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The Ruziewicz Problem

Let n ≥ 1 be an integer, and consider the n-sphere Sn with the Lebesgue
measure λ. Normalize λ such that λ(Sn) = 1.
Note that SO(n + 1) preserves Sn as a subset of Rn+1, and this action
corresponds to rotations.
Evidently λ is a rotation-invariant, finitely-additive measure on the
Lebesgue σ-algebra of Sn satisfying λ(Sn) = 1.

Question

Is λ the only one?
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What’s known?

Ruziewicz Problem

Is λ the only rotation-invariant, finitely-additive measure on the Lebesgue
σ-algebra of Sn satisfying λ(Sn) = 1?

The answer depends on n:

For n = 1, it’s not! This was proved by Banach in 1921, and it uses
the axiom of choice.

For 2 ≤ n ≤ 3, it is! This was proved by Drinfeld in 1984, and it uses
the Ramanujan conjecture.

For 4 ≤ n, it is! This was proved by Margulis and Sullivan in 1980,
and it uses arithmetic subgroups.
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Some representation theory

All our groups G are second-countable, locally-compact, Hausdorff
topological groups. So they have right-invariant Haar measures µ.
We focus on unitary representations, i.e. where the action map

G × V → V

is continuous, and (V , 〈·, ·〉) is a Hilbert space where 〈gv , gw〉 = 〈v ,w〉 for
all g ∈ G and v ,w ∈ V . Subrepresentations must be closed subspaces.

Example (Regular representation)

For any group G , we have L2(G ) with right translation.

Example

For G = SO(n + 1), write L2(Sn)0 = {f ∈ L2(Sn) |
∫
dλ f = 0}. Then

L2(Sn) = C · 1Sn ⊕ L2(Sn)0.
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Spaces of representations

Write G̃ for the set of isomorphism classes of unitary representations of G .

Definition

Let V be a unitary representation of G , let v ∈ V , let Q ⊆ G be compact,
and let ε > 0. Write U(V , v ,Q, ε) for the subset{

W ∈ G̃
there exists w1, . . . ,wm ∈W such that∣∣〈gv , v〉 −∑n

i=1〈gwi ,wi 〉
∣∣ < ε for g ∈ Q

}
.

The U(V , v ,Q, ε) form a subbasis for a topology we call the Fell topology.
Write Ĝ ⊂ G̃ for the subspace of irreducible representations.

Example (Pontryagin duality)

For abelian G , the subspace Ĝ is naturally an abelian group, and
̂̂
G = G .

For instance, R̂ = R, and Ŝ1 = Z.

While Ĝ is usually nice, G̃ is never nice.
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Induced representations

Let H ⊆ G be a closed subgroup.

Definition

Let V be a unitary representation of H. The induced representation is

IndGHV =

{
measurable f (hg) = hf (g) for all h ∈ H and almost all
f : G → V g ∈ G , and

∫
H\G dg‖f (g)‖2 <∞

}
modulo equality almost everywhere, with right translation.

Example

For any group G , we see that IndG{1}C is the regular representation L2(G ).

Example

For G = SO(n + 1) and H = SO(n), we have H\G = Sn. So we see that
IndGHC = L2(Sn).
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Weak containment

Recall that neighborhoods of V ∈ G̃ are given by finite intersections of{
W ∈ G̃

there exists w1, . . . ,wm ∈W such that∣∣〈gv , v〉 −∑n
i=1〈gwi ,wi 〉

∣∣ < ε for g ∈ Q

}
.

Definition

Let V and W be unitary representations of G . Then W weakly contains
V if W lies in the closure of {V } ⊂ G̃ . We write V ≺W .

If U ≺ V and V ≺W , then U ≺W .

Example

If V is a subrepresentation of W , then V ≺W .

Example

If H ⊆ G is a discrete closed subgroup, then C ≺ IndGHC.
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More on weak containment, and back to Ruziewicz!

Fact

The map IndGH : H̃ → G̃ is continuous.

Therefore if V ≺W , then IndGHV ≺ IndGHW .
What does any of this have to do with the Ruziewicz problem? Recall that

L2(Sn)0 = {f ∈ L2(Sn) |
∫
dλ f = 0}

is a unitary representation of SO(n + 1).

Fact

Let Γ be a discrete group, and let ψ : Γ→ SO(n + 1) be a homomorphism.
Consider the representation L2(Sn)0 of Γ. If C ⊀ L2(Sn)0 as
representations of Γ, then the answer to the Ruziewicz problem is yes!

The proof only uses functional analysis from Charlie Smart’s Winter 2018
MATH313. (Including such gems as L1(X )∗∗ being the space of
finitely-additive measures, Mazur’s theorem, and Goldstein’s theorem.)
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Work of Margulis and Sullivan

Fact

Let Γ be a discrete group, and let ψ : Γ→ SO(n + 1) be a homomorphism.
Consider the representation L2(Sn)0 of Γ. If C ⊀ L2(Sn)0 as
representations of Γ, then the answer to the Ruziewicz problem is yes!

Theorem (Margulis, Sullivan)

For n ≥ 4, there exists an arithmetic subgroup Γ ⊂ SO(n + 1) satisfying a
stronger version of the above criterion. (“Kazhdan’s property (T)”)

This solves the Ruziewicz problem for n ≥ 4. However, Kazhdan’s property
(T) on arithmetic subgroups won’t work for n ∈ {2, 3}:

Theorem (Margulis)

Let G be a connected compact simple Lie group. Then G has an
arithmetic subgroup satisfying Kazhdan’s property (T) if and only if G is
not isogenous to SO(2), SO(3), or SO(4).

9 / 17



Some algebraic groups

Let G be a connected reductive algebraic group over Q.

Example

We can take G = GL2.

Example

Let D be a quaternion algebra over Q. We can take G = D×, whose
functor of points is D×(R) = (D ⊗Q R)× for Q-algebras R.

Let AG be the identity component of the R-points of the maximal split
subtorus of the center of G.

Example

For G = GL2, the center is the subgroup of scalars. So AG = R>0. Same
for G = D×.
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L2 spaces of automorphic representations

Write [G] for G(Q)\G(A)/AG. Borel–Harish-Chandra proved that [G] has
finite measure. Now G(A) acts on L2([G]) with right translation.

Definition

Write L2cusp([G]) ⊆ L2([G]) for the set of f : [G]→ C such that, for every
proper parabolic subgroup P ⊂ G with unipotent radical N, we have∫
N(Q)\N(A) dn f (ng) = 0 for almost all g ∈ G(A).

Definition

An automorphic representation of G(A) is an irreducible subquotient of
L2([G]). It is cuspidal if it is a subquotient of L2cusp([G]).

Example

For G = D×, there are no proper parabolic subgroups. So
L2([G]) = L2cusp([G]).
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Automorphic forms and factorizing

Let K be a maximal compact subgroup of G(A), factored as Kf × K∞.

Example

For G = GL2, we can take K = GL2(Ẑ)×O(2).

For any automorphic representation V of G(A), write V sm for its subspace
of K -finite vectors. Write g for the Lie algebra of G(R).

Theorem (Bernstein–Harish-Chandra)

The subspace V sm consists of automorphic forms, and it’s an irreducible
admissible G(Af )× (g,K∞)-module.

Theorem (Flath)

Let W be an irreducible admissible G(Af )× (g,K∞)-module. Then
W =

(⊗′
p Wp

)
⊗W∞, where the Wp are irreducible admissible

representations of G(Qp), and W∞ is an irreducible admissible
(g,K∞)-module.
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Relation with modular forms

Let f : H → C be a cusp eigenform of weight k ≥ 2 and level Γ1(N).
Write K1(N) = {g ∈ GL2(Ẑ) | g ≡ [ ∗ ∗1 ] mod N} and
GL2(R)+ = {g ∈ GL2(R) | det g > 0}. Since detK1(N) = Ẑ×, strong
approximation implies GL2(A) = GL2(Q)K1(N)GL2(R)+.
For g = γku ∈ GL2(A) with u =

[
a b
c d

]
, set

φ(g) = (det u)k/2(ci + d)−k f
(ai + b

ci + d

)
.

Fact

We have φ ∈ L2cusp([GL2]), and the subrepresentation Vφ it generates is
irreducible. Furthermore, every cuspidal automorphic representation V of
GL2(A) such that V sm

∞ is discrete series arises this way.

Theorem (Deligne)

For such a representation and p - N, the Hecke operator
Tp = e

GL2(Zp)[ p 1 ]GL2(Zp)
acts by a scalar ap with |ap| ≤ 2p(k−1)/2.

13 / 17



Global Jacquet–Langlands correspondence

Let D be a quaternion algebra over Q ramified at ∞.

Example

We can take the rational Hamiltonian quaternions
D = {a + bi + cj + dk | a, b, c , d ∈ Q}, where i2 = j2 = −1 and
ij = −ji = k.

Theorem (Jacquet–Langlands)

There exists an injection

JL :{cuspidal automorphic representations of D×(A)}
↪→ {cuspidal automorphic representations of GL2(A)}

such that

if V sm
∞ = C, then JL(V )sm∞ is the discrete series σ2,

if D is split at p, then JL(V )smp = V sm
p .
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Back to Ruziewicz!

Fact

Let Γ be a discrete group, and let ψ : Γ→ SO(n + 1) be a homomorphism.
Consider the representation L2(Sn)0 of Γ. If C ⊀ L2(Sn)0 as
representations of Γ, then the answer to the Ruziewicz problem is yes!

Let n ∈ {2, 3}. Let D be a quaternion algebra over Q ramified at ∞.
Then D×(R) = H×, so D×(R)/AD× = SU(2) = S3.

For n = 2, conjugation on purely imaginary quaternions yields
D×(R)/AD× � SO(n + 1).

For n = 3, right translation yields D×(R)/AD× → SO(n + 1). Note
that D×(R)/AD× acts transitively on S3.

In both cases, consider the discrete group D× with the homomorphism

D× → D×(R)→ D×(R)/AD× → SO(n + 1).
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Work of Drinfeld

Consider the discrete group D× with the homomorphism

D× → D×(R)→ D×(R)/AD× → SO(n + 1).

For contrapositive’s sake, suppose C ≺ L2(Sn)0. Because D×(R)/AD×

acts transitively on Sn, we have L2(Sn)0 ↪→ L2(D×(R)/AD×)0. Therefore
C ≺ L2(D×(R)/AD×)0. Since D is ramified at ∞, we see D× is discrete in

D×(Af ). Therefore C ≺ Ind
D×(Af )
D× L2(D×(R)/AD×)0. This induced

representation is a subrepresentation of L2([D×]) where SU(2) acts
trivially. As it weakly contains C, for any ε > 0 and large enough p we can
find an automorphic representation V of D×(A) with |ap − (p + 1)| < ε.
The Jacquet–Langlands correspondence yields an automorphic
representation JL(V ) of GL2(A) with the same property and JL(V )sm∞
isomorphic to the discrete series σ2. By Deligne’s theorem, this does not
exist. Thus C ⊀ L2(Sn)0, so the answer to the Ruziewicz problem is
yes!
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Closing remarks

We could use a weaker version of the Ramanujan conjecture instead:

Theorem (Rankin)

We have |ap| = O(pk/2−1/5).
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Thank you!
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