Automorphic Representations With An Application To Measure Theory

Siyan Daniel Li

April 30, 2020

Let $n \ge 1$ be an integer, and consider the *n*-sphere S^n with the Lebesgue measure λ . Normalize λ such that $\lambda(S^n) = 1$.

Note that SO(n + 1) preserves S^n as a subset of \mathbb{R}^{n+1} , and this action corresponds to rotations.

Evidently λ is a rotation-invariant, finitely-additive measure on the Lebesgue σ -algebra of S^n satisfying $\lambda(S^n) = 1$.

Question

Is λ the only one?

Ruziewicz Problem

Is λ the only rotation-invariant, finitely-additive measure on the Lebesgue σ -algebra of S^n satisfying $\lambda(S^n) = 1$?

The answer depends on *n*:

- For n = 1, it's not! This was proved by Banach in 1921, and it uses the axiom of choice.
- For 2 ≤ n ≤ 3, it is! This was proved by Drinfeld in 1984, and it uses the Ramanujan conjecture.
- For 4 ≤ n, it is! This was proved by Margulis and Sullivan in 1980, and it uses arithmetic subgroups.

Some representation theory

All our groups G are second-countable, locally-compact, Hausdorff topological groups. So they have right-invariant Haar measures μ . We focus on *unitary representations*, i.e. where the action map

$$G \times V \rightarrow V$$

is continuous, and $(V, \langle \cdot, \cdot \rangle)$ is a Hilbert space where $\langle gv, gw \rangle = \langle v, w \rangle$ for all $g \in G$ and $v, w \in V$. Subrepresentations must be closed subspaces.

Example (Regular representation)

For any group G, we have $L^2(G)$ with right translation.

Example

For
$$G = \operatorname{SO}(n+1)$$
, write $L^2(S^n)_0 = \{f \in L^2(S^n) \mid \int \mathrm{d}\lambda f = 0\}$. Then

$$L^2(S^n) = \mathbb{C} \cdot \mathbf{1}_{S^n} \oplus L^2(S^n)_0.$$

Spaces of representations

Write \tilde{G} for the set of isomorphism classes of unitary representations of G. Definition

Let V be a unitary representation of G, let $v \in V$, let $Q \subseteq G$ be compact, and let $\epsilon > 0$. Write $U(V, v, Q, \epsilon)$ for the subset

$$\left\{ \begin{array}{c|c} W \in \widetilde{G} & \text{there exists } w_1, \dots, w_m \in W \text{ such that} \\ \left| \langle gv, v \rangle - \sum_{i=1}^n \langle gw_i, w_i \rangle \right| < \epsilon \text{ for } g \in Q \end{array} \right\}$$

The $U(V, v, Q, \epsilon)$ form a subbasis for a topology we call the *Fell topology*. Write $\widehat{G} \subset \widetilde{G}$ for the subspace of irreducible representations.

Example (Pontryagin duality)

For abelian G, the subspace \widehat{G} is naturally an abelian group, and $\widehat{\widehat{G}} = G$. For instance, $\widehat{\mathbb{R}} = \mathbb{R}$, and $\widehat{S^1} = \mathbb{Z}$.

While \widehat{G} is usually nice, \widetilde{G} is never nice.

Induced representations

Let $H \subseteq G$ be a closed subgroup.

Definition

Let V be a unitary representation of H. The *induced representation* is

$$\operatorname{Ind}_{H}^{G} V = \begin{cases} \text{measurable} & f(hg) = hf(g) \text{ for all } h \in H \text{ and almost all} \\ f: G \to V & g \in G, \text{ and } \int_{H \setminus G} dg \|f(g)\|^{2} < \infty \end{cases}$$

modulo equality almost everywhere, with right translation.

Example

For any group G, we see that $\operatorname{Ind}_{\{1\}}^{G}\mathbb{C}$ is the regular representation $L^{2}(G)$.

Example

For G = SO(n+1) and H = SO(n), we have $H \setminus G = S^n$. So we see that $Ind_H^G \mathbb{C} = L^2(S^n)$.

Weak containment

Recall that neighborhoods of $V\in\widetilde{G}$ are given by finite intersections of

$$\left\{ \begin{array}{c|c} W \in \widetilde{G} & \text{there exists } w_1, \dots, w_m \in W \text{ such that} \\ \left| \langle gv, v \rangle - \sum_{i=1}^n \langle gw_i, w_i \rangle \right| < \epsilon \text{ for } g \in Q \end{array} \right\}$$

Definition

Let V and W be unitary representations of G. Then W weakly contains V if W lies in the closure of $\{V\} \subset \widetilde{G}$. We write $V \prec W$.

If $U \prec V$ and $V \prec W$, then $U \prec W$.

Example

If V is a subrepresentation of W, then $V \prec W$.

Example

If $H \subseteq G$ is a discrete closed subgroup, then $\mathbb{C} \prec \operatorname{Ind}_{H}^{G}\mathbb{C}$.

More on weak containment, and back to Ruziewicz!

Fact

The map $\operatorname{Ind}_{H}^{G}: \widetilde{H} \to \widetilde{G}$ is continuous.

Therefore if $V \prec W$, then $\operatorname{Ind}_{H}^{G} V \prec \operatorname{Ind}_{H}^{G} W$.

What does any of this have to do with the Ruziewicz problem? Recall that

$$L^2(S^n)_0 = \{f \in L^2(S^n) \mid \int \mathrm{d}\lambda f = 0\}$$

is a unitary representation of SO(n+1).

Fact

Let Γ be a discrete group, and let $\psi : \Gamma \to SO(n+1)$ be a homomorphism. Consider the representation $L^2(S^n)_0$ of Γ . If $\mathbb{C} \not\prec L^2(S^n)_0$ as representations of Γ , then the answer to the Ruziewicz problem is yes!

The proof only uses functional analysis from Charlie Smart's Winter 2018 MATH313. (Including such gems as $L^1(X)^{**}$ being the space of finitely-additive measures, Mazur's theorem, and Goldstein's theorem.)

Work of Margulis and Sullivan

Fact

Let Γ be a discrete group, and let $\psi : \Gamma \to SO(n+1)$ be a homomorphism. Consider the representation $L^2(S^n)_0$ of Γ . If $\mathbb{C} \not\prec L^2(S^n)_0$ as representations of Γ , then the answer to the Ruziewicz problem is yes!

Theorem (Margulis, Sullivan)

For $n \ge 4$, there exists an arithmetic subgroup $\Gamma \subset SO(n+1)$ satisfying a stronger version of the above criterion. ("Kazhdan's property (T)")

This solves the Ruziewicz problem for $n \ge 4$. However, Kazhdan's property (T) on arithmetic subgroups won't work for $n \in \{2, 3\}$:

Theorem (Margulis)

Let G be a connected compact simple Lie group. Then G has an arithmetic subgroup satisfying Kazhdan's property (T) if and only if G is not isogenous to SO(2), SO(3), or SO(4).

Some algebraic groups

Let $\boldsymbol{\mathsf{G}}$ be a connected reductive algebraic group over $\mathbb{Q}.$

Example

We can take $\mathbf{G} = \mathrm{GL}_2$.

Example

Let *D* be a quaternion algebra over \mathbb{Q} . We can take $\mathbf{G} = \mathbf{D}^{\times}$, whose functor of points is $\mathbf{D}^{\times}(R) = (D \otimes_{\mathbb{Q}} R)^{\times}$ for \mathbb{Q} -algebras *R*.

Let $A_{\mathbf{G}}$ be the identity component of the \mathbb{R} -points of the maximal split subtorus of the center of \mathbf{G} .

Example

For $\bm{G}=\mathrm{GL}_2,$ the center is the subgroup of scalars. So $A_{\bm{G}}=\mathbb{R}_{>0}.$ Same for $\bm{G}=\bm{D}^{\times}.$

L^2 spaces of automorphic representations

Write [G] for $\mathbf{G}(\mathbb{Q})\setminus \mathbf{G}(\mathbb{A})/A_{\mathbf{G}}$. Borel–Harish-Chandra proved that [G] has finite measure. Now $\mathbf{G}(\mathbb{A})$ acts on $L^2([\mathbf{G}])$ with right translation.

Definition

Write $L^2_{\text{cusp}}([\mathbf{G}]) \subseteq L^2([\mathbf{G}])$ for the set of $f : [\mathbf{G}] \to \mathbb{C}$ such that, for every proper parabolic subgroup $\mathbf{P} \subset \mathbf{G}$ with unipotent radical \mathbf{N} , we have $\int_{\mathbf{N}(\mathbb{Q})\setminus\mathbf{N}(\mathbb{A})} \mathrm{d}n f(ng) = 0$ for almost all $g \in \mathbf{G}(\mathbb{A})$.

Definition

An automorphic representation of $\mathbf{G}(\mathbb{A})$ is an irreducible subquotient of $L^2([\mathbf{G}])$. It is *cuspidal* if it is a subquotient of $L^2_{cusp}([\mathbf{G}])$.

Example

For $\mathbf{G} = \mathbf{D}^{\times}$, there are no proper parabolic subgroups. So $L^2([\mathbf{G}]) = L^2_{cusp}([\mathbf{G}])$.

Automorphic forms and factorizing

Let K be a maximal compact subgroup of $\mathbf{G}(\mathbb{A})$, factored as $K_f \times K_{\infty}$.

Example

For $\mathbf{G} = \operatorname{GL}_2$, we can take $K = \operatorname{GL}_2(\widehat{\mathbb{Z}}) \times \operatorname{O}(2)$.

For any automorphic representation V of $\mathbf{G}(\mathbb{A})$, write V^{sm} for its subspace of *K*-finite vectors. Write \mathfrak{g} for the Lie algebra of $\mathbf{G}(\mathbb{R})$.

Theorem (Bernstein-Harish-Chandra)

The subspace V^{sm} consists of automorphic forms, and it's an irreducible admissible $\mathbf{G}(\mathbb{A}_f) \times (\mathfrak{g}, K_{\infty})$ -module.

Theorem (Flath)

Let W be an irreducible admissible $\mathbf{G}(\mathbb{A}_f) \times (\mathfrak{g}, K_\infty)$ -module. Then $W = (\bigotimes'_p W_p) \otimes W_\infty$, where the W_p are irreducible admissible representations of $\mathbf{G}(\mathbb{Q}_p)$, and W_∞ is an irreducible admissible (\mathfrak{g}, K_∞) -module.

Relation with modular forms

Let $f : \mathcal{H} \to \mathbb{C}$ be a cusp eigenform of weight $k \ge 2$ and level $\Gamma_1(N)$. Write $K_1(N) = \{g \in \operatorname{GL}_2(\widehat{\mathbb{Z}}) \mid g \equiv [\stackrel{*}{}_1^*] \mod N\}$ and $\operatorname{GL}_2(\mathbb{R})^+ = \{g \in \operatorname{GL}_2(\mathbb{R}) \mid \det g > 0\}$. Since $\det K_1(N) = \widehat{\mathbb{Z}}^{\times}$, strong approximation implies $\operatorname{GL}_2(\mathbb{A}) = \operatorname{GL}_2(\mathbb{Q})K_1(N)\operatorname{GL}_2(\mathbb{R})^+$. For $g = \gamma ku \in \operatorname{GL}_2(\mathbb{A})$ with $u = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, set

$$\phi(g) = (\det u)^{k/2} (ci+d)^{-k} f\left(\frac{ai+b}{ci+d}\right).$$

Fact

We have $\phi \in L^2_{cusp}([GL_2])$, and the subrepresentation V_{ϕ} it generates is irreducible. Furthermore, every cuspidal automorphic representation V of $GL_2(\mathbb{A})$ such that V_{∞}^{sm} is discrete series arises this way.

Theorem (Deligne)

For such a representation and $p \nmid N$, the Hecke operator $T_p = e_{\operatorname{GL}_2(\mathbb{Z}_p)} \begin{bmatrix} p \\ 1 \end{bmatrix}_{\operatorname{GL}_2(\mathbb{Z}_p)} \text{ acts by a scalar } a_p \text{ with } |a_p| \leq 2p^{(k-1)/2}.$

Global Jacquet–Langlands correspondence

Let D be a quaternion algebra over $\mathbb Q$ ramified at ∞ .

Example

We can take the rational Hamiltonian quaternions $D = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{Q}\}$, where $i^2 = j^2 = -1$ and ij = -ji = k.

Theorem (Jacquet-Langlands)

There exists an injection

$$\begin{split} \mathrm{JL} :& \{ \textit{cuspidal automorphic representations of } \mathbf{D}^{\times}(\mathbb{A}) \} \\ & \hookrightarrow \{ \textit{cuspidal automorphic representations of } \mathbf{GL}_2(\mathbb{A}) \} \end{split}$$

such that

• if $V_{\infty}^{sm} = \mathbb{C}$, then $JL(V)_{\infty}^{sm}$ is the discrete series σ_2 ,

• if D is split at p, then $JL(V)_p^{sm} = V_p^{sm}$.

Back to Ruziewicz!

Fact

Let Γ be a discrete group, and let $\psi : \Gamma \to SO(n+1)$ be a homomorphism. Consider the representation $L^2(S^n)_0$ of Γ . If $\mathbb{C} \not\prec L^2(S^n)_0$ as representations of Γ , then the answer to the Ruziewicz problem is yes!

Let $n \in \{2,3\}$. Let D be a quaternion algebra over \mathbb{Q} ramified at ∞ . Then $\mathbf{D}^{\times}(\mathbb{R}) = \mathbb{H}^{\times}$, so $\mathbf{D}^{\times}(\mathbb{R})/\mathcal{A}_{\mathbf{D}^{\times}} = \mathrm{SU}(2) = S^3$.

- For n = 2, conjugation on purely imaginary quaternions yields $\mathbf{D}^{\times}(\mathbb{R})/A_{\mathbf{D}^{\times}} \twoheadrightarrow SO(n+1).$
- For n = 3, right translation yields D[×](ℝ)/A_{D×} → SO(n + 1). Note that D[×](ℝ)/A_{D×} acts transitively on S³.

In both cases, consider the discrete group $D^{ imes}$ with the homomorphism

$$D^{\times} \to \mathbf{D}^{\times}(\mathbb{R}) \to \mathbf{D}^{\times}(\mathbb{R})/A_{\mathbf{D}^{\times}} \to \mathrm{SO}(n+1).$$

Work of Drinfeld

Consider the discrete group D^{\times} with the homomorphism

$$D^{ imes} o \mathbf{D}^{ imes}(\mathbb{R}) o \mathbf{D}^{ imes}(\mathbb{R})/\mathcal{A}_{\mathbf{D}^{ imes}} o \mathrm{SO}(n+1).$$

For contrapositive's sake, suppose $\mathbb{C} \prec L^2(S^n)_0$. Because $\mathbf{D}^{\times}(\mathbb{R})/A_{\mathbf{D}^{\times}}$ acts transitively on S^n , we have $L^2(S^n)_0 \hookrightarrow L^2(\mathbf{D}^{\times}(\mathbb{R})/A_{\mathbf{D}^{\times}})_0$. Therefore $\mathbb{C} \prec L^2(\mathbf{D}^{\times}(\mathbb{R})/A_{\mathbf{D}^{\times}})_0$. Since D is ramified at ∞ , we see D^{\times} is discrete in $\mathbf{D}^{\times}(\mathbb{A}_{f})$. Therefore $\mathbb{C} \prec \operatorname{Ind}_{D^{\times}}^{\mathbf{D}^{\times}(\mathbb{A}_{f})} L^{2}(\mathbf{D}^{\times}(\mathbb{R})/A_{\mathbf{D}^{\times}})_{0}$. This induced representation is a subrepresentation of $L^2([\mathbf{D}^{\times}])$ where SU(2) acts trivially. As it weakly contains \mathbb{C} , for any $\epsilon > 0$ and large enough p we can find an automorphic representation V of $\mathbf{D}^{\times}(\mathbb{A})$ with $|a_p - (p+1)| < \epsilon$. The Jacquet–Langlands correspondence yields an automorphic representation JL(V) of $GL_2(\mathbb{A})$ with the same property and $JL(V)_{\infty}^{sm}$ isomorphic to the discrete series σ_2 . By Deligne's theorem, this does not exist. Thus $\mathbb{C} \not\prec L^2(S^n)_0$, so the answer to the Ruziewicz problem is yes!

Closing remarks

We could use a weaker version of the Ramanujan conjecture instead:

Theorem (Rankin)

We have $|a_p| = O(p^{k/2-1/5})$.

References:

- B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's Property (T).
- A. Lubotzky, *Discrete Groups, Expanding Graphs, and Invariant Measures.*
- J. Getz and H. Hahn, *An Introduction to Automorphic Representations*.
- V. Drinfeld, "Finitely additive measures on S^2 and S^3 , invariant with respect to rotations."

Thank you!