the Satake category. Proposition [7.4] implies that we have a cartesian square

Hekl, ——— (Divy) /(LT G)

| |

(Divx)?/(L3G) — (Divy)”/(LsG).

Taking into account the discussion on [14} p. 224], this identifies Dg;(Hcks |z, A)P4
with the category of l-endomorphisms of the object Z/(LFG) in the 2-category
Cz/(L,c) as in [14, IV.2.3.3]. Write

* : Dy (Hekl |z, A)PY x Dy (Hekl| 7, A)PY — Dy (HekZ |z, A)P?

for the monoidal structure arising from composition of 1-morphisms in Cz/ (1, ,a)-

Proposition. Let A and A’ be in Dg(Hckl| 7, A)P.
i) If A and A lie in Dg(HckZ|z, A)U™2, then Ax A’ lies in Dey(Hckl |z, A)VEA.
i) If A and A’ both lie in ? D5 (Hckd |z, A)PY or PDZ0(Hekl |z, A)P9, then Ax A’
lies in P D5 (Hckl| 2, MPD or PDZ0 (Hckd |z, A)PY, respectively.
iii) If A and A’ lie in Sat(Hckl|z, A), then Ax A’ lies in Sat(Hcky|z, A).

Proof. Proposition[7.7]i) lets us apply [14] Proposition IV.2.26] and [14], Proposition
IV.2.11] to show part i). For part ii), Corollary i) and [36, Proposition 22.19]
imply that we can assume that Z is a geometric point. Then the first statement
follows from and [I4, Proposition VI.8.1 (ii)]. By Proposition [8.6]i) and [14]
Theorem IV.2.23], the second statement follows from the first.
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For part iii), part i) shows that A« A’ lies in Dy (Hcky|z, A)VMA. Since
(A*AI) Rp M = (A®A M)*(A/ XA M)

for all A-modules M, the result follows from part ii). O

8.9. The machinery of [I4, Section IV.2.3.3] shows that the Satake category has
duals with respect to convolution.

Proposition. Let A be in Sat(’}-[cké\z, A). Then A is dualizable with respect to *,
and its dual is isomorphic to sw* D(A).

Proof. Taking into account the discussion on [14], p. 224], we see from [14, Propo-
sition IV.2.24] that the dual of A in Dét(HCké\Z, A)P? is isomorphic to sw* D(A).
Proposition ii) shows that ID preserves Sat(HckZ|z, A). Finally, Corollary i)
and the proof of Corollary ii) indicate that sw* preserves Sat(HckZ|z,A). O

8.10. Next, we give our second definition (via fusion) of the monoidal structure
on the Satake category. Let P = {J1,...,Js} be an ordered partition of J. Under
the identification from write

* : H Dgy (;’{Cké’C y A)bd — Dgy (HCké|(DiV§()P, A)bd
k=1

for the functor that sends (Ay,..., As) — (A1 K-+ B A,)|(pjy1 y». By the Kiinneth
formula and [36, Proposition 22.19], % is monoidal with respect to [[;_; * on the
source and * on the target.

Because the identification from [7.9)is independent of the ordering of P, we have
a natural isomorphism Ay * - - % Ay = A, (1) * -+ * Ay for all o in the symmetric
group G,. Using Proposition iv), replace these natural isomorphisms with their
modified version as in [14, p. 228].

8.11. Lemma. If Ay lies in Sat(Hcké’“,A) forall1 <k <s, then Ay x---x A lies
in Sat(Hek | pivi e, M)

Proof. The Kiinneth formula indicates that Ay % --- % A lies in
Dét(HCké|(Div§()Pa A)UEA,

Next, we have (A% % As) @A M = (A1 @4 M) - -x (As @5 M) for all A-modules
M, so it suffices to show that Ay *---* Ay lies in Perv(’Hcké|(DiV y, A). Corollary
i) implies that we can replace (Div)? with a v-cover, so indicates that
we can assume that G is split. Then Proposition i) shows that the desired
condition is equivalent to CTp(A; * - -« x A)[deg] being concentrated in degree 0.

Since hyperbolic localization is compatible with exterior tensor products and deg
is compatible with Corollary indicates that the above is isomorphic to
(CTp(A1)[deg] K- K CTp(As)[deg]) y(

Divl )P’

so applying Proposition i) again s times yields the desired result. [
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8.12. The Satake category enjoys the following functoriality with respect to sur-
jective maps ¢ : J— J’ of finite sets. Note that we have a natural identification

Hekl, X (Divk )7 (Divk)” = Hcké, and hence a natural morphism ( : Hckg — Hekl,
over the morphism ¢ : (Divy)”?" —(Div)”. The resulting pullback

¢* : Dgy(Hekdy, A)PY — Dy (Hekdy , A)P
sends Sat(HckZ, A) to Sat(’Hck‘g, A) by Proposition ii), and the square

Sat(HekZ, A) — " Sat(Hek , A)

| [

*

LocSys((Divy)”, A) <, LocSys((Divy )7, A)
commutes by [36, Proposition 22.19].

8.13. We need the following version of “analytic continuation” for the Satake cat-
egory. Write Jp : (Divy )P —(Div})? for the open embedding from and write

Ip: [(Div}()J — (Divk)P} —(Divy)”’
for the complementary closed embedding.
Lemma. For all A in Sat(HckZ, A) and B in LocSys((Div)”?, A), the morphisms

A—=PH(Jp,5A) and B — H'(p.)i B)
are isomorphisms. Consequently, the pullback functors

Sat(Hckg, A) = Sat(HckZ | pivi ye, A)

LocSys((Divy)”’, A) — LocSys((Divy )", A)

are fully faithful.

Proof. If #J = 1, then (Div)? = (Div)’, and there is nothing to prove. Hence
assume that #J > 2. For the statement about B, the excision exact triangle

+1

1013 B s B

implies that it suffices to prove that 1p,15B lies in D;Q((Divﬁ()‘], A). Now Corollary
shows that (Divy)” is cohomologically smooth of dimension #.J > 2 over
N U {00}, and it also shows that (Div )’ — (Divk )P has a stratification by locally
closed subsheaves that are cohomologically smooth of dimension 1 over NU {co}.
Because B lies in LocSys((Divy )7, A), using [36, Proposition 23.16 (iii)] to work
étale-locally yields the desired result.

We turn to the statement about A. The excision exact triangle

+1
IP*ILA A JexJp A ’

implies that it suffices to prove that 1p,154 lies in ? DéZtQ(’Hcké, A)P4. Since

Divy gy — Divy
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is an étale cover, [36, Proposition 23.16 (iii)] and imply that we can assume that
G is split. Then Proposition i) shows that the desired condition is equivalent

to CTg(1px1pA)[deg] lying in Dé—>t2((DiV§()']7 A), and Corollary yields
CT 5 (1ps1pA)[deg] = 1p,15 CT5(A)[deg].

Proposition indicates that CTp(A)[deg] lies in LocSys((Divk)”, A), so the de-
sired result follows from the above work. O

8.14. At this point, we can prove that fusion yields a symmetric monoidal structure
on the Satake category, as well as that fusion agrees with convolution.

Proposition.
i) The image of

w1 ] Sat(Hcklr, A) — Sat(Hck | iy, e, A)
k=1

lies in the image of Sat(’Hcké,A), and the square

[1;_, Sat(Hckl, A) ——— Sat(HckZ, A)

ll‘lz_l Fk lF"

[T;_, LocSys((Divk)”, A) —2 LocSys((Divk)’, A)

commutes. Moreover, this is functorial in refinements and permutations of P.
it) The functor x is naturally isomorphic to the composition

Sat(Hck, A) x Sat(Hck, A) —— Sat(HekZ7 A) —* Sat (Hckl, A),

where ¢ : J|[J — J denotes the natural map. Consequently, * is naturally a

symmetric monoidal structure, and F7 is symmetric monoidal with respect to
* on the source and @ on the target.

Proof. We start with part i). The first statement follows from the proof of [14]
Definition/Proposition VI.9.4]. As for the second statement, Lemma shows
that it suffices to check that the square

[T5—, Sat(HckZ, A) —— Sat(Hck| i1, > A)

lH21 Fk lF(Divﬁ()P

[1;—, LocSys((Divi)”s, A) N LocSys((Div )P, A)

commutes, and this follows from the Kiinneth formula. Finally, the last statement
follows from R.10l

For part ii), part i) and imply that the composition yields a symmetric
monoidal structure that commutes with x. Therefore the Eckmann—Hilton argu-
ment shows that it is naturally isomorphic to %, so the last statement follows from
part i). O
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8.15. Let us explicate the target of our fiber functor F/. Recall from the
group topological space W over N U {oo}. Because W is lctd over N U {oco} as
in Definition so is the J-fold fiber power W’ of W over N U {c0}. Recall
from Definition the category Rep(W”, A), and write Rep(W7, A)' for the full
subcategory of Rep(WY, A) given by objects whose underlying sheaf of A-modules
on NU {oo} is locally constant with finite projective fibers.

For the rest of this paper, we work over SpdF,.

Lemma. The category Shve, (Divy, A) is naturally equivalent to Rep(W, A), and
the category LocSys((Div)”?, A) is naturally equivalent to Rep(W7, A)P.

Proof. The second statement follows from Proposition [3.18 and Lemma As
for the first statement, Proposition identifies Spd C with NU {oo} x SpaCw,
so the pullback functor Dg; (N U {oo}, A) = D (Spd C, A) is an equivalence. Hence
the desired result follows from Proposition [3.17] and Lemma [1.6 ([

8.16. When applying Tannakian reconstruction to the Satake category, we con-
sider the latter as an enriched category in the following way. Using the identification
from Lemma we obtain an action

@4 : Rep(W7, AP x Dep(Hckl, A)Pd — Dy (Hcks, A)P?

with respect to ®a on Rep(W7, AP given by (B, A) — 75 B ®, A. By the adjoint
functor theorem, this induces a Rep(W, A)P-enriched structure on Dy (Hcky, A)P9.

Lemma. The action ®, preserves Perv(Hckl, A) and Sat(Hckl, A). Moreover,
F7 is Rep(W”, A)P-linear.

Proof. Let B be in Rep(W”7, A)'?, and let A be in Perv(?—[cké, A). For all geometric
points 5 of (DivY)”, the pullback (7§ B)|s is a finite free A-module concentrated in
degree 0, so Corollary i) implies that 75 B®x A lies in Perv(Hck‘(];, A). Next, the
projection formula [36, Proposition 22.23] shows that F” is Rep(WY, A)P-linear.
Finally, suppose that A lies in Sat(Hcké, A). Since

(r&:B @y A) @A M =n5B@p (AQp M)
for all A-modules M, the above indicates that it suffices to check that 7%, B®x A lies

in Dy (HckZ, A)VA. Using [14, Proposition IV.2.13 (ii)] and we can assume
that G is split. Then combining Proposition [8.5i) with the above shows that

CTp(nB @) A)ldeg] = F/ (B @p A) = By F/(A) =2 B®y CTp(A)[deg).

Proposition indicates that CT(A) lies in Di.((Div)”?,A). Since B also lies
in Di.((Div)”’, A), applying Proposition again yields the desired result. [

8.17. We now prove the co-representability results needed to apply Tannakian
reconstruction. For all j in J, let §; be a finite I'o-stable downwards-closed sub-
set of X, (T )". Proposition i) shows that the substack (J,, HckéFéu. C
'HckéF, where pe runs over Hje 78, is closed, and it descends to a closed sub-
stack Hcké’g C Hcky,. Write Perv(?—[cké’dz, A) and Sat(?-lcké,dz, A) for the full
subcategories of Perv(?—lcké\ z,\) and Sat(?—lcké\ z,\), respectively, consisting of
objects that are supported on "Hcké,ﬂ|z.
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For the rest of this subsection, assume that #.J = 1. Under the identification
from Lemma write Lo : Rep(W,A) — Perv(?—[ckg];), A) for the left adjoint of

Fli} . Perv(?—[ckgé, A) = Rep(W, A), which exists by the adjoint functor theorem.

Proposition. The object Lq(A) lies in Sat('Hckéi%,A),

Proof. Corollary [8.3]i) and [14, Proposition IV.2.13 (ii)] imply that we can replace
Divﬁ( with an étale cover, so[7.14]indicates that we can assume that G is split. By
Proposition and Proposition [8.4] it suffices to show that CT g(Lq(A))[deg] lies
in Rep(W,A). Because this is checked on underlying sheaves of A-modules on
N U {o0}, Corollary indicates that we can work over Z = Spd C. Moreover,
Proposition [8.5}i) lets us replace CTp(Lq(A))[deg] with Fz(La(A)), and it suffices
to consider A = Z /™.

For all p in X, (T ), we claim that jj Lo(A) in Dét(HCkg,i\Z, A) is a constant
finite free A-module concentrated in degree —d,,. Since A = Z/{™, Proposition
implies that it suffices to show that Hom(j% Lo (A), A[d,]) is a constant finite free
A-module. By adjunction and Corollary ii), we have

Hom();, La(A), Ald,]) = Hom(Lo(A), )us Ald,.]) = Hom(La(A), H (3. Ald,])
= Hom(A, Fz("H° (1. A[du]))) = Fz("H (1. A[d,])),

so the claim follows from Proposition
Let 1 be a maximal element of 2. The excision exact triangle associated with

Hekl ) s Heklh o Hekl !

K G7Q_{M}
and Lq(A) yields the perverse cohomology long exact sequence
0 —— K ——"H()u); La(A)) Lo(A) Lo_{uy(A) ——0

for some K in Perv(?—[ckggﬂ z,M). The claim and Proposition indicate that
Fz(PH® (i La(A))) is locally constant with finite free fibers, and by induction on
#, we can assume that the same holds for Fz(Lg_g,3(A)). Hence Proposition
ii) implies that it suffices to show that K is zero.

Now [36], Proposition 14.3] shows that it suffices to check on geometric points §

of Hckg’]gﬂz. The image of 5§ in NU{oo} equals {7} for some ¢ in NU{oo}, and under
the identification Hckg} iy = ’H,ckgi} from combining Proposition i) with
Corollaryimplies that Lq is compatible with pulling back to Hckg;}. Therefore
the desired result follows from the proof of [I4, Proposition VI.10.1]. O
8.18. Forall jin J, Propositionindicates that Lq, (A) lies in Sat(?-[ckg’];lj ).
Hence we can form *;cj Lo, (A) in Sat(?—lckéﬂ, A).
Corollary. Under the identification from Lemmal[8.15, the functor

F’: Sat(Hckl o, A) — Rep(W”, A)fP
is co-represented by *jc 1 Lo, (A).

Proof. We have the unit morphism A — F{7} (L, (A)), so taking X, e and applying
Proposition i) yields an element of

Hom(A, F”/ (*c5 L, (A))) = Hom(Lo(A), *je 5 Lo, (A)).



ON CLOSE FIELDS AND THE LOCAL LANGLANDS CORRESPONDENCE 75

Write P for the partition of J into singletons. We claim that the resulting morphism
JpLa(A) =) (¥jes Lo, (A))

is an isomorphism. To see this, [36, Proposition 14.3] implies that it suffices to
check on geometric points 5 of HckékDiv}()p, SO indicates that we can assume
that G is split. Now the image of 5 in NU {cc} equals {i} for some i in NU {co},
and under the identification Hcké\{i} = ”Hckéi from the proof of Proposition
shows that Lq is compatible with pulling back to ’Hckéi. Therefore the claim
follows from the proof of [14, Proposition VI.10.1].

Finally, for all A in Sat(?-lcké’ﬂ, A) we have

F’(A) = Hom(A, F7/(A)) = Hom(Lq(A), A)
= Hom(Lq(A),” H(Jp.j5 A)) by Lemma [8.13
= Hom(Lq(A), JpxJpA) by Corollary [8.3]ii)
= Hom(jp Lo (A),)pA)
= Hom(jp (*jcs Lo, (A)), 15 A) by the claim
= Hom(*;c; Lo, (A), A) by Lemma [8.13
as desired. O

8.19. To identify the Hopf algebra arising from Tannakian reconstruction, we want
to work with Qg-coefficients. This requires us to first work with Z,-coefficients, so
let us explicate the Z,-version of the target of our fiber functor F/.

Later, it will be convenient to work in the following generality. Let L/Qg be a
finite extension, write Oy, for its ring of integers, and write A for the maximal ideal
of Op. Write Rep(W7, O1) for the inverse limit lim Rep(W7, O /Am)fP,

Lemma.

i) The category
{finite projective Cont(NU {co}, Or)-modules}

is naturally equivalent to the category of topological Op-module topological
spaces V' over N U {oo} that, open-locally on N U {oo}, are finite free topo-
logical Or-module topological spaces.

ii) The category Rep(W”7,Op)® is naturally equivalent to the category of V as
in part i) along with a continuous Or-linear action W’/ XNU{oo} V =V over
NU {oo}.

Proof. All finite projective Or,/A\™-modules are free, and Oy, /A™ is discrete. There-
fore [21, Lemma B.2.5] implies that the category

{finite projective Cont(NU {oco}, Or/A™)-modules}

is naturally equivalent to the category of Or,/\™-module topological spaces V,,, over
NU {oo} that, open-locally on NU {0}, are finite free O /A™-module topological
spaces. This identifies Rep(W”, O /A™)® with the category of such V,,, along with
a continuous O, /A™-linear action WY X y{o0} Vin — Vi Finally, taking lim yields
part i) and part ii). O
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8.20. We now put everything together to apply Tannakian reconstruction. Write
Sat(#ckZ, Op) for the inverse limit Hm Sat(HckZ, Op /™).

Theorem. The Rep(W”, Z,)P-enriched symmetric monoidal category Sat(Hcky, Zq)
is naturally equivalent to the category of representations of the Hopf algebra

HE = lim  F7(%es Lo, (Ze)) € Ind(Rep(W7, Z,)™)
{Qj}jes

in Rep(W7, Zy)'P, where {Q;} ;e runs over collections of finite T« -stable downwards-
closed subsets of X.(Too)" indexed by J. Moreover, we have HY, = @ ¢, ’Hg}.

Proof. The second statement follows from Proposition i), so we focus on the
first statement. We claim that the category Sat(’HCké, Zy) and the functor

F7 : Sat(Hckl, Zo) — Rep(W/, Z,)P

satisfy the conditions in [14, Proposition VI.10.2]. Proposition indicates that
Sat(Hcky, Zy) is rigid, and Proposition indicates that Sat(Hcky,Ze) and F”7
are symmetric monoidal. Moreover, Sat(Hcky, Z¢) admits and F7 reflects coequal-
izers of F/-split pairs by Proposition iii). Finally, Proposition [7.7}iii) shows
that Sat(Hcky, Z¢) equals the filtered union Ui, 1,e Sat(HckéQ, Zy), and Corol-
lary shows that the restriction of F'/ to Sat(Hcké’Q, Zy) is co-represented by
*jcg La,(Z¢). This yields the claim.

The claim and [I4, Proposition VI.10.2] yield the first statement. O

8.21. We have the following version of the L-group for G over N U {oo}. Recall
from the pinned split connected reductive group (G*,T%, X*(T%), A, {xz}aen)
over Z and the homomorphism

0: Gal(Foo/Foo) = Aut(G®, T°, X*(T%), A, {zz}aen)-

Write G for the associated Langlands dual over Z;, and topologize Og as the
filtered union of finite free Z,-submodules with the ¢-adic topology. Then ¢ induces
a continuous Zg-linear action a : Gal(Fx/Euw) X Og— Og. Write Gaq for the

adjoint group of @, and note that the composition

. R
727} L GaalZe)

induces another such action ¢ of Z on Og that commutes with a.

Write & for the topological Z,-module topological space over NU {oo} given by
Oz x(NU{oo}). Because E — F induces a morphism W — Gal(Fl/ Eo) x (NU{oo})
of group topological spaces over NU {00}, we get a continuous Z-linear action a of
W on 0z over NU {oo}. Precomposing ¢ with W— 7Z x (N U {oo}) yields another
such action, and after multiplying by a, endow Oz with the resulting continuous
Zy-linear action over NU{oo}. Under the identification from Lemma(8.19} view 0z
as an object of Ind(Rep(W, Z)P).

8.22. First, we identify Hg} after inverting £. Write Rep(W, Q)™ for the category
Rep(W, Z¢)'P[1], and write Sat(#ckZ, Qp) for the category Sat(Hcky, Zg)[3).
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Theorem. There is a natural isomorphism
Ogl3] S HE 3]
of Hopf algebras in Ind(Rep(W, Qy)™).

Proof. Write Z for Spd C', write )y : Z Xnyu{oo} N— Z for the open embedding, and

recall the notation of For all  in X, (Tx)*, write V,, in Rep(@(@z) for the
associated Weyl module. For all 7 in NU {oo}, it follows from [7.5|and [14], Theorem
VI.11.1] that we have a natural Q-linear symmetric monoidal equivalence

Ziv@f)

such that Fyz, : Sat(?—[ckg}\zi,(@g)%Shvét(Zi,Qg) = Vect(Qy) corresponds to
the forgetful functor Rep(@@i) — Vect(Qy), and that €;(V,,) = PH?(3,uQelz,[d,]))-
We use Proposition ii) and [36, Proposition 22.19] to identify the latter with
pHO(Ju!QE[duD) Z;-

First, let us construct a Q-linear functor € : Rep(Gg,) — Sat(?—[ckg}|z, Q¢). By
we can assume that G is split, so Proposition [8.7] lets us take

(V) = PH' (0w Qeldy])-

For all ¢/ in X,.(T»)™" and all morphisms f : V,, = V,,/, we claim that there exists a
unique morphism €(f) : e(V},) = €(V,,/) such that e(f)|z, = €;(f) for all ¢ in NU{co}.
To see this, write ex(f) : )5€(Vy,) = 1ne(Vy) for the disjoint union [, €;(f), where

i runs over N. The description of Dét(HCk{G*}|Z, A) in terms of the decomposition

€ Rep(@@e) = Sat(Hck{G*}

H Hcké*} |Zi — HCké*} |Z — Hcké*} |Zoo s

(3

which follows from [36] Proposition 14.3], indicates that it suffices to check that
Vi)l zoe — Inudfie(Vi)| 2o
Jeoo(f) l‘]N*EN(f)Zoo
eV )lze — Inadie(Vir) | 2o
is commutative. Corollary ii) implies that this is equivalent to checking that
(Vi) ze —— "H (mdfie(Vi))l 2
Jem(f) J:DHO(JN*EN(f))Zoo
e(Vi)lze —— PHO (Vi) 2.

is commutative, and Proposition ii) indicates that it suffices to check after ap-
plying F__. By combining Proposition [8.5]i) with Corollary this becomes

Vi —— Vi ®q, lim, Cont(U — {oo}, Qr)

P

V’u, —_ V,U/ ®Q[ hﬂU COHt(U - {Oo}a(@e)v
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where U runs over compact neighborhoods of co, and the top and bottom maps
are induced by the natural map Qg — lim,; Cont(U — {o0}, Qp). This square indeed
commutes, so the claim follows.

Since Rep(éQZ) is semisimple with simple objects given by the V), the claim
finishes our construction of e. Arguing as above also shows that e is symmetric

monoidal, so it induces a morphism Oz[] %Hé*}[%] of Hopf algebras in
Ind{finite projective Cont(N U {00}, Qp)-modules}.

To show that this is an isomorphism that, under the identification from Lemma
8.19] preserves the continuous Qg-linear W-action, it suffices to check on fibers.
Finally, the result follows from [7.5| and [I4, Theorem VI.11.1]. O

8.23. Finally, we use Theorem to identify H57 before inverting £.
Theorem. There is a natural isomorphism
Os 3HE!
of Hopf algebras in Ind(Rep(W, Z;)P).
Proof. Note that and [I4, Theorem VI.11.1] yield a natural isomorphism
Oz @Cont(NU{oc},ze) Cont(N, Zy) Sl ®Cont(NU{oo},z,) Cont(N, Zy)
of Hopf algebras in
Ind{finite projective Cont(N,Z,)-modules},

and Theorem yields a natural isomorphism 05[] = ’Hé*} [+] of Hopf algebras
in Ind(Rep(W, Q,)'). Because N is dense in NU {oc}, the square

Cont(N U {c0},Z¢) —— Cont(N U {cc}, Qp)

| |

Cont(N, Z;) ——— Cont(N, Qy)

is cartesian. Our natural isomorphisms are compatible with this cartesian square,
and since Og and ’Hg} are both flat over Cont(NU {00}, Zy), this induces a natural
isomorphism O = ’Hg} of Hopf algebras in

Ind{finite projective Cont(N U {co},Z,)-modules}.

To show that, under the identification from Lemma this isomorphism preserves
the continuous Z,-linear W-action, it suffices to check on fibers. Finally, the result
follows from and [I4, Theorem VI.11.1]. O

9. LOCAL LANGLANDS OVER CLOSE FIELDS

In this section, we put everything together to prove Theorem A and Theorem B.
We start by proving that étale sheaves on certain classifying stacks are equivalent
to smooth representations, thereby geometrizing the setting of Next, we use
results from to spread out geometric Hecke operators from E,, to E. After
proving basic facts about geometric Hecke operators over F, we prove Theorem A
using results from §6] and a spreading out argument. Finally, we combine this with
results of Bernstein [3] to prove Theorem B.
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9.1. Recall the notation of Proposition [I.7] Recall from [6.4] the group topological
space K" over N U {oco}, which is naturally an open group subspace of G(E) over
N U {oo} by Proposition Let H be one of {G(E),K"}.

Let A be a ring that is ¢-power torsion.

Proposition. There is a natural equivalence of categories
F—y: D(H,A) 5 Dy (BH, A).

Proof. First, let us construct a natural functor F(_y : Rep(H, A) — Shvs (BH, A).
For all locally profinite topological spaces X over NU {co} and small v-stacks Z
over NU {00}, one can show that the natural map |X XNU{oo} Z’ — X XNU{oo} 1]
is a homeomorphism by reducing to the case where X is profinite. Because G(E) is
locally profinite by Proposition this implies that, for all H-torsors S — S in the
category of v-sheaves, |§ | naturally has a continuous action of H over NU{oo}. For
all smooth representations V' of H over A, write Fy for the presheaf of A-modules
over BH given by sending S — S to the A-module

{ continuous H-equivariant maps ‘g | =V over NU {0} }.

By [36, Proposition 12.9], Fy, is a v-sheaf. Since continuous H-equivariant maps
H Xnu{oo} |S] =V over NU {oo} are equivalent to continuous maps |S|—V over
N U {oo}, the pullback Fv|yufse} is naturally isomorphic to V. over NU {oc}, so
[36, Remark 14.14] shows that Fy lies in Shve,(BH, A).

Note that F(_y is exact. Hence [36, Proposition 14.16] indicates that it extends
to a functor F(_y : D(H, A) — D¢ (BH, A). Let 5 be a geometric point in Perfg
and note that the functor X — (X /H) x 5 yields an equivalence of sites

{étale H-spaces} ~5(BHiz)¢ .-

Therefore we get a commutative diagram

Fi_
D(H,A) —— 5 D¢ (BH, A)

|

D({étale H-spaces}, A)

|
D((BHz)ey, A) ——— D¢y (BHz, A),

where the top left equivalence follows from Corollary The right functor is fully
faithful by [36, Proposition 19.5 (ii)], so it suffices to show that the bottom functor
is an equivalence.

For full faithfulness, write A : (BHsz), —(BHsz)s for the natural morphism of
sites. To prove that the natural transformation id — A, A* on D((BHz)gt, A) is an
isomorphism, we can replace BH with an étale cover. Hence we can assume that
H is K™. Then the fiber H; is a pro-p group for all ¢ in N U {co}, so checking
on stalks shows that the morphism of ringed sites ((BHz)gt, A) = ((NU {Oo}g)ét, A)
has cohomological dimension 0. Because [36, Lemma 7.2] indicates that

(NU {00} ), A)
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has cohomological dimension 0, this shows that ((BHz)st, A) also has cohomological
dimension 0, so 40, Tag 0D64] implies that D((BHz)¢t, A) is left-complete. Since
D¢ (BHz, A) is also left-complete by [36, Proposition 14.15], it suffices to restrict
to Dt ((BHsg)et, A). Then the desired result follows from using Cech cohomology
along the cover NU {oo}§—> BHz and the fact that H; is a pro-p group for all ¢ in
NU {oo}.

We turn to essential surjectivity. Full faithfulness implies that it suffices to
consider F in Shvg (BHz, A), and pullback yields a v-sheaf F |Nu{oo}? of A-modules

over NU {oo}_ with a descent datum with respect to
NuU {OO}§ — BH;
Because Fu{oo} 1s étale over NU {oo}§7 it corresponds to a A-module étale topo-

logical space V over NU {o0}. Lemma shows that the descent datum endows
V' with a continuous A-linear action H Xyyoey V — V over NU {oc}, and descent
[36, Proposition 17.3] identifies Fy with F. O

9.2. We have the following analogue of the (global) Hecke stack in our setting.
Recall from [7.1] the closed Cartier divisor Dg — Xg.

Definition. Write Hcky, for the presheaf of groupoids on Perfg —over (Divy )’
whose S-points parametrize data consisting of

a) two étale G*"-torsors ¢ and ¢4’ on Xg,
b) an isomorphism

p: g‘XS*DS ;gl|XS*DS
of étale G*"-torsors on Xg — Dg that is meromorphic along Dg.
Proposition and Proposition imply that Hck, is a v-stack, and the
proof of [14, Proposition II1.1.3] shows that Hck, is small. Proposition also

indicates that pullback to the completion of Xg along Dg induces a morphism
L : Hekl, — Hckl,. Finally, note that we have natural morphisms

p1 P2

HckZ,

Bung Bung Xnu{oo} (Divy )’

given by (4,9, p) — ¢ and (¢4,9',p) — ¥', respectively. Using Beauville-Laszlo
gluing, Proposition i) and Proposition iii) imply that ps is ind-proper.

9.3. Theorem lets us spread out geometric Hecke operators from E., to E as
follows. Recall from the action a of Gal(Fi/Fo) on G and the action ¢ of Z

on G. Form the semidirect product G x Gal(F/FE~) via the action a. By using
\/q to untwist the action ¢, Theorem yields a natural functor

PN J
Sy : Rep (G Gal(Foo/Exc)), ) = Sat(Heky, Zely/al).
Let A be a Z[/q]-algebra that is £-power torsion, and write S(_y for the composition

~ J S J —®A J
Rep (G Gral(Foo/Eoo))Zz[\m —— Sat(Hckg, Ze[\/q]) — Sat(Hckg, A).
For all V in Rep (G x Gal(Fa/FEx)) Zz[ g Write

TV : Dét (Bung, A) — Dét (BUHG XNU{OC} (Divk)‘], A)
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for the functor given by A +— poi(pj A @4 L*Sy).
Proposition. The pullback functor
De(Bung Xnugoe) BW”, A) = De(Bung Xnugoo) (Divy)”, A)
is fully faithful, and the image of Ty lies in the image of Dg (Bung XNU{OO}BW‘], A).

Proof. The first statement follows from applying Proposition #.J times. For
the second statement, note that V +— Ty is exact and compatible with exterior
tensor products. Since Dgi(Bung X NU{OO}BWJ , ) is left-complete [36], Proposition

14.15] and V has a resolution whose terms are of the form X;c; V; for V; in

Rep (G x Gal(Fu/Exc)),, et

this indicates that we can assume that #J = 1. Then the result follows from
Proposition [6.14] and Proposition |3.17] (]

9.4. As usual, geometric Hecke operators enjoy the following properties. For all

V in Rep (é x Gal(Fao/Eu)) write Ty for the composition

J
Zel\/a)’
Dée(Bung, A) — Deq(Bung Xnuoo} BW?, A) —— Dy (Bung, A).

Proposition. The functor Ty v is left and right adjoint to Ty, . Consequenty, Ty
preserves limits, colimits, and compact objects.

Proof. Note that V' — Ty is monoidal with respect to ®, on

= J
Rep (G x Gal(FOO/EOO))ZZ[\/ﬂ

and composition on the category of functors D¢ (Bung, A) = Dg;(Bung, A). There-
fore the evaluation and coevaluation morphisms for V' induce the counit and unit,
respectively, for the desired adjunctions. O

9.5. For all 7 in N, recall from the absolute ramification index e; of E;, and
recall from the isomorphism I';/I7" = T' /IS of topological groups. Let P be a
compact group subspace of W over N U {oo} satisfying the following properties:

a) for all ¢ in NU {oo}, the fiber P; is a normal subgroup of W; that is an open
subgroup of the wild inertia subgroup,

b) there exists a positive integer d such that, for all ¢ in N U {oo}, the fiber P;
contains I?, and for large enough i, the image of P; under the isomorphism
[;/I¢ =T /I (since i is large enough) equals the image of Py.

By repeating Definition [2.6/a) (except that we replace I'; /I¢ with W, /P;), we obtain

a natural group topological space W/P over NU {oco} whose fiber at ¢ is isomorphic

to W;/P;. Arguing as in the proof of Lemma shows that the map

qg:W—->W/P

whose fiber at ¢ equals W; — W, /IP; is continuous, and by checking on fibers, we see
that ¢ is a morphism of group topological spaces over N U {oc}.

9.6. Proposition.
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i) The pullback functor
(id xq)* : Dt (Bung Xnugoo} B(W/P)?, A) = Dt (Bung Xnugeo} BWZ, A)

is fully faithful.
i1) Let A be a compact object in Dg(Bung, A). Then there exists a group subspace
P of W over NU {oc} as in[9.5 such that, for all finite sets J and V in

~ J
Rep (G Gal(Foe/Ex)) 3,

the object Ty (A) lies in the image of Dey(Bung Xnujsoy B(W/P)7, A).
Proof. For part i), it suffices to show that the pullback functor
(id xq)* : Du(Bung xny(se) B(W/P)”, A) = Du(Bung Xnujec} BW’, A)

is fully faithful. The projection formula [14], Proposition VII.3.1 (i)] indicates that
it suffices to show that the counit morphism (id x¢)yA — A is an isomorphism, and
combining the cartesian square

id
Bung Xy (ac} BW ——% Bung X (sc} B(W/P)?

J J

BW/ 1 B(W/P)’

with [I4] Proposition VIL.3.1 (iii)] implies that it suffices to show that the counit
morphism ¢;A — A is an isomorphism. Using descent [36, Proposition 17.3] and
applying [14} Proposition VII.3.1 (iii)] again indicate that it suffices to show that
the structure morphism pr : BPY - NU {co} induces an isomorphism pr, A — A.
Finally, this follows from P; being a pro-p group for all ¢ in NU {oo}.

For part ii), note that V +— Ty is exact and compatible with exterior tensor prod-
ucts, so it suffices to consider a tensor generator V' in Rep (CA? xGal(Fx/Exo))

Ze[\/a)
Now D¢t (Bung, A) naturally has the structure of a condensed (oo-)category over

NU {oo} via sending any extremally disconnected profinite set X over NU {00} to
Dgi(Bung Xnugoc} X, A), and descent [36, Proposition 17.3] implies that

Dy (BUDG XNU{OO}BW’ A)

is naturally equivalent to the category of objects A’ in D¢ (Bung, A) along with
a morphism W — Aut(A’) of condensed animated groups over N U {co}. Because
Ty (A) is a compact object in Dg (Bung, A) by Proposition the condensed
animated group Aut(Ty(A)) over NU {oo} is étale over NU {oo}. Since A is ¢-
power torsion but P; is a pro-p group for all ¢ in NU {oo}, the result follows. O

9.7. Before proceeding to our main theorems, we need the following preparations.
Write j : BG(E) — Bung for the open embedding from Proposition Now
preserves compact objects, and Proposition [1.14] implies that the same holds for
C—Indg,(LE). Hence A := c—Indg,(L]E) A is a compact object in De(Bung, A). Write P
for the group subspace of W over NU{oo} as inprovided by applying Proposition
[0.6}ii) to A.

For all ¢ in NU {oo}, choose lifts @; and 7; to W;/P; of absolute g-Frobenius and
of a (topological) generator of tame inertia, respectively, such that, for large enough
1 as in b), the images of @; and 7; under the isomorphism W;/P; & W, /Po
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equal Qo and 7o, respectively. Write Exc(W;/P;, é) for the associated excursion
algebra over Zg[,/q] as in [14, Definition VIII.3.4].

Recall the notation of Definition [1.17] Briefly, relax our assumption that A is
{-power torsion. Write Zx(G(E;), K?) for the center of H(G(E;),K})a, and recall
from [14] p. 326] the natural map of Z,[,/q]-algebras

Exc(W;/P;, G) = Z5(G(E;), KP).

9.8. By spreading out excursion operators from E., to E, we can prove our first
main theorem. For all i in NU {co}, Theorem indicates that our isomorphism
Tr.,(E;) = Tr.,(Fs) induces an isomorphism of A-algebras
H(G(Ex), Kio)a = H(G(E), Ki)a,
which restricts to an isomorphism of A-algebras
Resume our assumption that A is £-power torsion.

Theorem. For large enough i in NU {0}, the square

Ex¢(Weo /P, G) — ZA\(G(Ex),KL)

|

Exc(W; /P, G) —— ZA(G(E;),KY)
commutes.
Proof. Recall that Exc(Wa, /Poo, G) has canonical generators S JV,2,6 7000 » Where J
runs over finite sets, V' runs over objects in Rep (é X Gal(Foo/Eoo))zl[ﬁ], x and &
run over morphisms 1 — V| A@) and V| A@ —1in Rep @Zz[ va)» respectively, and
Ye,00 = (Vj,00)jes Tuns over J-tuples in the subgroup of W, /P generated by ¢,
Teo, and the image of the wild inertia subgroup [14, Corollary VIII.4.3].

For all j in J, let 7; be a continuous section of W/P—N U {co} such that, for
all 7 large enough as in [9.5}ii), the image of 7;(7) under the isomorphism W;/P; =
Woo/Pso equals 7 0. Since V +— Ty is functorial in J and V, we can form the
composition

x . 13
A=Ti(A) == Ty, (A) = Ty(4) Ty (A) = Ty e —— T1(A) = A,

Write Sy v,z¢,. for this endomorphism of A, which corresponds to an element of

Endg(]E)(c—IndH%SE) A) because j; is fully faithful. For all ¢ in NU {oo}, Proposition
implies that (Sjv,z.¢4,)(i) equals the image of Sj v, ¢, ;) under the map

Exc(W;/P;, G) — Z5(G(E;),K?).

Therefore, under the identification H(G(Eo), K% )a — EndG(E)(c—IndgﬁE) A) from
Theorem there exists a compact neighborhood U of co such that

e all ¢ in U are large enough as in [9.5}ii),
e the restriction of S;v . ¢~, to U corresponds to the constant section valued in
the image of Sy v,z.¢ 4, .. under the map Exc(We/Poo, G) = Za(G(Ex), KL,).
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Theorem [6.8 and the above show that, for all i in U, the square in question com-
mutes for S;v.z.¢ . .- Finally, since Exc(Ws /Poo, G) is of finite type over Z,[,/q],
applying this to finitely many Sjv,..¢ . .. yields the desired result. (]

9.9. We now prove Theorem A. Write E’ for F,((¢)), and let G’ be a quasisplit
connected reductive group over E’ that splits over an n-ramified extension.

Theorem. For all p-adic fields E along with an isomorphism Tr.(E) = Tr.(E’) for
some e > n, write G for the quasisplit connected reductive group over E associated
with G’ as in|A.8. There exists an integer d > n such that, if e > d, then

i) the map LLCE restricts to a map
LLCSS - smooth irreps ™ of G(E) semisimple L-parameters p
G- over Ty with (m)K" #£0 for G over Fy with p|ja =1 [

and the same holds for the map LLCE,.
i) the square

over Fy with (7')K™ #0 for G' over Fy with p'|ja =1

) L

smooth irreps w of G(E) LLCE semisimple L-parameters p
over Ty with ()%™ #0 for G over Fy with p|ja =1

{ smooth irreps ©' of G'(E") } LLCg, { semisimple L-parameters p' }

commutes.

Proof. For all positive integers e, Krasner’s lemma implies that there are finitely
many p-adic fields E with residue field F, and absolute ramification index e (up to
isomorphism). Moreover, there are finitely many isomorphisms Tr.(F) = Tr.(E’).
Therefore we can take {F;};en in to be the family of all p-adic fields F with
residue field F,; (up to isomorphism), where we make E appear with multiplicity
equal to the number of isomorphisms Tr.(E) = Tr.(E’). Finally, using [14, Corol-
lary VIIL.4.3], part i) follows from and part ii) follows from Theorem |

9.10. We conclude by proving Theorem B.
Theorem. There exists an integer d > n such that, if e > d, then
i) the map LLCE, restricts to a map
LLCS - { smooth irreps ' of g'(E’) } { semisimple L-parameters p' }
= over Q, with (7')X" #£0 for G’ over Q, with p'|pa =1
i) the square

smooth irreps ' of G'(E’) | LLCE semisimple L-parameters p’
over Q, with (/)5 £ 0 for G' over Q, with p'|pa =1

[ [
{ smooth irreps m of G(F) } LLCE { semisimple L-parameters p }

over Q, with (7)K" £ 0 for G over Q, with p|a =1

commutes after restricting to the wild inertia subgroup. In particular, part i)

holds for the map LLCE.
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Proof. Let 7' be an irreducible cuspidal representation of G'(E’) over Q, with
(") K™ # 0. Write p for LLCS, ('), and let d be a positive integer with p/|ja = 1.
After enlarging d, we can assume that it is at least the d from Theorem Now [14,
p. 331] indicates that LLCE, is compatible with twisting by unramified characters,
so we can assume that 7' has finite order central character. Then [41] (I1.4.12)]
shows that there exists a finite extension L/Qq(/q) such that
e 7' is defined over L,
e 7' has an OL[G'(E')]-lattice g, as in [41], (1.9.1)].
Write F for the residue field of L, and write x’' : 2o, (G'(E’"), K'™) — O, for the
map of Op-algebras induced by m, . Since p’ corresponds to x’ ® Q, under [14
Corollary VIII.4.3], this implies that, after enlarging L, the L-parameter p’ has a
representative of the form p' : W' — G(Op).

Write 7 for the irreducible smooth representation of G(E) over Q, associated
with 7’ via the isomorphism

H(G(E), K")@ SH(G(E), K'”)@Z
Because the above isomorphism is base changed from an isomorphism
H(G(E),K")o, = H(G'(E'), K)o,
the representation 7 is also defined over L, and 7, induces an Or[G(E)]-lattice
o, of . Write x : Z0, (G(F), K™) — O, for the map of Op-algebras induced by
o, . Write p for LLCE(7); arguing as above shows that, after enlarging L, the
L-parameter p has a representative of the form p: W — G(Op).
The proof of Theorem yields certain normal subgroups P’ and P of W’ and
W, respectively, that are open subgroups of the wild inertia subgroups, contain I’

and I, respectively, and whose images in W'/I'? = W/I? coincide. Consider the
resulting diagram

X' ®F¢ —

Exc(W'/P',G) — 25 (G'(E'), K"™) ~—5 T,

|

Exc(W/P,G) — 25 (G(E), K™) RN

Theorem indicates that the left square commutes, and the right square com-
mutes by construction. The top and bottom rows correspond under [14, Corollary
VII1.4.3] to the semisimplification of the images in é(m) of p' and p, respectively,
so after enlarging L, this shows that the semisimplification of the 1-cocycles

W' /P 5 G(O1) —s G(Fy) and W/P 25 G(Or) —s G(Fy)

are cohomologous (under the isomorphism W'/P’ = W/P). Since the kernel K of
G(Or) — G(F)) is pro-¢ but the wild inertia subgroup is pro-p, the Galois coho-
mology long exact sequence induced by

1— s K—— @(OL) — @(]FA) —1
then implies that the 1-cocycles
W' /P 5 G(OL) and W/P L+ G(Oy)
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are cohomologous after restricting to the wild inertia subgroup.

Finally, [3l 2.13] implies that that there are finitely many Bernstein compo-
nents in Rep(G’(E’), Q,) that contain an irreducible smooth representation 7’ with
(7")K™ # 0. Because LLCS, is compatible with twisting by unramified characters
[I4, p. 331] and parabolic induction [I4, Corollary IX.7.3], applying the above to
these finitely many Bernstein components yields the desired result. 0

APPENDIX A. CONGRUENCES OF DISCONNECTED PARAHORIC SUBGROUPS

In the appendix, our goal is to generalize Kazhdan’s Hecke algebra isomorphism
over close fields [25] Theorem A] to the case of quasisplit connected reductive groups
G over E. While such a generalization has been proved by Ganapathy [19, Theorem
4.1], this relies on a congruence result of Ganapathy [I8, Corollary 6.3] for para-
horic subgroups associated with stabilizers in G(FE)® (which have connected special
fibers). For applications to it is convenient instead to use parahoric subgroups
associated with stabilizers in G(E)! (which can have disconnected special fibers),
since G(E)! enjoys Galois descent.

Therefore, we begin by proving a congruence result for disconnected parahoric
subgroups. By using birational group laws, we reduce this to the case when G
is a torus, where it follows from results of Chai-Yu [§]. Afterwards, we follow
Kazhdan’s arguments to construct an isomorphism of Hecke algebras over close
fields. Although the Hecke algebras that we consider are equal to those considered
in [19], we do not know whether the isomorphisms constructed here equal those
constructed in [19].

A.1. We start with some notation. Let FE be a nonarchimedean local field, write
O for its ring of integers, and write p for the maximal ideal of O. Fix a separable
closure E of E, and write I' for Gal(E/E). Write I for the inertia subgroup of T
For all positive integers n, write I"™ for the n-th ramification subgroup of I in the
upper numbering.

Recall the notation of [6.1] Let 6 : T'— Aut(G®, 7% X*(T%), A, {za}taea) be a
continuous homomorphism, and write F/FE for the finite Galois extension such
that Gal(F/FE) is the image of §. Descending (G%,T5, By, {za}aea) along the
étale Gal(F'/E)-torsor Spec F'— Spec E via § yields a quasisplit connected reductive
group G over E with a pinning (B, T, {zz}zea) over E; as in [24] Definition 2.9.1].

A.2. Let us gather some facts about disconnected parahoric subgroups. Write S
for the maximal split subtorus of T, write B(G/E) for the (reduced) building of G
over E, and write A(S) for the apartment in B(G/FE) associated with S. Let z be
a special point in A(S). Write K for the smooth affine model of G over O such
that K(O) C G(F) equals the maximal compact subgroup G(E)L [24, Proposition
8.3.1].

Write ® for the relative root system ®(G,S), and write ®* for the subset of
positive or negative roots associated with B. By [24, Proposition B.2.4], the Zariski
closure S of S in K is a split subtorus of K. Write T for the centralizer of S in K,
and for all a in ®, write U, for the a-root subgroup of K.

Lemma.

i) The group T is isomorphic to the Néron model of T over O.
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i) The multiplication morphism [], U, — K, where a runs over ®X, (for some
ordering of @id) and [] denotes the product over O, is a closed embedding
whose tmage is a subgroup Uy of K that is independent of the ordering of (I)id'

i11) The multiplication morphism U_ xo T Xo Uy — K is an open embedding.

Proof. Note that that Tx equals T', and T((E)* equals the intersection of T'(E) with
G(E)L. Since T is smooth over O by [9, Lemma 2.2.4], part i) follows from [24}

xT

Proposition B.7.2]. Part ii) and part iii) follow from [24] Theorem 8.2.5]. O

A.3. Let a be in ®,oq. Let @ be a lift of a to the absolute root system ®(G,T),

write Ey for the field of definition of @, and write Oz for the ring of integers of Fj.

Write @ : T'— R, /g Gy, for the associated morphism of groups over E, as well as

the induced morphism @ : T — Ro, /0 Gy of Néron models over O.

Write U, for the a-root subgroup of G. There are two possibilities:

R1: If 2a does not lie in @, then the pinning induces an isomorphism R, /g G, 5 U,.
Moreover, after composing the natural action of Rg, /g Gm on R, /g G, with
a, this corresponds to the action of T on U,. N

R2: If 2a lies in @, then the pinning induces an isomorphism R B;/E Ua 5 U,, where
b denotes the lift to ®(G,T) of 2a induced by @, and U, denotes the affine
group Ug, /g, over Ej as in [24, (2.7.2)]. Moreover, there is a natural action
of REa/Eg G,, on (7@, and after applying REE/E and composing with a, this
corresponds to the action of T on U,.

The (disconnected) Néron model T naturally acts on root subgroups as follows.

Lemma. The subgroup Uy, is normalized by T . There are two possibilities:

R1: If2a does not lie in @, then the pinning induces an isomorphism Ro, /0 ZZI S U,
where U, denotes the smooth affine model of G, over Og such that U,(Oz) C E5
equals Uy 4.0 [24 §C.2]. Moreover, there is a natural action of G, onU,, and
after applying Ro, /0 and composing with a, this corresponds to the action of
T onU,. N

R2: If2a lies in ®, then the pinning induces an isomorphism Rog/o U, > U,, where
U, denotes the smooth affine model of U, over O3 such that L?a((’)g) - ﬁa(Eg)
equals Uy o0 [24, §C.4]. Moreover, there is a natural action of Ro, /0, G, on
Z]a, and after applying Rog/o and composing with a, this corresponds to the
action of T on U,.

Proof. The desired description of U, follows from [24, Proposition C.5.1]. Because
T(O) C T(E) equals T(E)!, this description indicates that U, is normalized by T.
It also yields the desired description of the action of 7 on U,. (]

A.4. We will use the following to reconstruct K, which is crucial for our congruence
result. Write X for the smooth affine scheme U_ X T X Uy over O, so that the
multiplication morphism X — K is an open embedding by Lemma iii). Since x
is a special point, [24, Proposition 7.7.11] and [24, Remark 7.7.6] imply that Xo/,
is dense in Ky /,. Hence the group law on K over O restricts to an birational group
law on X over O as in [7, 5.1/1].

Proposition. For any scheme Z over O, the birational group law on Xz over Z
depends only on the group laws on (U+)z and Tz over Z, along with the action of
Tz on (Uy)z.
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Proof. Applying Lemma iil) to the opposite Borel shows that the multiplication
morphism Uy xo T xo U_ —K is also an open embedding. Write X! for the
smooth affine scheme Uy X T X U_ over O, and write C for the intersection of
X with X~!. Note that the birational group law X xp X --» X equals

XXxoX =U_xo (T xoUs xoU-) xo (T xoUy)
2U_Xo Uy Xo T XoU-) xo (T xoUs)
DU-x0Cxo (T xoUy)

CU-xoU- x0T xoUy) xo (T xoUy)
= U-xoU-) %0 (T xoT) xo U+ xoUy)
—SU_XoT XoUy =X,

where the isomorphisms are induced by the action of 7 on U, and the last mor-
phism is induced by the group laws on Uy and T over O. After base changing to
Z, this yields the desired result. O

A.5. We now introduce our setup of close fields. Let n be a positive integer such
that the image of I"™ in Gal(F/E) is trivial. Let E’ be a nonarchimedean local
field along with an isomorphism Tr;(E) = Tr;(E’) for some [ > n, which induces
an isomorphism Tr, (E) = Tr,(E’). Using our isomorphism Tr,(E) = Tr,(E’),
we obtain a canonical isomorphism I'/I™ = T”/I'™ of topological groups (up to
conjugation) [10} (3.5.1)].

Write F’/E’ for the finite Galois extension corresponding to F/E via the iso-
morphism I'/I™ = TV/I'. We have an isomorphism Gal(F/E) = Gal(F'/E"), so
descending (G%/, T, B3, {za}aena) along Spec F/ — Spec E' via § yields a quasis-
plit connected reductive group G’ over E’ with a pinning (B’,T",{z%}zca) over
E.

Write S’ for the maximal split subtorus of 7’. Note that we have natural iso-
morphisms X*(7T") &2 X*(T") and X*(S) = X*(5’) that preserve the absolute and
relative root systems, respectively, as well as the positive roots. By using our pin-
nings (B, T, {zz}aea) and (B’,T",{z%}zeca) as basepoints, this induces a canonical
isomorphism A(S) = A(S’). Write z’ for the image of z under the isomorphism
A(S) =2 A(S’), and write K’ for the unique smooth affine model of G’ over O’ such
that K'(0') C G'(E’) equals G'(E")},.

Write ¢ : [—1,00) =[—1,00) for the Hasse-Herbrand function associated with
F/E asin [39, Chap. IV, §3], and write v for the inertia degree of F//E. Recall that
our isomorphism Tr;(£) = Tr;(E£’) induces an isomorphism Try, ) (F) = Try,q) (F)
[10, (3.4.1)]. Because ¢(z) — oo as  — oo, for large enough [ this yields an iso-
morphism Op, /p7"" = O/ /p}7* for all subextensions L/E in F with corresponding
subextension L' /E’ in F’, where vy, denotes the inertia degree of L/E.

A.6. For the rest of this section, assume that [ is large enough as in The
following is our main congruence result for disconnected parahoric subgroups.

Theorem. For large enough [, the isomorphism Tri(E) = Tr;(E’) induces an iso-
morphism Ko jpn = IC’O,/p,n of groups over O/p™ = O’ [p'™.

Proof. Assume that [ is large enough as in the proof of [8, (9.4)]. Then [8 (9.2)]
indicates that our isomorphism Tr;(E) = Tr;(E’) induces an isomorphism T¢ /pn =
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é,/p,n of groups over O/p™ = O'/p'™. Under this identification, [8 (9.4)] implies
that, for all @ in X*(T") = X*(T"), the square of groups over O/p™ = O’ /p'™

TO/p" = é//p/n
l’d@/pn J{EO//FML
R0, /p2v%)/(0/pm) Cm Ros jpreay j(or pprmy Gm

commutes, where vz denotes the inertia degree of F5/E.
Let a be in ®,.q. In the two cases of the proof of [I8, Lemma 4.7] shows

that the isomorphism Tr;(E) = Tr;(E’) induces:

R1: If 2a does not lie in ®, an isomorphism (ﬂa)oa/pgva = (Z;{v(;)OL/p/Nnva of groups
over Oz /p2’® = OL /p'*® such that the actions of (Gm)o, jpmva = (Gm)OL/pﬁ”’“a
agree, e

R2: If 2a lies in @, an isomorphism @Uy),, v = (Zj{(’l)o//pmg
b > 3/ vy

b b
Og/pgvg o O{;/p%m’; such that the actions of

R(oa/pz'%)/(o;/pg“% G = R(og/p’;’“a)/(o%/p;"“z)

agree, where vy denotes the inertia degree of E;/FE.

of groups over
G,

Therefore Lemma yields an isomorphism (Uy ) /pn = (U,,) 01 jprm of groups over
O/p" = O'/p'™ such that the actions of Tp pn = T(’g,/p,n agree. By Proposition
this induces an isomorphism Xy /pn = XY, Jprm of birational group laws over
O/p" = O'/p"™. Now Kospn and K, ), are solutions as in [7, 5.1/2] of the
birational group laws X/, and X, Jprn respectively, so the uniqueness of solutions
[7, 5.1/3] induces an isomorphism Ky /pn = Kb,/p,n of groups over O/p™ = O /p'™.
This yields the desired result. 0

A.7. At this point, we begin preparations for our Hecke algebra isomorphism over
close fields. Write E for the completion of the maximal unramified extension of E,
and write O for its ring of integers. Write F, for the residue field of E, and write
p: E — E for the lift of absolute g-Frobenius.

Choose a uniformizer 7r of F'. Choose a Z-basis p1, ..., . of the Z-torsionfree
quotient X, (T")r ¢ of X.(T')r, and choose representatives fi1, . . ., fir in X, (T') of the
M1y php. Sending p; — Nmﬁ/é fj(mg) for all 1 < j < r yields a homomorphism

VX (T) s — T(E).

Note that V is a section of the valuation map v : T(E) — X.(T) 1., and because v
is surjective with kernel T'(E)!, this induces an isomorphism

X ()14 x T(E)* 3 T(E).

Lemma i) indicates that T(E)! equals T(0). Write 7™ for the kernel of
T(O)—=T(O/p™), write T™ for the kernel of T(O)— T(O/p"), and write K" for
the kernel of K(0)— K(O/p™). Note that 7™, T", and K™ remain unchanged if
we replace the groups G over O with their relative neutral components G°, since

G° is open in G, and the only open subscheme of Spec O containing Spec O/p™ is
Spec O.
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A.8. We want to compare elements of T'(E) with elements of T(E’) in a way that
is compatible with Theorem so we proceed as follows.

Choose a uniformizer mp of F' whose image in O/ /p = O /p equals the
image of mp. Using the image of the piy,..., 1, in X, (7T7) = X.(T), we obtain
a homomorphism V' : X (T 1 e —>T'(E') as in and hence an isomorphism
X (T prae X T(O) S T(E).

For the rest of this section, assume that [ is large enough as in Theorem
Then [8, (9.2)] indicates that our isomorphism Tr;(E) = Tr;(E’) induces an iso-
morphism T¢ /pn = T(g,/p,n of groups over O/p™ = O’ /p’™; write 7 for the resulting
composition

T(E)/T" & Xu(T)rae x T(O/p") = Xo(T" )16 x T'(O' /o) ST (E) /T

The proof of [19, Lemma 2.5] shows that 7 intertwines the actions of ¢ and ¢', so
[24, Corollary B.10.14] implies that taking g-invariants and ¢’-invariants yields an
isomorphism 7 : T(E)/T" S T'(E")/T™.

A.9. Note that the action of K£(O) x K(O) on K™\G(E)/K™ by left and right
translation factors through K£(O) x K(O) — K(O/p™) x K(O/p™).

Our comparison from [A-8satisfies the following compatibility with Theorem [A-6]
Let ¢t be in T(E), and choose ¢’ in T'(E") whose image in T'(E") /T = T(E)/T™
equals the image of t.

Lemma. Under the identification K(O/p™) = K'(O'/p'™) from Theorem[A.6, the

stabilizer of K™tK™ in KC(O/p™) x K(O/p™) equals the stabilizer of K'™t'K'™ in

KO /™) x KI(O'/p™).

Proof. Let k and k" be elements of K(QO) and K'(O’), respectively, whose images in

K'(O'/p™) =2 K(O/p™) coincide. We claim that if ¢t~ 1kt lies in K(O), then ¢/~1k't/

lies in K'(0'), and their images in K'(O'/p'™) = K(O/p™) also coincide. By the

Bruhat decomposition, it suffices to check this in the following two cases:

o If k and %' lie in 7(O) and T'(O’), respectively, then this follows from T'(F)
being commutative.

o If k and k' lie in U,(O) and U, (O'), respectively, for some a in Pyeq, then this
follows from Lemma [A-3

Next, note that the map k + (k,t~'kt) induces an isomorphism
v (K(O)NtK(O)t 1) /(K™ NtK™t ") Sstabie(opm)xic(opm) (K EK™).
We have an analogous isomorphism
O (KO N KON) Y /(K™ A K1) S stab o0y (o0 fprm) (K E™),
and the claim implies that the images of + and ¢/ in
K(O/p™) x K(O/p™) = K'(O" /') x K'(O"/p'™)
coincide. This yields the desired result. (I

A.10. Let us recall the Cartan decomposition for disconnected parahoric sub-
groups, as well as some of its consequences for Hecke algebras. Choose a Z-basis
v1,...,Vs of (Xu(T)r16)?, and choose lifts ¢1,...,ts to T(E) of the v, ..., vs. Send-
ing v; — t; for all 1 < j < s yields a homomorphism V : (X, (T); )Y — T(E). By
construction, V is a section of the valuation map v : T(E) —(X.(T)r.4)?.
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Let A be a ring. Consider the (noncommutative) A-algebra H(G(E), K™)a as in
Definition and for all g in G(E), write hy in H(G(E), K™)a for the indicator
function on K"gK™. As g runs over K"\G(E)/K", the h, form a A-basis of
H(G(E), K™)a.

Lemma.
i) The group G(E) equals the disjoint union

HK(O)V(v)/cw),

where v runs over (X, (T)r)? "
it) For all v and p in (X, (T)1 )% +, we have hy ) * hy () = hvwpu)-
i) For all v in (X« (T)r4)? " and k and j in K(O), we have

hae by @) * hj = Tew ().

Proof. Since x is a special point, part i) follows from the proof of |24, Theorem
5.2.1]. Next, note that H(G(E), K™)a is base changed from the A = Z case, so it
suffices to consider A = Z. Then part i) and Lemma iii) imply that A := K(O),
Ag = K", and D := V((X.(T)1£)?") satisfy [I, Condition H-1] and [I, Condition
H-2]. Therefore part ii) and part iii) follow from [I, Theorem 2]. O

A.11. At this point, we can compare double coset spaces over close fields as follows.
Using t,...,t, in T'(E’) whose images in T'(E")/T"™ = T(E)/T"™ equal the images
of the t1,...,t,, we obtain a homomorphism V' : (X,(T"); )% — T'(E') as in
A. 10|

Proposition. We have a natural bijection K"\G(E)/K" = K'""\G'(E")/K".
Proof. Let v be in (X, (T)r.4)?+ 2 (X.(T")p4£)? T Note that the diagram

(X, (T 41)? —s T'(E') — T'(E') /T

T)145)? —Y— T(E) T(E)/T"

:

commutes by construction, so Lemmaindicates that the stabilizer of K"V (v)K"
and the stabilizer of K'V'(v)K'™ in

K(O/p™) x K(O/p™) = K'(O" /') x K'(O'/p'™)

coincide. This induces a natural bijection between the set of K™-double cosets lying
in L(O)V(v)K(O) and the set of K'"-double cosets lying in K'(O")V'(v)K'(O').
As v varies, Lemma i) yields the desired result. O

A.12. Proposition [A.T1] and [A-10] induce a natural isomorphism of A-modules
it H(G(E), K")s = H(G'(E'), K™)a.
To prove that 7,, is an isomorphism of A-algebras, we need the following result.
Let C C (X.(T)1,4)? " be a finite subset, and write G(E)¢ for [ ], . K(O)V(v)K(O).
View C as a subset of (X, (T") 7 4t)? " 22 (X (T)1.e6)?.

Lemma. For large enough I, we have n,(hy * ha) = n,(hy) * 0, (ha) for all hy and
he in H(G(E), K™)¢ supported on G(E)c
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Proof. Because K" remains unchanged if we replace K with its relative neutral
component K°, this follows from [19, Lemma 4.6]. O

A.13. Finally, we prove our Hecke algebra isomorphism over close fields.

Theorem. For large enough I, the map 0, : H(G(E), K™)x — H(G'(E"), K'™) is
an isomorphism of A-algebras.

Proof. Note that 7, is base changed from the A = 7Z case, so it suffices to consider
A =7. Because Z — C is injective, the A = Z case follows from that of A = C.
Therefore assume that A = C. Let kq, ..., k, be a set of representatives in (O)
of K(O/p™), and let vy, ..., v, be generators of the monoid (X, (T); )% . Then
Lemmaii) and Lemma A.lO}iii) indicate that the hy,, ..., hg,, hv(uj)v R hv(ub*)
generate H(G(E), K™)¢ over C. Now [3], 2.13] and [3}, 3.4] imply that H(G(E), K™)c
is finitely presented over C, so there exist f1,..., f, in the noncommutative poly-
nomial ring C(Xy,..., X,1p) such that the surjective C-algebra homomorphism

(C<)(17 . 7Xa+b> *)H(G(E),Kn)c

induced by the Ay, ..., hkavhv(yj)v R hV(v{f) has kernel (fy,..., fr).

Write D for max;i<;<, deg f;. By compactness, there exists a finite subset C C
(X«(T)14¢)? " such that G(E)¢ contains the D-fold product of G(E){o,uj,...,uj} in
G(E). Assume that [ is large enough for C as in Lemma [A12]ii). Since every at
most D-fold product of the hg,, ..., hy,, hV(uf)v . hV(VzT) is supported on G(F)¢,

Lemma [A.12}ii) shows that
fj(nn(hk1)7 ERRR) nn(hka)777n(hv(yf'))7 R nn(hv(y;')))
= (f (Pky,s - - - s gy - ’hV(u;))) =0

for all 1 < j <r. Hence the C-algebra homomorphism
C(X1,..., Xarp) > H(G'(E"),K'™)

induced by the 0, (hg, ), ..., 0n(hk,), nn(hv(uf))’ e ’nn(hv(u;“)) factors through a
C-algebra homomorphism 9 : H(G(E), K")c — H(G'(E"), K'")c.

For all 1 <4 < q, let k] be an element of K'(O’) whose image in K'(O'/p'™) =
K(O/p™) equals the image of k;. Note that n,(hg,) equals h),. Similarly, for all

1 <m < b, we have 1 (hg(,)) = h/v'(uj;,,)‘ Therefore Lemma ii) and Lemma

iii) indicate that ¥ equals 7, s0 7, is a homomorphism of C-algebras. Finally,
we already saw in [A12] that 7, is a bijection. O
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