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Motivation: elliptic modules over C

Number theorists use the moduli space of elliptic curves to construct
Galois representations. Elliptic curves are Z-module objects, and over C
they are given by C/A for discrete free Z-submodules A C C of rank 2.

How can we imitate this over function fields? Let X be a smooth proper
geometrically connected curve over Iy, write F for its function field, let co
be a closed point of X, and write C, for the completion of the algebraic
closure of F.,. Write A for HO(X \ oo, Ox).

Definition
An elliptic (or Drinfeld) module of rank n over Co, is a discrete locally free

A-submodule A C C, of rank n. A morphism of elliptic modules
« Ny — Ny over Cy is an element o of Cy, such that a1 C As.

Example (Carlitz)

Take X = P%q, the usual oo, and A = A = Fy[t] = Coo = (Fq(3))".
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We ought to study Co,/A. We have an analogue of the Weierstrass

function:
on(z) =z H (1 — f)

A£0EN

Proposition (Drinfeld)

This converges for all z in C,, and the resulting map pp : Coo = Cop
induces an isomorphism Cy, /A = Co of topological IF4-vector spaces.

However, pp doesn't preserve the A-module structure on both sides!

Proposition (Drinfeld)

Let a be in A. Under pp, the action of a on Co /A corresponds to a
polynomial map ¢, : Coo — Cy over Co

Example (Carlitz)

One can show that the Carlitz module (is isomorphic to an elliptic module
that) satisfies p:(z) = tz + z9.




Elliptic modules in general

Since pp and multiplication by a are Fg-linear, ¢, is as well. Therefore

d

)

Ya = Coid+C10+"‘+CdUO
where 0 = z9. Hence we get a ring homomorphism ¢ : A— Endgp(Oc., ).
Because pp has leading term z, we see that ¢y = a above.

Definition
Let S be an A-scheme. An elliptic module of rank n over S is a line bundle
L over S along with a ring homomorphism ¢ : A— Endgp(L) such that

o the derivative of ¢ equals A— H%(S, Os) — Endo,(Lie £),

@ Zariski-locally on S, every ¢, is isomorphic to a map of the form
coid4c1o 4 -+ cgo°?, where d = —ndeg(c0)veo(a).

Theorem (Drinfeld)

When S = SpecC, this agrees with our previous definition.




Elliptic sheaves

On a proper curve over C, Krichever related certain rings of differential
operators to certain bundles. By analogizing 517 with o and considering
the ring ¢(A), Drinfeld developed a similar description of elliptic modules:
Definition

Let S be an A-scheme. An elliptic sheaf of rank n over S is a commutative
diagram of locally free Oxxs-modules of rank n

Ji Ji+1
& Eit1"

tiv1

Te Ji Te. c Tit1
i i+1

such that the & — & deg(oc) are isomorphic to the canonical map
Ei — Ei(0), the coker t; are line bundles over the graph of S — X \ oo,
and deg(&o|xxs) = n(g — 1) + 1 for all geometric points 5 of S.
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Write pr, for projection. One can use Riemann—Roch to show that

L = pry ,(&o) is a line bundle over S. One can show that

P = lim. Pro(Eil(x~oc)xs)) = L{o} as an Os{o}-module, where the
o-action is given by t;. As the A-action commutes with the Os{o }-action,
we get a ring homomorphism ¢ : A— Endp (5} (P) — Endgrp(£L).

Theorem (Drinfeld)

This construction yields an equivalence from elliptic sheaves of rank n over
S to elliptic modules of rank n over S.

Note that repeatedly taking pushforwards and then shifting back down
(using it ndeg(oo) = €i(00)) shows that the subdiagram

&1

to

TgocL T,

determines the entire elliptic sheaf.
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N
Drinfeld shtukas

The moduli space of elliptic curves only associates Galois representations
to automorphic forms for GL, /Q satisfying a certain condition at Q,, = R
(namely, to modular forms). The moduli space of elliptic sheaves has a
similar restriction at oo, and this corresponds to restricting j; to be
modifications at co. But we can simply ignore this restriction:

Definition
Let S be an Fg-scheme. A (left) Drinfeld shtuka of rank n over S is a pair

of morphisms x,y : S — X along with a diagram of locally free
Ox «s-modules of rank n

5@5’(% TE

such that coker t is a line bundle over the graph of x, and coker is a line
bundle over the graph of y.

Note that the moduli space of Drinfeld shtukas maps to X?2.



Shtukas in general

We generalize this as follows. Let | be a finite set, and let /1,..., [, be an
ordered partition of /. Let G/IF, be a split connected reductive group, and
choose a split maximal subtorus T and Borel subgroup B 2 T. Let

w = (wj)jes be an I-tuple of dominant coweights of G.

Definition
Let S be an Fg-scheme. Write Sht(Gll"'w"lk) for the prestack whose S-points
parametrize B

@ an /-tuple (x;);c; of morphisms S — X,

@ G-bundles Gy, ...,Gk over X x S,

@ isomorphisms ¢; : gj,1|XX5\UiEI. M, — gj‘XXS\UieI- M whose relative
J J

position at [, is bounded by th:Xi wy for all i in I;,

@ an isomorphism 6 : G, =" Go.

Write 7 for the canonical morphism Shtgl;';)’lk) =X



One can show that Shtgl}';’lk) is a Deligne-Mumford stack locally of finite
type over F,. Because 7 preserves connected components of Bung, we see

that Sht(Gll’"’;Ik) is empty when » ., wj isn't in the coroot lattice, and one
can show that the converse also holds. So assume this isn't the case.
Example (Drinfeld)

Take | = {1,2} with the ordered partition {1} U {2}. Let G = GL, with
the standard T and B, and set w1 = (0,...,0,—1) and wy = (1,0,...,0).
Then Sht(él;li)) is the moduli space of Drinfeld shtukas.

Example (“No legs”)

Suppose all the w;j = 0. Then all the ¢; extend to isomorphisms

Gi—1 :>QJ-, SO Shtg{}é”k) only parametrizes (x;);e; and an isomorphism
Go = TGo. As intuition suggests, the latter data is parametrized by the
discrete stack Bung(Fg), so altogether Sht(G’{;;";;’k) = X! x Bung(F,).

Using a theorem of Harder, Lang's lemma, and fpqc descent, one can show
Bung(Fq) = G(F)\G(A)/G(0) as groupoids. This is Weil uniformization.
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Example (Class field theory)

Let G = Gp,. Then the w; correspond to integers, and G; is uniquely
determined as Go(}_c/,u...uy, wilx)- S0 Sht(Gh} w’lk) only parametrizes
(xi)ier and an isomorphism Go(D ;) wi Fx.)— "Go. This yields a square

Shtlly k) s pic

|
Al
X' ——=—Pic°,
where L is the Lang isogeny £+ "L ® £, and AJ, is the generalized
Abel-Jacobi map (x;)ie; — O(_;c;wil x;). Because the square is
Cartesian and L is a Pic(Fq)-bundle, we see 7 is a Pic(IF,)-bundle too.

Let a in Pic(F,) have nonzero degree, and let x : Pic(F,)/a” —@Q, be a
character. We'll see that Sht(Gll;';)’lk) /a” — X! yields a homomorphism
o m(X) — Pic(Fq)/a”. It turns out that x o a = [];,(x o Art)

where Art : w€t(X) 5 Pic(F,)" is the Artin isomorphism. 10




Partial Frobenius
Unlike the topological case, we don't generally have 7t(X') 5 7§t(X)':
Examples

@ We have wft(IP’Iqu X P%q) = Gal(F4/F,) = wf’t(IP)}Fq).

@ The Artin—Schreier Fp-cover tP — t = xy of SpecFy[x, y] yields a
continuous homomorphism Wft(A% ) = Fp, that isn’t a box product of
q

homomorphisms from wf’t(A%q).

What's the fix? For any subset J of /, write Frob, : X! — X' for
(HjeJ Frob ) x (HiéJ id). Write (X'/0 Fr)s for the category of finite
étale morphisms Y — X' equipped with commuting morphisms

Fr; : Frob}‘i} Y — Y whose composition is the canonical isomorphism

Frob Y = Y. Note that (X! /9 Fr)z is a Galois category, and write
7t (X! /O Fr) for the associated profinite group.

For any i in /, we get a functor X —>(X’/8 Fr)se via pullback. This
induces a map 7St X! /8 Fr) — 7St(X). 11/18



N
Drinfeld’'s lemma

Lemma (Drinfeld)

The induced map 7$(X' /0 Fr) — 7$8(X)! is an isomorphism.

Remark (Xue)

The usual limit process extends this to smooth @g—sheaves. However, to
get an analogous result for ind-smooth Q,-sheaves, one must replace
71 (X) with the Weil group Weil(X) := n§"(X) x5 Z.

What are the partial Frobenii in our context? Consider the morphism
F,(lll""’lk) : Sht(ély"élk) —>Sht(é2,}‘,£ll’lk) given by sending

(x)ier Go 25 G1 -5 - 25 7G0)

¢ ¢ T o T
= (Froby ((xi)ier), G1 > -+ == 0o -=> 7).

Note that F,(klk’ll"“’lk‘l) 0---0 F,(2’2""’lk”1) o Fl(ll1 """ ') — Frob.
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|
Note that Bunz(Fq) = Z(F)\Z(A)/Z(0) acts on Sht'2; ") via twisting.
Let = be a discrete cocompact subgroup of Z(F)\Z(A), and consider

Sht(Gll;';)’lk) /=. We're interested in the ind-constructible Q,-sheaf

on X!, where the IC-sheaf is normalized relative to 7 : Sht(Gll}"u')”k) /E—>X'.

The smallness of convolution implies that %”,% = is independent of the
ordered partition I, ..., Ik.

Theorem (Xue)

The ind-constructible Q,-sheaf %’j?%z is ind-smooth on X'.

Choosing an ordered partition with /; = {i} and taking (intersection)

cohomology of F,(lll"“’lk) yields morphisms Fr; : Frobj; }% W= —><%”0
whose composition is the canonical isomorphism Frobj %”,Ow . %0

Hence (the ind-smooth variant of) Drinfeld's lemma realizes #°, - as a

continuous representation of Weil(X) over Q,.
13/18



Write G for the dual group. Observe that /-tuples w correspond to
irreducible (algebraic) representations of G over Q,. Via the functoriality
of geometric Satake, we extend w +— % — to a Q-linear functor

)= : Repg,(G') — Repg, (Weil(X)").

The fusion property of geometric Satake yields, for any map ( : | — J of
finite sets, a natural 2-commutative diagram

~ AP 2
Repg, (G') — " Repg; (Weil(X)")

OC*J( oC*J(
jg)O

= [’(,)’E .
Repg, ( Gl ——— Repg, (Weil(X)”),

where ¢* denotes G? — G/ or Weil(X)? — Weil(X)'. Note that jft 1=z 18
the set of finitely supported @,-valued functions C.(G(F)\G(A)/G(Q)=).
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Excursion algebra

We'd like to extract a(@g)—cgnjugacy classes of continuous
homomorphisms Weil(X) — G(Q,) from this. Hence we should study the
excursion algebra B := Q,[Hom(Weil(X), (?)]G

Theorem (V. Lafforgue)

The excursion algebra has generators Sy v x ¢ (v,),, indexed by a finite set

~

I, an object W of Rep@e(G'), an element x of W2(®) an element ¢ of

W*A(8), and an I-tuple (~y;)ici of elements of Weil(X), satisfying certain
explicit (but somewhat tedious) relations.

Richardson’s work on geometric invariant theory implies the following:
Theorem (V. Lafforgue)

There exists a bijection from Q-algebra homomorphisms v : B— Q, to
G(QE)—conjugagy classes of semisimple homomorphisms

p 2 Weil(X) > G(Q) such that (S xc(r)yer) = (& (007)iet - x) for

all such generators above. .




I'd love to go on an excursion—why not?

How can we give C.(G(F)\G(A)/G(Q)=) an action of B? Let
S/7W7X7§7(7i)iel act via

C(G(FNG(A)/G(0)Z) = A1 = —— A, o= Hiw=

(’Yi)ie[

3
C(G(F\G(A)/G(O)=) = 3 | = «—— ) Wiae = M=
Theorem (V. Lafforgue)
This factors through an action of B on C.(G(F)\G(A)/G(Q)=). J

V. Lafforgue calls the S; w ¢ (v,),c, €xcursion operators because they
intuitively create new points on the curve via x, move them around via
(7i)ier, and then recombine them via £. Alternatively, one can think of the
above diagram as an excursion of arrows.
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What the Hecke?

Somehow, we gave almost the whole talk without mentioning Hecke
operators. Let v be a closed point of X, and let V' be an irreducible object

of Rep@e(G). The classical Satake isomorphism yields a function hy , in
C(G(OV)\G(F,)/G(O,)), and we get a Hecke correspondence T (hy )
on Sht(él,}glk) |(x~v)' and hence fﬁ?g,zkx\v)/ by considering modifications
at v whose relative position is bounded by V. When all the w; = 0, we see
that this agrees with the usual Hecke operator on

C(G(F\G(A)/G(0)=).
Theorem (V. Lafforgue)

When all the w; = 0, we have T(hv ) = S{12} vV« sev,(y,,1), Where d
and ev are the canonical morphisms 1 —V ®@ V* and V@ V* —1, and ~,
is a geometric Frobenius element at v.

This is called the S = T theorem. There is a version for arbitrary w, and
this general version is crucial for the proofs of everything, but we omit it
here. s



Conclusion

Note that (ev, (p(7v),1) - 6) = tr(p(yv)| V). The action of B on
C(G(F)\G(A)/G(0)=) decomposes the latter into B-eigenspaces

C(G(FN\G(4) =D

where v runs over all Q-algebra homomorphisms v : B— @Q,. Now
T(hy, ) acts on ), via

v(Sp123,veve sev(n.1) = (v (p(), 1) - 6) = tr(p(n) V),

where p : Weil(X) — é(@g) is the @(@g)—conjugacy class of semisimple
homomorphisms corresponding to v. One can use the continuity of the
Weil(X)'-action on the %”O = to show that p is continuous, thus
completing the automorphlc to-Galois direction of the Langlands
correspondence for G over F.
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