How shtukas were invented (not "How to invent shtukas")

Siyan Daniel Li-Huerta

February 11, 2021

Motivation: elliptic modules over \mathbb{C}_{∞}

Number theorists use the moduli space of elliptic curves to construct Galois representations. Elliptic curves are \mathbb{Z}-module objects, and over \mathbb{C} they are given by \mathbb{C} / Λ for discrete free \mathbb{Z}-submodules $\Lambda \subset \mathbb{C}$ of rank 2 .

How can we imitate this over function fields? Let X be a smooth proper geometrically connected curve over \mathbb{F}_{q}, write F for its function field, let ∞ be a closed point of X, and write \mathbb{C}_{∞} for the completion of the algebraic closure of F_{∞}. Write A for $H^{0}\left(X \backslash \infty, \mathcal{O}_{X}\right)$.

Definition

An elliptic (or Drinfeld) module of rank n over \mathbb{C}_{∞} is a discrete locally free A-submodule $\Lambda \subset \mathbb{C}_{\infty}$ of rank n. A morphism of elliptic modules $\alpha: \Lambda_{1} \rightarrow \Lambda_{2}$ over \mathbb{C}_{∞} is an element α of \mathbb{C}_{∞} such that $\alpha \Lambda_{1} \subseteq \Lambda_{2}$.

Example (Carlitz)
Take $X=\mathbb{P}_{\mathbb{F}_{q}}^{1}$, the usual ∞, and $\Lambda=A=\mathbb{F}_{q}[t] \hookrightarrow \mathbb{C}_{\infty}=\left(\overline{\mathbb{F}_{q}\left(\left(\frac{1}{t}\right)\right)}\right)^{\wedge}$.

We ought to study $\mathbb{C}_{\infty} / \Lambda$. We have an analogue of the Weierstrass \wp function:

$$
\wp_{\Lambda}(z):=z \prod_{\lambda \neq 0 \in \Lambda}\left(1-\frac{z}{\lambda}\right) .
$$

Proposition (Drinfeld)

This converges for all z in \mathbb{C}_{∞}, and the resulting map $\wp_{\Lambda}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ induces an isomorphism $\mathbb{C}_{\infty} / \Lambda \xrightarrow{\sim} \mathbb{C}_{\infty}$ of topological \mathbb{F}_{q}-vector spaces.

However, \wp_{Λ} doesn't preserve the A-module structure on both sides!
Proposition (Drinfeld)
Let a be in A. Under \wp_{Λ}, the action of a on $\mathbb{C}_{\infty} / \Lambda$ corresponds to a polynomial map $\varphi_{a}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ over \mathbb{C}_{∞}.

Example (Carlitz)

One can show that the Carlitz module (is isomorphic to an elliptic module that) satisfies $\varphi_{t}(z)=t z+z^{q}$.

Elliptic modules in general

Since \wp_{\wedge} and multiplication by a are $\mathbb{F}_{q^{-}}$linear, φ_{a} is as well. Therefore

$$
\varphi_{a}=c_{0} \mathrm{id}+c_{1} \sigma+\cdots+c_{d} \sigma^{\circ d}
$$

where $\sigma=z^{q}$. Hence we get a ring homomorphism $\varphi: A \rightarrow \operatorname{End}_{G r p}\left(\mathcal{O}_{\mathbb{C}_{\infty}}\right)$. Because \wp_{\wedge} has leading term z, we see that $c_{0}=a$ above.

Definition

Let S be an A-scheme. An elliptic module of rank n over S is a line bundle \mathcal{L} over S along with a ring homomorphism $\varphi: A \rightarrow \operatorname{End}_{G r p}(\mathcal{L})$ such that

- the derivative of φ equals $A \rightarrow H^{0}\left(S, \mathcal{O}_{S}\right) \rightarrow \operatorname{End}_{\mathcal{O}_{S}}($ Lie $\mathcal{L})$,
- Zariski-locally on S, every φ_{a} is isomorphic to a map of the form c_{0} id $+c_{1} \sigma+\cdots+c_{d} \sigma^{\circ d}$, where $d=-n \operatorname{deg}(\infty) v_{\infty}(a)$.

Theorem (Drinfeld)

When $S=\operatorname{Spec} \mathbb{C}_{\infty}$, this agrees with our previous definition.

Elliptic sheaves

On a proper curve over \mathbb{C}, Krichever related certain rings of differential operators to certain bundles. By analogizing $\frac{\mathrm{d}}{\mathrm{d} x}$ with σ and considering the ring $\varphi(A)$, Drinfeld developed a similar description of elliptic modules:

Definition

Let S be an A-scheme. An elliptic sheaf of rank n over S is a commutative diagram of locally free $\mathcal{O}_{X \times S}$-modules of rank n

such that the $\mathcal{E}_{i} \rightarrow \mathcal{E}_{i+n \operatorname{deg}(\infty)}$ are isomorphic to the canonical map $\mathcal{E}_{i} \rightarrow \mathcal{E}_{i}(\infty)$, the coker t_{i} are line bundles over the graph of $S \rightarrow X \backslash \infty$, and $\operatorname{deg}\left(\left.\mathcal{E}_{0}\right|_{X \times \bar{s}}\right)=n(g-1)+1$ for all geometric points \bar{s} of S.

Write pr_{2} for projection. One can use Riemann-Roch to show that $\mathcal{L}:=\mathrm{pr}_{2, *}\left(\mathcal{E}_{0}\right)$ is a line bundle over S. One can show that $\left.P:={\underset{\longrightarrow}{\lim }}_{i} \operatorname{pr}_{2, *}\left(\left.\mathcal{E}_{i}\right|_{(X \backslash \infty) \times S}\right)\right) \cong \mathcal{L}\{\sigma\}$ as an $\mathcal{O}_{S}\{\sigma\}$-module, where the σ-action is given by t_{i}. As the A-action commutes with the $\mathcal{O}_{s}\{\sigma\}$-action, we get a ring homomorphism $\varphi: A \rightarrow \operatorname{End}_{\mathcal{O}_{s}\{\sigma\}}(P) \rightarrow \operatorname{End}_{G r p}(\mathcal{L})$.

Theorem (Drinfeld)
This construction yields an equivalence from elliptic sheaves of rank n over S to elliptic modules of rank n over S.

Note that repeatedly taking pushforwards and then shifting back down (using $\mathcal{E}_{i+n \operatorname{deg}(\infty)}=\mathcal{E}_{i}(\infty)$) shows that the subdiagram

determines the entire elliptic sheaf.

Drinfeld shtukas

The moduli space of elliptic curves only associates Galois representations to automorphic forms for $\mathrm{GL}_{2} / \mathbb{Q}$ satisfying a certain condition at $\mathbb{Q}_{\infty}=\mathbb{R}$ (namely, to modular forms). The moduli space of elliptic sheaves has a similar restriction at ∞, and this corresponds to restricting j_{i} to be modifications at ∞. But we can simply ignore this restriction:

Definition

Let S be an \mathbb{F}_{q}-scheme. A (left) Drinfeld shtuka of rank n over S is a pair of morphisms $x, y: S \rightarrow X$ along with a diagram of locally free $\mathcal{O}_{X \times S}$-modules of rank n

$$
\mathcal{E}{ }^{t} \mathcal{\mathcal { E } ^ { \prime }}{ }^{j}{ }^{\tau} \mathcal{E}
$$

such that coker t is a line bundle over the graph of x, and coker j is a line bundle over the graph of y.

Note that the moduli space of Drinfeld shtukas maps to X^{2}.

Shtukas in general

We generalize this as follows. Let I be a finite set, and let I_{1}, \ldots, I_{k} be an ordered partition of I. Let G / \mathbb{F}_{q} be a split connected reductive group, and choose a split maximal subtorus T and Borel subgroup $B \supseteq T$. Let $\underline{\omega}=\left(\omega_{i}\right)_{i \in I}$ be an I-tuple of dominant coweights of G.

Definition

Let S be an $\mathbb{F}_{q^{-}}$-scheme. Write $\operatorname{Sht}_{G, I, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}$ for the prestack whose S-points parametrize

- an I-tuple $\left(x_{i}\right)_{i \in I}$ of morphisms $S \rightarrow X$,
- G-bundles $\mathcal{G}_{0}, \ldots, \mathcal{G}_{k}$ over $X \times S$,
- isomorphisms $\phi_{j}:\left.\left.\mathcal{G}_{j-1}\right|_{X \times S} \backslash \bigcup_{i \in I_{j}} \Gamma_{x_{i}} \xrightarrow{\sim} \mathcal{G}_{j}\right|_{X \times S} \backslash \bigcup_{i \in I_{j}} \Gamma_{x_{i}}$ whose relative position at $\Gamma_{x_{i}}$ is bounded by $\sum_{x_{h}=x_{i}} \omega_{h}$ for all i in I_{j},
- an isomorphism $\theta: \mathcal{G}_{k} \xrightarrow{\sim}{ }^{\tau} \mathcal{G}_{0}$.

Write π for the canonical morphism $\operatorname{Sht}_{G, I, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)} \rightarrow X^{\prime}$.

One can show that $\operatorname{Sht}_{G, I, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}$ is a Deligne-Mumford stack locally of finite type over \mathbb{F}_{q}. Because τ preserves connected components of Bun $_{G}$, we see that $\operatorname{Sht}{ }_{G, l, \omega}^{\left(I_{1}, \ldots, I_{k}\right)}$ is empty when $\sum_{i \in I} \omega_{i}$ isn't in the coroot lattice, and one can show that the converse also holds. So assume this isn't the case.

Example (Drinfeld)

Take $I=\{1,2\}$ with the ordered partition $\{1\} \cup\{2\}$. Let $G=\mathrm{GL}_{n}$ with the standard T and B, and set $\omega_{1}=(0, \ldots, 0,-1)$ and $\omega_{2}=(1,0, \ldots, 0)$. Then $\operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, l_{2}\right)}$ is the moduli space of Drinfeld shtukas.

Example ("No legs")

Suppose all the $\omega_{i}=0$. Then all the ϕ_{j} extend to isomorphisms $\mathcal{G}_{j-1} \xrightarrow{\sim} \mathcal{G}_{j}$, so $\operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}$ only parametrizes $\left(x_{i}\right)_{i \in I}$ and an isomorphism $\mathcal{G}_{0} \xrightarrow{\sim}{ }^{\tau} \mathcal{G}_{0}$. As intuition suggests, the latter data is parametrized by the discrete stack $\operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)$, so altogether $\operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}=X^{\prime} \times \operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)$.
Using a theorem of Harder, Lang's lemma, and fpqc descent, one can show $\operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right) \cong G(F) \backslash G(\mathbb{A}) / G(\mathbb{O})$ as groupoids. This is Weil uniformization.

Example (Class field theory)

Let $G=\mathbb{G}_{m}$. Then the ω_{i} correspond to integers, and \mathcal{G}_{j} is uniquely determined as $\mathcal{G}_{0}\left(\sum_{i \in I_{1} \cup \ldots \cup \iota_{j}} \omega_{i} \Gamma_{x_{i}}\right)$. So $\operatorname{Sht}_{G, I, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}$ only parametrizes $\left(x_{i}\right)_{i \in I}$ and an isomorphism $\mathcal{G}_{0}\left(\sum_{i \in I} \omega_{i} \Gamma_{x_{i}}\right) \xrightarrow{\sim}{ }^{\tau} \mathcal{G}_{0}$. This yields a square

where L is the Lang isogeny $\mathcal{L} \mapsto^{\tau} \mathcal{L} \otimes \mathcal{L}^{-1}$, and $A J_{\underline{\omega}}$ is the generalized Abel-Jacobi map $\left(x_{i}\right)_{i \in I} \mapsto \mathcal{O}\left(\sum_{i \in I} \omega_{i} \Gamma_{x_{i}}\right)$. Because the square is Cartesian and L is a $\operatorname{Pic}\left(\mathbb{F}_{q}\right)$-bundle, we see π is a $\operatorname{Pic}\left(\mathbb{F}_{q}\right)$-bundle too.

Let a in $\operatorname{Pic}\left(\mathbb{F}_{q}\right)$ have nonzero degree, and let $\chi: \operatorname{Pic}\left(\mathbb{F}_{q}\right) / a^{\mathbb{Z}} \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$be a character. We'll see that $\operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)} / a^{\mathbb{Z}} \rightarrow X^{\prime}$ yields a homomorphism $\alpha: \pi_{1}^{\text {ét }}(X)^{\prime} \rightarrow \operatorname{Pic}\left(\mathbb{F}_{q}\right) / a^{\mathbb{Z}}$. It turns out that $\chi \circ \alpha=\prod_{i \in I}(\chi \circ \mathrm{Art})^{\omega_{i}}$, where Art: $\pi_{1}^{\text {et }}(X) \xrightarrow{\sim} \operatorname{Pic}\left(\mathbb{F}_{q}\right)^{\wedge}$ is the Artin isomorphism.

Partial Frobenius

Unlike the topological case, we don't generally have $\pi_{1}^{\text {et }}\left(X^{\prime}\right) \xrightarrow{\sim} \pi_{1}^{\text {et }}(X)^{\prime}$:

Examples

- We have $\pi_{1}^{e t}\left(\mathbb{P}_{\mathbb{F}_{q}}^{1} \times \mathbb{P}_{\mathbb{F}_{q}}^{1}\right)=\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)=\pi_{1}^{e \mathrm{et}}\left(\mathbb{P}_{\mathbb{F}_{q}}^{1}\right)$.
- The Artin-Schreier \mathbb{F}_{p}-cover $t^{p}-t=x y$ of Spec $\overline{\mathbb{F}}_{q}[x, y]$ yields a continuous homomorphism $\pi_{1}^{\text {ett }}\left(\mathbb{A}_{\mathbb{F}_{q}}^{2}\right) \rightarrow \mathbb{F}_{p}$ that isn't a box product of homomorphisms from $\pi_{1}^{e t}\left(\mathbb{A}_{\mathbb{F}_{q}}^{1}\right)$.

What's the fix? For any subset J of I, write Frob $J: X^{\prime} \rightarrow X^{\prime}$ for $\left(\prod_{j \in J}\right.$ Frob $) \times\left(\prod_{i \notin J}\right.$ id $)$. Write $\left(X^{\prime} / \partial \text { Fr }\right)_{\text {fét }}$ for the category of finite étale morphisms $Y \rightarrow X^{\prime}$ equipped with commuting morphisms $\mathrm{Fr}_{i}: \mathrm{Frob}_{\{i\}}^{*} Y \rightarrow Y$ whose composition is the canonical isomorphism Frob* $Y \xrightarrow{\sim} Y$. Note that $\left(X^{I} / \partial \mathrm{Fr}\right)_{\text {fét }}$ is a Galois category, and write $\pi_{1}^{\text {ét }}\left(X^{\prime} / \partial \mathrm{Fr}\right)$ for the associated profinite group.
For any i in I, we get a functor $X_{\text {fét }} \rightarrow\left(X^{\prime} / \partial \mathrm{Fr}\right)_{\text {fét }}$ via pullback. This induces a map $\pi_{1}^{\text {ét }}\left(X^{\prime} / \partial \mathrm{Fr}\right) \rightarrow \pi_{1}^{\text {ét }}(X)$.

Drinfeld's lemma

Lemma (Drinfeld)

The induced map $\pi_{1}^{\text {et }}\left(X^{\prime} / \partial \mathrm{Fr}\right) \rightarrow \pi_{1}^{\text {ét }}(X)^{\prime}$ is an isomorphism.

Remark (Xue)

The usual limit process extends this to smooth $\overline{\mathbb{Q}}_{\ell}$-sheaves. However, to get an analogous result for ind-smooth $\overline{\mathbb{Q}}_{\ell}$-sheaves, one must replace $\pi_{1}^{\text {ét }}(X)$ with the Weil group Weil $(X):=\pi_{1}^{\text {ét }}(X) \times_{\widehat{\mathbb{Z}}} \mathbb{Z}$.

What are the partial Frobenii in our context? Consider the morphism $F_{l_{1}}^{\left(I_{1}, \ldots, I_{k}\right)}: \operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)} \rightarrow \operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{2}, \ldots, I_{1}, l_{k}\right)}$ given by sending

$$
\begin{array}{r}
\left(\left(x_{i}\right)_{i \in I}, \mathcal{G}_{0} \xrightarrow{\phi_{1}} \mathcal{G}_{1} \xrightarrow{\phi_{2}} \ldots \stackrel{\phi_{k}}{\rightarrow}{ }^{\tau} \mathcal{G}_{0}\right) \\
\mapsto\left(\operatorname{Frob}_{l_{1}}\left(\left(x_{i}\right)_{i \in I}\right), \mathcal{G}_{1} \xrightarrow{\phi_{2}} \cdots \xrightarrow{\phi_{k}} \cdots{ }^{\tau} \mathcal{G}_{0} \xrightarrow{\phi_{1}} \tau{ }^{-} \mathcal{G}_{1}\right) .
\end{array}
$$

Note that $F_{I_{k}}^{\left(I_{k}, I_{1}, \ldots, I_{k-1}\right)} \circ \ldots \circ F_{l_{2}}^{\left(I_{2}, \ldots, I_{k}, I_{1}\right)} \circ F_{l_{1}}^{\left(I_{1}, \ldots, I_{k}\right)}=$ Frob.

Note that $\operatorname{Bun}_{Z}\left(\mathbb{F}_{q}\right)=Z(F) \backslash Z(\mathbb{A}) / Z(\mathbb{O})$ acts on $\operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}$ via twisting. Let \equiv be a discrete cocompact subgroup of $Z(F) \backslash Z(\mathbb{A})$, and consider Sht $t_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)} / \equiv$. We're interested in the ind-constructible $\overline{\mathbb{Q}}_{\ell}$-sheaf

$$
\mathscr{H}_{l, \underline{\omega}, \equiv}^{0}:=R^{0} \pi_{!}\left(\mathrm{IC}_{\mathrm{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)} / \equiv}\right)
$$

on X^{\prime}, where the IC-sheaf is normalized relative to $\pi: \operatorname{Sht}_{G,, I, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)} / \equiv \rightarrow X^{\prime}$. The smallness of convolution implies that $\mathscr{H}_{l, \underline{\omega}, \equiv}^{0}$ is independent of the ordered partition I_{1}, \ldots, I_{k}.

Theorem (Xue)

The ind-constructible $\overline{\mathbb{Q}}_{\ell}$-sheaf $\mathscr{H}_{l, \omega, \equiv}^{0}$ is ind-smooth on X^{\prime}.
Choosing an ordered partition with $I_{1}=\{i\}$ and taking (intersection) cohomology of $F_{l_{1}}^{\left(I_{1}, \ldots, l_{k}\right)}$ yields morphisms $\mathrm{Fr}_{i}: \mathrm{Frob}_{\{i\}}^{*} \mathscr{H}_{l_{, \omega}, \underline{,}, \equiv}^{0} \rightarrow \mathscr{H}_{l, \omega}^{0}, \equiv$ whose composition is the canonical isomorphism Frob, $\mathscr{H}_{l, \omega,}^{0}, \underset{\rightarrow}{\sim} \mathscr{H}_{l, \omega, \omega}^{0}, \equiv$. Hence (the ind-smooth variant of) Drinfeld's lemma realizes $\mathscr{H}_{l, \underline{\omega}, \equiv}^{0}$ as a continuous representation of $\mathrm{Weil}(X)^{\prime}$ over $\overline{\mathbb{Q}}_{\ell}$.

Write \widehat{G} for the dual group. Observe that I-tuples $\underline{\omega}$ correspond to irreducible (algebraic) representations of \widehat{G}^{\prime} over $\overline{\mathbb{Q}_{\ell}}$. Via the functoriality of geometric Satake, we extend $\underline{\omega} \mapsto \mathscr{H}_{l, \omega}^{0}, \equiv$ to a $\overline{\mathbb{Q}}_{\ell}$-linear functor

$$
\mathscr{H}_{l,(-), \equiv}^{0}: \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\widehat{G}^{\prime}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\operatorname{Weil}(X)^{\prime}\right)
$$

The fusion property of geometric Satake yields, for any map $\zeta: I \rightarrow J$ of finite sets, a natural 2-commutative diagram

$$
\begin{gathered}
\operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\widehat{G}^{\prime}\right) \xrightarrow{\mathscr{H}_{l,(-), \equiv}^{0}} \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\operatorname{Weil}(X)^{\prime}\right) \\
\circ \zeta^{*} \downarrow \\
\left.{ }^{\circ}\right) \\
\operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\widehat{G}^{J}\right) \xrightarrow{\mathscr{H}_{l,(-), \equiv}^{0}} \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\operatorname{Weil}(X)^{J}\right),
\end{gathered}
$$

where ζ^{*} denotes $\widehat{G}^{J} \rightarrow \widehat{G}^{\prime}$ or $\operatorname{Weil}(X)^{J} \rightarrow \operatorname{Weil}(X)^{\prime}$. Note that $\mathscr{H}_{\mathrm{pt}, \mathbf{1}, \mathrm{E}}^{0}$ is the set of finitely supported $\overline{\mathbb{Q}}_{\ell}$-valued functions $C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv)$.

Excursion algebra

We'd like to extract $\widehat{G}\left(\overline{\mathbb{Q}}_{\ell}\right)$-conjugacy classes of continuous homomorphisms Weil $(X) \rightarrow \widehat{G}\left(\overline{\mathbb{Q}}_{\ell}\right)$ from this. Hence we should study the excursion algebra $\mathcal{B}:=\overline{\mathbb{Q}}_{\ell}[\operatorname{Hom}(\operatorname{Weil}(X), \widehat{G})]^{\widehat{G}}$.

Theorem (V. Lafforgue)

The excursion algebra has generators $S_{I, W, x, \xi,\left(\gamma_{i}\right)_{i \in I}}$ indexed by a finite set I, an object W of $\operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\widehat{G}^{\prime}\right)$, an element x of $W^{\Delta(\widehat{G})}$, an element ξ of $W^{*, \Delta(\widehat{G})}$, and an I-tuple $\left(\gamma_{i}\right)_{i \in I}$ of elements of Weil (X), satisfying certain explicit (but somewhat tedious) relations.

Richardson's work on geometric invariant theory implies the following:
Theorem (V. Lafforgue)
There exists a bijection from $\overline{\mathbb{Q}}_{\ell}$-algebra homomorphisms $\nu: \mathcal{B} \rightarrow \overline{\mathbb{Q}}_{\ell}$ to $\widehat{G}\left(\overline{\mathbb{Q}}_{\ell}\right)$-conjugacy classes of semisimple homomorphisms $\rho: \operatorname{Weil}(X) \rightarrow \widehat{G}\left(\overline{\mathbb{Q}}_{\ell}\right)$ such that $\nu\left(S_{\left.I, W, x, \xi\left(\gamma_{i}\right)_{i \in I}\right)}\right)=\left\langle\xi,\left(\left(\rho\left(\gamma_{i}\right)\right)_{i \in I} \cdot x\right\rangle\right.$ for all such generators above.

I'd love to go on an excursion-why not?

How can we give $C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv)$ an action of \mathcal{B} ? Let $S_{I, W, x, \xi,\left(\gamma_{i}\right)_{i \in I}}$ act via

$$
\begin{aligned}
& C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv) \cong \mathscr{H}_{\mathrm{pt}, \mathbf{1}, \equiv}^{0} \xrightarrow{x} \mathscr{H}_{\mathrm{pt},\left.W\right|_{\Delta(\widehat{G})} ^{0}, \equiv}^{\sim} \mathscr{H}_{I, W, \equiv}^{0} \\
& C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv) \cong \mathscr{H}_{\mathrm{pt}, \mathbf{1}, \equiv}^{0} \stackrel{\xi}{\sim} \mathscr{H}_{\mathrm{pt},\left.W\right|_{\Delta(\widehat{G})} ^{0}, \equiv}^{\sim} \sim \mathscr{H}_{l, W, \equiv}^{0} .
\end{aligned}
$$

Theorem (V. Lafforgue)
This factors through an action of \mathcal{B} on $C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv)$.
V. Lafforgue calls the $S_{I, W, x, \xi,\left(\gamma_{i}\right)_{i \in I}}$ excursion operators because they intuitively create new points on the curve via x, move them around via $\left(\gamma_{i}\right)_{i \in I}$, and then recombine them via ξ. Alternatively, one can think of the above diagram as an excursion of arrows.

What the Hecke?

Somehow, we gave almost the whole talk without mentioning Hecke operators. Let v be a closed point of X, and let V be an irreducible object of $\operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\widehat{G})$. The classical Satake isomorphism yields a function $h_{V, v}$ in $C_{c}\left(G\left(\mathcal{O}_{v}\right) \backslash G\left(F_{v}\right) / G\left(\mathcal{O}_{v}\right)\right)$, and we get a Hecke correspondence $T\left(h_{V, v}\right)$ on $\left.\operatorname{Sht}_{G, l, \underline{\omega}}^{\left(I_{1}, \ldots, I_{k}\right)}\right|_{(X \backslash v)^{\prime}}$ and hence $\mathscr{H}_{l, \omega, \equiv}^{0},\left.\equiv\right|_{(X \backslash v)^{\prime}}$ by considering modifications at v whose relative position is bounded by V. When all the $\omega_{i}=0$, we see that this agrees with the usual Hecke operator on
$C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv)$.

Theorem (V. Lafforgue)

When all the $\omega_{i}=0$, we have $T\left(h_{V, v}\right)=S_{\{1,2\}, V \boxtimes V^{*}, \delta, \mathrm{ev},\left(\gamma_{v}, 1\right)}$, where δ and ev are the canonical morphisms $\mathbf{1} \rightarrow V \otimes V^{*}$ and $V \otimes V^{*} \rightarrow \mathbf{1}$, and γ_{v} is a geometric Frobenius element at v.

This is called the $S=T$ theorem. There is a version for arbitrary $\underline{\omega}$, and this general version is crucial for the proofs of everything, but we omit it here.

Conclusion

Note that $\left\langle\mathrm{ev},\left(\rho\left(\gamma_{v}\right), 1\right) \cdot \delta\right\rangle=\operatorname{tr}\left(\rho\left(\gamma_{v}\right) \mid V\right)$. The action of \mathcal{B} on $C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv)$ decomposes the latter into \mathcal{B}-eigenspaces

$$
C_{c}(G(F) \backslash G(\mathbb{A}) / G(\mathbb{O}) \equiv)=\bigoplus_{\nu} \mathfrak{H}_{\nu}
$$

 $T\left(h_{V, v}\right)$ acts on \mathfrak{H}_{ν} via

$$
\nu\left(S_{\{1,2\}, V \boxtimes V^{*}, \delta, \mathrm{ev},\left(\gamma_{v}, 1\right)}\right)=\left\langle\mathrm{ev},\left(\rho\left(\gamma_{v}\right), 1\right) \cdot \delta\right\rangle=\operatorname{tr}\left(\rho\left(\gamma_{v}\right) \mid V\right),
$$

where $\rho:$ Weil $(X) \rightarrow \widehat{G}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is the $\widehat{G}\left(\overline{\mathbb{Q}}_{\ell}\right)$-conjugacy class of semisimple homomorphisms corresponding to ν. One can use the continuity of the Weil $(X)^{\prime}$-action on the $\mathscr{H}_{l, \omega, \equiv}^{0}, \equiv$ to show that ρ is continuous, thus completing the automorphic-to-Galois direction of the Langlands correspondence for G over F.

