How shtukas were invented (not "How to invent shtukas")

Siyan Daniel Li-Huerta

February 11, 2021

Motivation: elliptic modules over \mathbb{C}_{∞}

Number theorists use the moduli space of elliptic curves to construct Galois representations. Elliptic curves are \mathbb{Z} -module objects, and over \mathbb{C} they are given by \mathbb{C}/Λ for discrete free \mathbb{Z} -submodules $\Lambda \subset \mathbb{C}$ of rank 2.

How can we imitate this over function fields? Let X be a smooth proper geometrically connected curve over \mathbb{F}_q , write F for its function field, let ∞ be a closed point of X, and write \mathbb{C}_{∞} for the completion of the algebraic closure of F_{∞} . Write A for $H^0(X \setminus \infty, \mathcal{O}_X)$.

Definition

An *elliptic (or Drinfeld) module of rank n* over \mathbb{C}_{∞} is a discrete locally free *A*-submodule $\Lambda \subset \mathbb{C}_{\infty}$ of rank *n*. A morphism of elliptic modules $\alpha : \Lambda_1 \to \Lambda_2$ over \mathbb{C}_{∞} is an element α of \mathbb{C}_{∞} such that $\alpha \Lambda_1 \subseteq \Lambda_2$.

Example (Carlitz)

$$\mathsf{Take}\; X = \mathbb{P}^1_{\mathbb{F}_q}, \, \mathsf{the}\; \mathsf{usual}\; \infty, \, \mathsf{and}\; \Lambda = A = \mathbb{F}_q[t] \hookrightarrow \mathbb{C}_\infty = (\overline{\mathbb{F}_q((\frac{1}{t}))})^{\wedge}.$$

We ought to study $\mathbb{C}_\infty/\Lambda.$ We have an analogue of the Weierstrass \wp function:

$$\wp_{\Lambda}(z) \coloneqq z \prod_{\lambda \neq 0 \in \Lambda} \left(1 - \frac{z}{\lambda}\right).$$

Proposition (Drinfeld)

This converges for all z in \mathbb{C}_{∞} , and the resulting map $\wp_{\Lambda} : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ induces an isomorphism $\mathbb{C}_{\infty}/\Lambda \xrightarrow{\sim} \mathbb{C}_{\infty}$ of topological \mathbb{F}_{q} -vector spaces.

However, \wp_{Λ} doesn't preserve the *A*-module structure on both sides!

Proposition (Drinfeld)

Let *a* be in *A*. Under \wp_{Λ} , the action of *a* on $\mathbb{C}_{\infty}/\Lambda$ corresponds to a polynomial map $\varphi_{a}: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ over \mathbb{C}_{∞} .

Example (Carlitz)

One can show that the Carlitz module (is isomorphic to an elliptic module that) satisfies $\varphi_t(z) = tz + z^q$.

Elliptic modules in general

Since \wp_{Λ} and multiplication by *a* are \mathbb{F}_q -linear, φ_a is as well. Therefore

$$\varphi_{a} = c_{0} \operatorname{id} + c_{1}\sigma + \dots + c_{d}\sigma^{\circ d},$$

where $\sigma = z^q$. Hence we get a ring homomorphism $\varphi : A \to \text{End}_{\text{Grp}}(\mathcal{O}_{\mathbb{C}_{\infty}})$. Because \wp_{Λ} has leading term z, we see that $c_0 = a$ above.

Definition

Let S be an A-scheme. An *elliptic module of rank n* over S is a line bundle \mathcal{L} over S along with a ring homomorphism $\varphi : A \to \operatorname{End}_{\operatorname{Grp}}(\mathcal{L})$ such that

- the derivative of φ equals $A \to H^0(S, \mathcal{O}_S) \to \operatorname{End}_{\mathcal{O}_S}(\operatorname{Lie} \mathcal{L})$,
- Zariski-locally on S, every φ_a is isomorphic to a map of the form $c_0 \operatorname{id} + c_1 \sigma + \cdots + c_d \sigma^{\circ d}$, where $d = -n \operatorname{deg}(\infty) v_{\infty}(a)$.

Theorem (Drinfeld)

When $S = \operatorname{Spec} \mathbb{C}_{\infty}$, this agrees with our previous definition.

Elliptic sheaves

On a proper curve over \mathbb{C} , Krichever related certain rings of differential operators to certain bundles. By analogizing $\frac{d}{dx}$ with σ and considering the ring $\varphi(A)$, Drinfeld developed a similar description of elliptic modules:

Definition

Let S be an A-scheme. An *elliptic sheaf of rank n* over S is a commutative diagram of locally free $\mathcal{O}_{X \times S}$ -modules of rank n

such that the $\mathcal{E}_i \to \mathcal{E}_{i+n \deg(\infty)}$ are isomorphic to the canonical map $\mathcal{E}_i \to \mathcal{E}_i(\infty)$, the coker t_i are line bundles over the graph of $S \to X \smallsetminus \infty$, and $\deg(\mathcal{E}_0|_{X \times \overline{s}}) = n(g-1) + 1$ for all geometric points \overline{s} of S.

Write pr_2 for projection. One can use Riemann–Roch to show that $\mathcal{L} := \operatorname{pr}_{2,*}(\mathcal{E}_0)$ is a line bundle over S. One can show that $P := \varinjlim_i \operatorname{pr}_{2,*}(\mathcal{E}_i|_{(X \setminus \infty) \times S})) \cong \mathcal{L}\{\sigma\}$ as an $\mathcal{O}_S\{\sigma\}$ -module, where the σ -action is given by t_i . As the A-action commutes with the $\mathcal{O}_S\{\sigma\}$ -action, we get a ring homomorphism $\varphi : A \to \operatorname{End}_{\mathcal{O}_S\{\sigma\}}(P) \to \operatorname{End}_{\operatorname{Grp}}(\mathcal{L})$.

Theorem (Drinfeld)

This construction yields an equivalence from elliptic sheaves of rank n over S to elliptic modules of rank n over S.

Note that repeatedly taking pushforwards and then shifting back down (using $\mathcal{E}_{i+n \deg(\infty)} = \mathcal{E}_i(\infty)$) shows that the subdiagram

determines the entire elliptic sheaf.

Drinfeld shtukas

The moduli space of elliptic curves only associates Galois representations to automorphic forms for $\operatorname{GL}_2/\mathbb{Q}$ satisfying a certain condition at $\mathbb{Q}_{\infty} = \mathbb{R}$ (namely, to modular forms). The moduli space of elliptic sheaves has a similar restriction at ∞ , and this corresponds to restricting j_i to be modifications at ∞ . But we can simply ignore this restriction:

Definition

Let S be an \mathbb{F}_q -scheme. A *(left) Drinfeld shtuka of rank n* over S is a pair of morphisms $x, y : S \to X$ along with a diagram of locally free $\mathcal{O}_{X \times S}$ -modules of rank n

$$\mathcal{E} \xleftarrow{t} \mathcal{E}' \xleftarrow{j} \tau \mathcal{E}'$$

such that coker t is a line bundle over the graph of x, and coker j is a line bundle over the graph of y.

Note that the moduli space of Drinfeld shtukas maps to X^2 .

Shtukas in general

We generalize this as follows. Let I be a finite set, and let I_1, \ldots, I_k be an ordered partition of I. Let G/\mathbb{F}_q be a split connected reductive group, and choose a split maximal subtorus T and Borel subgroup $B \supseteq T$. Let $\underline{\omega} = (\omega_i)_{i \in I}$ be an I-tuple of dominant coweights of G.

Definition

Let S be an \mathbb{F}_q -scheme. Write $Sht_{G,I,\underline{\omega}}^{(I_1,..,I_k)}$ for the prestack whose S-points parametrize

- an *I*-tuple $(x_i)_{i \in I}$ of morphisms $S \to X$,
- *G*-bundles $\mathcal{G}_0, \ldots, \mathcal{G}_k$ over $X \times S$,
- isomorphisms $\phi_j : \mathcal{G}_{j-1}|_{X \times S \setminus \bigcup_{i \in I_j} \Gamma_{x_i}} \xrightarrow{\sim} \mathcal{G}_j|_{X \times S \setminus \bigcup_{i \in I_j} \Gamma_{x_i}}$ whose relative position at Γ_{x_i} is bounded by $\sum_{x_h = x_i} \omega_h$ for all *i* in I_j ,

• an isomorphism $\theta : \mathcal{G}_k \xrightarrow{\sim} {}^{\tau} \mathcal{G}_0.$

Write π for the canonical morphism $\operatorname{Sht}_{G,I,\omega}^{(I_1,\ldots,I_k)} \to X'$.

One can show that $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)}$ is a Deligne–Mumford stack locally of finite type over \mathbb{F}_q . Because τ preserves connected components of Bun_G , we see that $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)}$ is empty when $\sum_{i\in I} \omega_i$ isn't in the coroot lattice, and one can show that the converse also holds. So assume this isn't the case.

Example (Drinfeld)

Take $I = \{1, 2\}$ with the ordered partition $\{1\} \cup \{2\}$. Let $G = GL_n$ with the standard T and B, and set $\omega_1 = (0, \ldots, 0, -1)$ and $\omega_2 = (1, 0, \ldots, 0)$. Then $Sht_{G, I, \underline{\omega}}^{(I_1, I_2)}$ is the moduli space of Drinfeld shtukas.

Example ("No legs")

Suppose all the $\omega_i = 0$. Then all the ϕ_j extend to isomorphisms $\mathcal{G}_{j-1} \xrightarrow{\sim} \mathcal{G}_j$, so $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)}$ only parametrizes $(x_i)_{i\in I}$ and an isomorphism $\mathcal{G}_0 \xrightarrow{\sim} {}^{\tau} \mathcal{G}_0$. As intuition suggests, the latter data is parametrized by the discrete stack $\operatorname{Bun}_G(\mathbb{F}_q)$, so altogether $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)} = X^I \times \operatorname{Bun}_G(\mathbb{F}_q)$.

Using a theorem of Harder, Lang's lemma, and fpqc descent, one can show $\operatorname{Bun}_G(\mathbb{F}_q) \cong G(F) \setminus G(\mathbb{A}) / G(\mathbb{O})$ as groupoids. This is *Weil uniformization*.

Example (Class field theory)

Let $G = \mathbb{G}_m$. Then the ω_i correspond to integers, and \mathcal{G}_j is uniquely determined as $\mathcal{G}_0(\sum_{i \in I_1 \cup \cdots \cup I_j} \omega_i \Gamma_{x_i})$. So $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)}$ only parametrizes $(x_i)_{i \in I}$ and an isomorphism $\mathcal{G}_0(\sum_{i \in I} \omega_i \Gamma_{x_i}) \xrightarrow{\sim} {}^{\tau} \mathcal{G}_0$. This yields a square

where *L* is the Lang isogeny $\mathcal{L} \mapsto {}^{\tau}\mathcal{L} \otimes \mathcal{L}^{-1}$, and $AJ_{\underline{\omega}}$ is the generalized *Abel–Jacobi map* $(x_i)_{i \in I} \mapsto \mathcal{O}(\sum_{i \in I} \omega_i \Gamma_{x_i})$. Because the square is Cartesian and *L* is a Pic(\mathbb{F}_q)-bundle, we see π is a Pic(\mathbb{F}_q)-bundle too.

Let a in $\operatorname{Pic}(\mathbb{F}_q)$ have nonzero degree, and let $\chi : \operatorname{Pic}(\mathbb{F}_q)/a^{\mathbb{Z}} \to \overline{\mathbb{Q}}_{\ell}^{\times}$ be a character. We'll see that $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)}/a^{\mathbb{Z}} \to X'$ yields a homomorphism $\alpha : \pi_1^{\operatorname{\acute{e}t}}(X)' \to \operatorname{Pic}(\mathbb{F}_q)/a^{\mathbb{Z}}$. It turns out that $\chi \circ \alpha = \prod_{i \in I} (\chi \circ \operatorname{Art})^{\omega_i}$, where $\operatorname{Art} : \pi_1^{\operatorname{\acute{e}t}}(X) \xrightarrow{\sim} \operatorname{Pic}(\mathbb{F}_q)^{\wedge}$ is the *Artin isomorphism*.

Partial Frobenius

Unlike the topological case, we don't generally have $\pi_1^{\text{ét}}(X') \xrightarrow{\sim} \pi_1^{\text{ét}}(X)'$: Examples

- We have $\pi_1^{\text{\'et}}(\mathbb{P}^1_{\mathbb{F}_q} \times \mathbb{P}^1_{\mathbb{F}_q}) = \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) = \pi_1^{\text{\'et}}(\mathbb{P}^1_{\mathbb{F}_q}).$
- The Artin–Schreier \mathbb{F}_p -cover $t^p t = xy$ of Spec $\overline{\mathbb{F}}_q[x, y]$ yields a continuous homomorphism $\pi_1^{\text{ét}}(\mathbb{A}^2_{\overline{\mathbb{F}}_q}) \to \mathbb{F}_p$ that isn't a box product of homomorphisms from $\pi_1^{\text{ét}}(\mathbb{A}^1_{\overline{\mathbb{F}}_q})$.

What's the fix? For any subset J of I, write $\operatorname{Frob}_J : X^I \to X^I$ for $(\prod_{j \in J} \operatorname{Frob}) \times (\prod_{i \notin J} \operatorname{id})$. Write $(X^I / \partial \operatorname{Fr})_{\text{fét}}$ for the category of finite étale morphisms $Y \to X^I$ equipped with commuting morphisms $\operatorname{Fr}_i : \operatorname{Frob}_{\{i\}}^* Y \to Y$ whose composition is the canonical isomorphism $\operatorname{Frob}_I^* Y \xrightarrow{\sim} Y$. Note that $(X^I / \partial \operatorname{Fr})_{\text{fét}}$ is a Galois category, and write $\pi_1^{\text{ét}}(X^I / \partial \operatorname{Fr})$ for the associated profinite group.

For any *i* in *I*, we get a functor $X_{\text{fét}} \rightarrow (X'/\partial \operatorname{Fr})_{\text{fét}}$ via pullback. This induces a map $\pi_1^{\text{ét}}(X'/\partial \operatorname{Fr}) \rightarrow \pi_1^{\text{ét}}(X)$.

Drinfeld's lemma

Lemma (Drinfeld)

The induced map $\pi_1^{\text{\'et}}(X^I/\partial \operatorname{Fr}) \to \pi_1^{\text{\'et}}(X)^I$ is an isomorphism.

Remark (Xue)

The usual limit process extends this to smooth $\overline{\mathbb{Q}}_{\ell}$ -sheaves. However, to get an analogous result for ind-smooth $\overline{\mathbb{Q}}_{\ell}$ -sheaves, one must replace $\pi_1^{\text{ét}}(X)$ with the *Weil group* Weil $(X) \coloneqq \pi_1^{\text{ét}}(X) \times_{\widehat{\mathbb{Z}}} \mathbb{Z}$.

What are the partial Frobenii in our context? Consider the morphism $F_{l_{1}}^{(l_{1},...,l_{k})} : \operatorname{Sht}_{G,I,\underline{\omega}}^{(l_{1},...,l_{k})} \to \operatorname{Sht}_{G,I,\underline{\omega}}^{(l_{2},...,l_{1},l_{k})} \text{ given by sending}$ $((x_{i})_{i\in I}, \mathcal{G}_{0} \xrightarrow{\phi_{1}} \mathcal{G}_{1} \xrightarrow{\phi_{2}} \cdots \xrightarrow{\phi_{k}} {}^{\tau} \mathcal{G}_{0})$ $\mapsto (\operatorname{Frob}_{l_{1}}((x_{i})_{i\in I}), \mathcal{G}_{1} \xrightarrow{\phi_{2}} \cdots \xrightarrow{\phi_{k}} {}^{\tau} \mathcal{G}_{0} \xrightarrow{\tau \to \tau} \mathcal{G}_{1}).$ Note that $F_{l_{k}}^{(l_{k},l_{1},...,l_{k-1})} \circ \cdots \circ F_{l_{2}}^{(l_{2},...,l_{k},l_{1})} \circ F_{l_{1}}^{(l_{1},...,l_{k})} = \operatorname{Frob}.$

Note that $\operatorname{Bun}_{Z}(\mathbb{F}_{q}) = Z(F) \setminus Z(\mathbb{A}) / Z(\mathbb{O})$ acts on $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_{1},...,I_{k})}$ via twisting. Let Ξ be a discrete cocompact subgroup of $Z(F) \setminus Z(\mathbb{A})$, and consider $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_{1},...,I_{k})} / \Xi$. We're interested in the ind-constructible $\overline{\mathbb{Q}}_{\ell}$ -sheaf

$$\mathscr{H}^{0}_{I,\underline{\omega},\Xi} \coloneqq R^{0}\pi_{!}(\mathsf{IC}_{\mathsf{Sht}^{(I_{1},\ldots,I_{k})}_{G,I,\underline{\omega}}/\Xi})$$

on X^{I} , where the IC-sheaf is normalized relative to $\pi : \operatorname{Sht}_{G,I,\underline{\omega}}^{(I_{1},\ldots,I_{k})}/\Xi \to X^{I}$. The smallness of convolution implies that $\mathscr{H}_{I,\underline{\omega},\Xi}^{0}$ is independent of the ordered partition I_{1},\ldots,I_{k} .

Theorem (Xue)

The ind-constructible $\overline{\mathbb{Q}}_{\ell}$ -sheaf $\mathscr{H}^{0}_{I,\underline{\omega},\Xi}$ is ind-smooth on X^{I} .

Choosing an ordered partition with $I_1 = \{i\}$ and taking (intersection) cohomology of $F_{I_1}^{(I_1,...,I_k)}$ yields morphisms $\operatorname{Fr}_i : \operatorname{Frob}_{\{i\}}^* \mathscr{H}_{I,\underline{\omega},\Xi}^0 \to \mathscr{H}_{I,\underline{\omega},\Xi}^0$ whose composition is the canonical isomorphism $\operatorname{Frob}_I^* \mathscr{H}_{I,\underline{\omega},\Xi}^0 \to \mathscr{H}_{I,\underline{\omega},\Xi}^0$. Hence (the ind-smooth variant of) Drinfeld's lemma realizes $\mathscr{H}_{I,\underline{\omega},\Xi}^0$ as a continuous representation of $\operatorname{Weil}(X)^I$ over $\overline{\mathbb{Q}}_\ell$. Write \widehat{G} for the dual group. Observe that *I*-tuples $\underline{\omega}$ correspond to irreducible (algebraic) representations of \widehat{G}^I over $\overline{\mathbb{Q}}_{\ell}$. Via the functoriality of geometric Satake, we extend $\underline{\omega} \mapsto \mathscr{H}^0_{I,\omega,\Xi}$ to a $\overline{\mathbb{Q}}_{\ell}$ -linear functor

$$\mathscr{H}^{0}_{I,(-),\Xi} : \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\widehat{G}^{I}) \to \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Weil}(X)^{I}).$$

The *fusion* property of geometric Satake yields, for any map $\zeta : I \rightarrow J$ of finite sets, a natural 2-commutative diagram

$$\operatorname{\mathsf{Rep}}_{\overline{\mathbb{Q}}_{\ell}}(\widehat{G}^{I}) \xrightarrow{\mathscr{H}^{0}_{I,(-),\Xi}} \operatorname{\mathsf{Rep}}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{\mathsf{Weil}}(X)^{I})$$

$$\overset{\circ\zeta^{*}}{\longrightarrow} \operatorname{\mathsf{Rep}}_{\overline{\mathbb{Q}}_{\ell}}(\widehat{G}^{J}) \xrightarrow{\mathscr{H}^{0}_{I,(-),\Xi}} \operatorname{\mathsf{Rep}}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{\mathsf{Weil}}(X)^{J}),$$

where ζ^* denotes $\widehat{G}^J \to \widehat{G}^I$ or $\operatorname{Weil}(X)^J \to \operatorname{Weil}(X)^I$. Note that $\mathscr{H}^0_{\mathrm{pt},1,\Xi}$ is the set of finitely supported $\overline{\mathbb{Q}}_{\ell}$ -valued functions $C_c(G(F) \setminus G(\mathbb{A})/G(\mathbb{O})\Xi)$.

Excursion algebra

We'd like to extract $\widehat{G}(\overline{\mathbb{Q}}_{\ell})$ -conjugacy classes of continuous homomorphisms Weil $(X) \to \widehat{G}(\overline{\mathbb{Q}}_{\ell})$ from this. Hence we should study the excursion algebra $\mathcal{B} \coloneqq \overline{\mathbb{Q}}_{\ell}[\operatorname{Hom}(\operatorname{Weil}(X), \widehat{G})]^{\widehat{G}}$.

Theorem (V. Lafforgue)

The excursion algebra has generators $S_{I,W,x,\xi,(\gamma_i)_{i\in I}}$ indexed by a finite set I, an object W of $\operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\widehat{G}^I)$, an element x of $W^{\Delta(\widehat{G})}$, an element ξ of $W^{*,\Delta(\widehat{G})}$, and an I-tuple $(\gamma_i)_{i\in I}$ of elements of $\operatorname{Weil}(X)$, satisfying certain explicit (but somewhat tedious) relations.

Richardson's work on geometric invariant theory implies the following: Theorem (V. Lafforgue)

There exists a bijection from $\overline{\mathbb{Q}}_{\ell}$ -algebra homomorphisms $\nu : \mathcal{B} \to \overline{\mathbb{Q}}_{\ell}$ to $\widehat{G}(\overline{\mathbb{Q}}_{\ell})$ -conjugacy classes of semisimple homomorphisms $\rho : \operatorname{Weil}(X) \to \widehat{G}(\overline{\mathbb{Q}}_{\ell})$ such that $\nu(S_{I,W,x,\xi(\gamma_i)_{i\in I}}) = \langle \xi, ((\rho(\gamma_i))_{i\in I} \cdot x \rangle$ for all such generators above.

I'd love to go on an excursion—why not?

How can we give $C_c(G(F)\setminus G(\mathbb{A})/G(\mathbb{O})\Xi)$ an action of \mathcal{B} ? Let $S_{I,W,x,\xi,(\gamma_i)_{i\in I}}$ act via

$$C_{c}(G(F)\backslash G(\mathbb{A})/G(\mathbb{O})\Xi) \cong \mathscr{H}^{0}_{\mathsf{pt},\mathbf{1},\Xi} \xrightarrow{x} \mathscr{H}^{0}_{\mathsf{pt},W|_{\Delta(\widehat{G})},\Xi} \xrightarrow{\sim} \mathscr{H}^{0}_{I,W,\Xi}$$

$$(\gamma_{i})_{i\in I} \downarrow$$

$$C_{c}(G(F)\backslash G(\mathbb{A})/G(\mathbb{O})\Xi) \cong \mathscr{H}^{0}_{\mathsf{pt},\mathbf{1},\Xi} \xleftarrow{\xi} \mathscr{H}^{0}_{\mathsf{pt},W|_{\Delta(\widehat{G})},\Xi} \xleftarrow{\sim} \mathscr{H}^{0}_{I,W,\Xi}.$$

Theorem (V. Lafforgue)

This factors through an action of \mathcal{B} on $C_c(G(F) \setminus G(\mathbb{A})/G(\mathbb{O})\Xi)$.

V. Lafforgue calls the $S_{I,W,x,\xi,(\gamma_i)_{i\in I}}$ excursion operators because they intuitively create new points on the curve via x, move them around via $(\gamma_i)_{i\in I}$, and then recombine them via ξ . Alternatively, one can think of the above diagram as an excursion of arrows.

What the Hecke?

Somehow, we gave almost the whole talk without mentioning *Hecke* operators. Let v be a closed point of X, and let V be an irreducible object of $\operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\widehat{G})$. The classical Satake isomorphism yields a function $h_{V,v}$ in $C_c(G(\mathcal{O}_v) \setminus G(F_v)/G(\mathcal{O}_v))$, and we get a Hecke correspondence $T(h_{V,v})$ on $\operatorname{Sht}_{G,I,\underline{\omega}}^{(I_1,\ldots,I_k)}|_{(X \smallsetminus v)^I}$ and hence $\mathscr{H}_{I,\underline{\omega},\Xi}^0|_{(X \smallsetminus v)^I}$ by considering modifications at v whose relative position is bounded by V. When all the $\omega_i = 0$, we see that this agrees with the usual Hecke operator on $C_c(G(F) \setminus G(\mathbb{A})/G(\mathbb{O})\Xi)$.

Theorem (V. Lafforgue)

When all the $\omega_i = 0$, we have $T(h_{V,v}) = S_{\{1,2\}, V \boxtimes V^*, \delta, ev, (\gamma_v, 1)}$, where δ and ev are the canonical morphisms $\mathbf{1} \to V \otimes V^*$ and $V \otimes V^* \to \mathbf{1}$, and γ_v is a geometric Frobenius element at v.

This is called the S = T theorem. There is a version for arbitrary $\underline{\omega}$, and this general version is crucial for the proofs of everything, but we omit it here.

Conclusion

Note that $\langle ev, (\rho(\gamma_{\nu}), 1) \cdot \delta \rangle = tr(\rho(\gamma_{\nu})|V)$. The action of \mathcal{B} on $C_{c}(\mathcal{G}(F) \setminus \mathcal{G}(\mathbb{A}) / \mathcal{G}(\mathbb{O})\Xi)$ decomposes the latter into \mathcal{B} -eigenspaces

$$\mathcal{C}_c(G(F) \setminus G(\mathbb{A}) / G(\mathbb{O}) \Xi) = \bigoplus_{
u} \mathfrak{H}_{
u},$$

where ν runs over all $\overline{\mathbb{Q}}_{\ell}$ -algebra homomorphisms $\nu : \mathcal{B} \to \overline{\mathbb{Q}}_{\ell}$. Now $T(h_{V,\nu})$ acts on \mathfrak{H}_{ν} via

$$\nu(S_{\{1,2\},V\boxtimes V^*,\delta,\mathsf{ev},(\gamma_\nu,1)}) = \langle \mathsf{ev},(\rho(\gamma_\nu),1)\cdot\delta\rangle = \mathsf{tr}(\rho(\gamma_\nu)|V),$$

where ρ : Weil $(X) \to \widehat{G}(\overline{\mathbb{Q}}_{\ell})$ is the $\widehat{G}(\overline{\mathbb{Q}}_{\ell})$ -conjugacy class of semisimple homomorphisms corresponding to ν . One can use the continuity of the Weil $(X)^{I}$ -action on the $\mathscr{H}_{I,\underline{\omega},\Xi}^{0}$ to show that ρ is continuous, thus completing the automorphic-to-Galois direction of the Langlands correspondence for G over F.