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Motivation: elliptic modules over C∞
Number theorists use the moduli space of elliptic curves to construct
Galois representations. Elliptic curves are Z-module objects, and over C
they are given by C/Λ for discrete free Z-submodules Λ ⊂ C of rank 2.

How can we imitate this over function fields? Let X be a smooth proper
geometrically connected curve over Fq, write F for its function field, let ∞
be a closed point of X , and write C∞ for the completion of the algebraic
closure of F∞. Write A for H0(X r∞,OX ).

Definition

An elliptic (or Drinfeld) module of rank n over C∞ is a discrete locally free
A-submodule Λ ⊂ C∞ of rank n. A morphism of elliptic modules
α : Λ1→Λ2 over C∞ is an element α of C∞ such that αΛ1 ⊆ Λ2.

Example (Carlitz)

Take X = P1
Fq

, the usual ∞, and Λ = A = Fq[t] ↪→ C∞ = (Fq(( 1
t )))∧.
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We ought to study C∞/Λ. We have an analogue of the Weierstrass ℘
function:

℘Λ(z) := z
∏

λ 6=0∈Λ

(
1− z

λ

)
.

Proposition (Drinfeld)

This converges for all z in C∞, and the resulting map ℘Λ : C∞→C∞
induces an isomorphism C∞/Λ

∼→C∞ of topological Fq-vector spaces.

However, ℘Λ doesn’t preserve the A-module structure on both sides!

Proposition (Drinfeld)

Let a be in A. Under ℘Λ, the action of a on C∞/Λ corresponds to a
polynomial map ϕa : C∞→C∞ over C∞.

Example (Carlitz)

One can show that the Carlitz module (is isomorphic to an elliptic module
that) satisfies ϕt(z) = tz + zq.
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Elliptic modules in general

Since ℘Λ and multiplication by a are Fq-linear, ϕa is as well. Therefore

ϕa = c0 id +c1σ + · · ·+ cdσ
◦d ,

where σ = zq. Hence we get a ring homomorphism ϕ : A→EndGrp(OC∞).
Because ℘Λ has leading term z , we see that c0 = a above.

Definition

Let S be an A-scheme. An elliptic module of rank n over S is a line bundle
L over S along with a ring homomorphism ϕ : A→EndGrp(L) such that

the derivative of ϕ equals A→H0(S ,OS)→EndOS
(LieL),

Zariski-locally on S , every ϕa is isomorphic to a map of the form
c0 id +c1σ + · · ·+ cdσ

◦d , where d = −n deg(∞)v∞(a).

Theorem (Drinfeld)

When S = SpecC∞, this agrees with our previous definition.
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Elliptic sheaves

On a proper curve over C, Krichever related certain rings of differential
operators to certain bundles. By analogizing d

dx with σ and considering
the ring ϕ(A), Drinfeld developed a similar description of elliptic modules:

Definition

Let S be an A-scheme. An elliptic sheaf of rank n over S is a commutative
diagram of locally free OX×S -modules of rank n

· · · �
� ji−2

// Ei−1
� � ji−1

// Ei �
� ji // Ei+1

� � ji+1
// · · ·

· · · �
� τ j i−2

//
. �

ti−2

==

τE i−1
� �

τ j i−1
//

. �

ti−1

<<

τE i �
� τ j i

//
. �

ti

<<

τE i+1
� �

τ j i+1
//

. �

ti+1

==

· · ·

such that the Ei→Ei+n deg(∞) are isomorphic to the canonical map
Ei→Ei (∞), the coker ti are line bundles over the graph of S→X r∞,
and deg(E0|X×s) = n(g − 1) + 1 for all geometric points s of S . 5 / 18



Write pr2 for projection. One can use Riemann–Roch to show that
L := pr2,∗(E0) is a line bundle over S . One can show that
P := lim−→i

pr2,∗(Ei |(Xr∞)×S)) ∼= L{σ} as an OS{σ}-module, where the
σ-action is given by ti . As the A-action commutes with the OS{σ}-action,
we get a ring homomorphism ϕ : A→EndOS{σ}(P)→EndGrp(L).

Theorem (Drinfeld)

This construction yields an equivalence from elliptic sheaves of rank n over
S to elliptic modules of rank n over S .

Note that repeatedly taking pushforwards and then shifting back down
(using Ei+n deg(∞) = Ei (∞)) shows that the subdiagram

E1

τE0

. �

t0

==

� �
τ j0

// τE1

determines the entire elliptic sheaf.
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Drinfeld shtukas

The moduli space of elliptic curves only associates Galois representations
to automorphic forms for GL2 /Q satisfying a certain condition at Q∞ = R
(namely, to modular forms). The moduli space of elliptic sheaves has a
similar restriction at ∞, and this corresponds to restricting ji to be
modifications at ∞. But we can simply ignore this restriction:

Definition

Let S be an Fq-scheme. A (left) Drinfeld shtuka of rank n over S is a pair
of morphisms x , y : S→X along with a diagram of locally free
OX×S -modules of rank n

E E ′? _too � � j
// τE

such that coker t is a line bundle over the graph of x , and coker j is a line
bundle over the graph of y .

Note that the moduli space of Drinfeld shtukas maps to X 2.
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Shtukas in general

We generalize this as follows. Let I be a finite set, and let I1, . . . , Ik be an
ordered partition of I . Let G/Fq be a split connected reductive group, and
choose a split maximal subtorus T and Borel subgroup B ⊇ T . Let
ω = (ωi )i∈I be an I -tuple of dominant coweights of G .

Definition

Let S be an Fq-scheme. Write Sht
(I1,...,Ik )
G ,I ,ω for the prestack whose S-points

parametrize

an I -tuple (xi )i∈I of morphisms S→X ,

G -bundles G0, . . . ,Gk over X × S ,

isomorphisms φj : Gj−1|X×Sr⋃
i∈Ij

Γxi

∼→Gj |X×Sr⋃
i∈Ij

Γxi
whose relative

position at Γxi is bounded by
∑

xh=xi
ωh for all i in Ij ,

an isomorphism θ : Gk
∼→ τG0.

Write π for the canonical morphism Sht
(I1,...,Ik )
G ,I ,ω →X I .
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One can show that Sht
(I1,...,Ik )
G ,I ,ω is a Deligne–Mumford stack locally of finite

type over Fq. Because τ preserves connected components of BunG , we see

that Sht
(I1,...,Ik )
G ,I ,ω is empty when

∑
i∈I ωi isn’t in the coroot lattice, and one

can show that the converse also holds. So assume this isn’t the case.

Example (Drinfeld)

Take I = {1, 2} with the ordered partition {1} ∪ {2}. Let G = GLn with
the standard T and B, and set ω1 = (0, . . . , 0,−1) and ω2 = (1, 0, . . . , 0).

Then Sht
(I1,I2)
G ,I ,ω is the moduli space of Drinfeld shtukas.

Example (“No legs”)

Suppose all the ωi = 0. Then all the φj extend to isomorphisms

Gj−1
∼→Gj , so Sht

(I1,...,Ik )
G ,I ,ω only parametrizes (xi )i∈I and an isomorphism

G0
∼→ τG0. As intuition suggests, the latter data is parametrized by the

discrete stack BunG (Fq), so altogether Sht
(I1,...,Ik )
G ,I ,ω = X I × BunG (Fq).

Using a theorem of Harder, Lang’s lemma, and fpqc descent, one can show
BunG (Fq) ∼= G (F )\G (A)/G (O) as groupoids. This is Weil uniformization.
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Example (Class field theory)

Let G = Gm. Then the ωi correspond to integers, and Gj is uniquely

determined as G0(
∑

i∈I1∪···∪Ij ωiΓxi ). So Sht
(I1,...,Ik )
G ,I ,ω only parametrizes

(xi )i∈I and an isomorphism G0(
∑

i∈I ωiΓxi )
∼→ τG0. This yields a square

Sht
(I1,...,Ik )
G ,I ,ω

//

π

��

Pic

L

��

X I
AJω

// Pic0,

where L is the Lang isogeny L 7→ τL ⊗ L−1, and AJω is the generalized
Abel–Jacobi map (xi )i∈I 7→ O(

∑
i∈I ωiΓxi ). Because the square is

Cartesian and L is a Pic(Fq)-bundle, we see π is a Pic(Fq)-bundle too.

Let a in Pic(Fq) have nonzero degree, and let χ : Pic(Fq)/aZ→Q×` be a

character. We’ll see that Sht
(I1,...,Ik )
G ,I ,ω /aZ→X I yields a homomorphism

α : πét
1 (X )I →Pic(Fq)/aZ. It turns out that χ ◦ α =

∏
i∈I (χ ◦ Art)ωi ,

where Art : πét
1 (X )

∼→Pic(Fq)∧ is the Artin isomorphism. 10 / 18



Partial Frobenius

Unlike the topological case, we don’t generally have πét
1 (X I )

∼→πét
1 (X )I :

Examples

We have πét
1 (P1

Fq
× P1

Fq
) = Gal(Fq/Fq) = πét

1 (P1
Fq

).

The Artin–Schreier Fp-cover tp − t = xy of SpecFq[x , y ] yields a
continuous homomorphism πét

1 (A2
Fq

)→Fp that isn’t a box product of

homomorphisms from πét
1 (A1

Fq
).

What’s the fix? For any subset J of I , write FrobJ : X I →X I for(∏
j∈J Frob

)
×
(∏

i /∈J id
)
. Write (X I/∂ Fr)fét for the category of finite

étale morphisms Y →X I equipped with commuting morphisms
Fri : Frob∗{i} Y →Y whose composition is the canonical isomorphism

Frob∗I Y
∼→Y . Note that (X I/∂ Fr)fét is a Galois category, and write

πét
1 (X I/∂ Fr) for the associated profinite group.

For any i in I , we get a functor Xfét→(X I/∂ Fr)fét via pullback. This
induces a map πét

1 (X I/∂ Fr)→πét
1 (X ). 11 / 18



Drinfeld’s lemma

Lemma (Drinfeld)

The induced map πét
1 (X I/∂ Fr)→πét

1 (X )I is an isomorphism.

Remark (Xue)

The usual limit process extends this to smooth Q`-sheaves. However, to
get an analogous result for ind-smooth Q`-sheaves, one must replace
πét

1 (X ) with the Weil group Weil(X ) := πét
1 (X )×Ẑ Z.

What are the partial Frobenii in our context? Consider the morphism

F
(I1,...,Ik )
I1

: Sht
(I1,...,Ik )
G ,I ,ω →Sht

(I2,...,I1,Ik )
G ,I ,ω given by sending

((xi )i∈I ,G0
φ1
99KG1

φ2
99K · · ·

φk
99K τG0)

7→ (FrobI1((xi )i∈I ),G1
φ2
99K · · ·

φk
99K τG0

τφ1
99K τG1).

Note that F
(Ik ,I1,...,Ik−1)
Ik

◦ · · · ◦ F (I2,...,Ik ,I1)
I2

◦ F (I1,...,Ik )
I1

= Frob.
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Note that BunZ (Fq) = Z (F )\Z (A)/Z (O) acts on Sht
(I1,...,Ik )
G ,I ,ω via twisting.

Let Ξ be a discrete cocompact subgroup of Z (F )\Z (A), and consider

Sht
(I1,...,Ik )
G ,I ,ω /Ξ. We’re interested in the ind-constructible Q`-sheaf

H 0
I ,ω,Ξ := R0π!(IC

Sht
(I1,...,Ik )

G ,I ,ω /Ξ
)

on X I , where the IC-sheaf is normalized relative to π : Sht
(I1,...,Ik )
G ,I ,ω /Ξ→X I .

The smallness of convolution implies that H 0
I ,ω,Ξ is independent of the

ordered partition I1, . . . , Ik .

Theorem (Xue)

The ind-constructible Q`-sheaf H 0
I ,ω,Ξ is ind-smooth on X I .

Choosing an ordered partition with I1 = {i} and taking (intersection)

cohomology of F
(I1,...,Ik )
I1

yields morphisms Fri : Frob∗{i}H
0
I ,ω,Ξ→H 0

I ,ω,Ξ

whose composition is the canonical isomorphism Frob∗I H 0
I ,ω,Ξ

∼→H 0
I ,ω,Ξ.

Hence (the ind-smooth variant of) Drinfeld’s lemma realizes H 0
I ,ω,Ξ as a

continuous representation of Weil(X )I over Q`.
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Write Ĝ for the dual group. Observe that I -tuples ω correspond to
irreducible (algebraic) representations of Ĝ I over Q`. Via the functoriality
of geometric Satake, we extend ω 7→H 0

I ,ω,Ξ to a Q`-linear functor

H 0
I ,(−),Ξ : RepQ`

(Ĝ I )→RepQ`
(Weil(X )I ).

The fusion property of geometric Satake yields, for any map ζ : I → J of
finite sets, a natural 2-commutative diagram

RepQ`
(Ĝ I )

H 0
I ,(−),Ξ

//

◦ζ∗
��

RepQ`
(Weil(X )I )

◦ζ∗
��

RepQ`
(Ĝ J)

H 0
I ,(−),Ξ

// RepQ`
(Weil(X )J),

where ζ∗ denotes Ĝ J→ Ĝ I or Weil(X )J→Weil(X )I . Note that H 0
pt,1,Ξ is

the set of finitely supported Q`-valued functions Cc(G (F )\G (A)/G (O)Ξ).
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Excursion algebra

We’d like to extract Ĝ (Q`)-conjugacy classes of continuous
homomorphisms Weil(X )→ Ĝ (Q`) from this. Hence we should study the

excursion algebra B := Q`[Hom(Weil(X ), Ĝ )]Ĝ .

Theorem (V. Lafforgue)

The excursion algebra has generators SI ,W ,x ,ξ,(γi )i∈I indexed by a finite set

I , an object W of RepQ`
(Ĝ I ), an element x of W∆(Ĝ), an element ξ of

W ∗,∆(Ĝ), and an I -tuple (γi )i∈I of elements of Weil(X ), satisfying certain
explicit (but somewhat tedious) relations.

Richardson’s work on geometric invariant theory implies the following:

Theorem (V. Lafforgue)

There exists a bijection from Q`-algebra homomorphisms ν : B→Q` to
Ĝ (Q`)-conjugacy classes of semisimple homomorphisms
ρ : Weil(X )→ Ĝ (Q`) such that ν(SI ,W ,x ,ξ(γi )i∈I ) = 〈ξ, ((ρ(γi ))i∈I · x〉 for
all such generators above.
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I’d love to go on an excursion—why not?

How can we give Cc(G (F )\G (A)/G (O)Ξ) an action of B? Let
SI ,W ,x ,ξ,(γi )i∈I act via

Cc(G (F )\G (A)/G (O)Ξ) ∼= H 0
pt,1,Ξ

x //H 0
pt,W |

∆(Ĝ)
,Ξ

∼ //H 0
I ,W ,Ξ

(γi )i∈I

��

Cc(G (F )\G (A)/G (O)Ξ) ∼= H 0
pt,1,Ξ H 0

pt,W |
∆(Ĝ)

,Ξ

ξ
oo H 0

I ,W ,Ξ.
∼oo

Theorem (V. Lafforgue)

This factors through an action of B on Cc(G (F )\G (A)/G (O)Ξ).

V. Lafforgue calls the SI ,W ,x ,ξ,(γi )i∈I excursion operators because they
intuitively create new points on the curve via x , move them around via
(γi )i∈I , and then recombine them via ξ. Alternatively, one can think of the
above diagram as an excursion of arrows.
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What the Hecke?

Somehow, we gave almost the whole talk without mentioning Hecke
operators. Let v be a closed point of X , and let V be an irreducible object
of RepQ`

(Ĝ ). The classical Satake isomorphism yields a function hV ,v in
Cc(G (Ov )\G (Fv )/G (Ov )), and we get a Hecke correspondence T (hV ,v )

on Sht
(I1,...,Ik )
G ,I ,ω |(Xrv)I and hence H 0

I ,ω,Ξ|(Xrv)I by considering modifications
at v whose relative position is bounded by V . When all the ωi = 0, we see
that this agrees with the usual Hecke operator on
Cc(G (F )\G (A)/G (O)Ξ).

Theorem (V. Lafforgue)

When all the ωi = 0, we have T (hV ,v ) = S{1,2},V�V ∗,δ,ev,(γv ,1), where δ
and ev are the canonical morphisms 1→V ⊗ V ∗ and V ⊗ V ∗→ 1, and γv
is a geometric Frobenius element at v .

This is called the S = T theorem. There is a version for arbitrary ω, and
this general version is crucial for the proofs of everything, but we omit it
here. 17 / 18



Conclusion

Note that 〈ev, (ρ(γv ), 1) · δ〉 = tr(ρ(γv )|V ). The action of B on
Cc(G (F )\G (A)/G (O)Ξ) decomposes the latter into B-eigenspaces

Cc(G (F )\G (A)/G (O)Ξ) =
⊕
ν

Hν ,

where ν runs over all Q`-algebra homomorphisms ν : B→Q`. Now
T (hV ,v ) acts on Hν via

ν(S{1,2},V�V ∗,δ,ev,(γv ,1)) = 〈ev, (ρ(γv ), 1) · δ〉 = tr(ρ(γv )|V ),

where ρ : Weil(X )→ Ĝ (Q`) is the Ĝ (Q`)-conjugacy class of semisimple
homomorphisms corresponding to ν. One can use the continuity of the
Weil(X )I -action on the H 0

I ,ω,Ξ to show that ρ is continuous, thus
completing the automorphic-to-Galois direction of the Langlands
correspondence for G over F .
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