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Kazuya Kato. Any errors are attributed to the note-taker. If you find any such errors or have comments at
large, don’t hesitate to contact said note-taker at lidansiyan@gmail.com.

1 January 3, 2018

The subject of this course consists of Diophantine geometry and heights of numbers, or in other words,
height functions in number theory. The course outline is as follows:

§1 A theorem of Siegel (a special case of §2) and the ABC conjecture.

§2 Results and conjectures in Diophantine geometry, especially finiteness results and conjectures.

§3 The Vojta conjectures, for which heights in number fields are important.

§4 Nevanlinna analogues of the above, for which heights of holomorphic functions are important. This is
related to §2 and §3 by analogy.

§5 The proof of the Mordell conjecture by Faltings, the Tate conjecture for abelian varieties by Faltings, and
the Tate conjecture for algebraic cycles, assuming the finitude of the number of motives with bounded
heights, by Koshikawa (one of my students!).

Here are some good textbooks:

1. Fundamentals of Diophantine Geometry (which is the study of algebraic arithmetic geometry concerning
rational points and integral points of algebraic equations) by Lang.

Diophantine geometry is named after an ancient Greek mathematician who studied rational and integral
points of algebraic equations. Fermat and many others have also studied such questions.

Let us start with §1. We now introduce a theorem of Siegel and later the ABC conjecture.

1.1 Theorem (Siegel). Let A ⊇ Z be an integral domain that is finitely generated over Z. Then

{(x, y) ∈ A× ×A× | x+ y = 1}

is a finite set.

1.2 Examples.

• Let A = Z[1
2 ]. Then the corresponding set is just {(2,−1), (−1, 2), (1

2 ,
1
2)}, which can be shown by

any high school student.
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• Let A = Z[1
6 ]. Then the corresponding set consists of (2,−1), (3,−2), (9,−8), (4,−3) and other

pairs obtained from elementary operations (such as x + y = 1 =⇒ 1
x −

y
x = 1, but I shall not

explicitly define these operations here), though I do not know how to prove this elementarily.

We include the ABC conjecture in this section because it implies Siegel’s theorem, demonstrating that
the two subjects are indeed related. The ABC conjecture was originally formulated by Osterlé and Masser
in 1985, and its original form proceeds as follows:

1.3 Conjecture (ABC). 1 Fix ε > 0. Then there are only finitely many triples (a, b, c) for which the a, b, c
lie in Z>0, are coprime, satisfy a+ b = c, and have∏

p|abc
p is prime

p ≤ c1−ε.

The content of this conjecture is that if a + b = c and (a, b, c) = 1, then a, b, and c usually have many
prime divisors. Slightly more precisely, we roughly have that

∏
p|abc p is greater than c.

1.4 Example. For 3 + 5 = 8, we have 3× 5× 2 = 30 > 8.

However, we can sometimes have exceptional cases.

1.5 Examples.

• For 23 + 1 = 9, we have 2× 3 = 6 < 9.

• For 112 + 22 = 53, we have 11× 2× 5 = 110 < 125.

• For 1 + 80 = 81, we have 2× 3× 5 = 30 < 81. Here, 30 is much smaller than 81!

• For 25 + 72 = 34, we have 2× 7× 3 = 42 < 81.

While some of these exceptional cases render the ratio
(∏

p|abc p
)
/c quite small, the ABC conjecture

implies that for cofinitely many triples (a, b, c), we have

log
( ∏
p|abc

p
)
> (1− ε) log c =⇒

log
(∏

p|abc p
)

log c
> 1− ε =⇒ lim inf

c→∞
a+b=c

(a,b,c)=1

log
(∏

p|abc p
)

log c
> 1− ε.

Taking ε→ 0 yields

lim
c→∞
a+b=c

(a,b,c)=1

min


log
(∏

p|abc p
)

log c
, 1

 = 1,

so eventually these ratios do get large.
Let’s show that the ABC conjecture as stated implies the theorem of Siegel for A = Z[ 1

N ]!

1In 2012, Mochizuki uploaded a series of papers containing his proof of the ABC conjecture. However, it is not published yet,
as it is difficult to understand the theory and check whether it’s correct.
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Proof of Siegel’s theorem using ABC. Let (x, y) lie in the desired subset. Then x + y = 1, and pulling out
denominators and rearranging if necessary yields an equation a + b = c, where the a, b, and c are positive
integers satisfying (a, b, c) = 1. Since x and y are units in Z[ 1

N ], they only have nonzero p-adic valuation
for p dividing N . As the a, b, and c are the result of clearing denominators from x and y, we see that the
primes dividing abc also divide N . Therefore

N ≥
∏
p|abc

p ≥ c1−ε

for cofinitely many (a, b, c) as above. Thus the options for c are bounded, so there are finitely many alto-
gether.

How would we formulate ABC for more general rings A? We’ll discuss one perspective this next time.

2 January 5, 2018

One can almost deduce Fermat’s last theorem from the ABC conjecture. Namely, ABC implies that

{(x, y, z, n) | x, y, z ∈ Z r {0}, n ≥ 4 ∈ Z, xn + yn = zn, (x, y, z) = 1}

is finite. Of course, the actual Fermat’s last theorem says that this set is empty. Furthermore, the Mordell
conjecture (proved by Faltings) says that the above set is finite when you fix the value of n, because xn +
yn = zn cuts out a projective curve in P2 of genus (n − 1)(n − 2)/2, which is at least 2 when n ≥ 4, and
the Q-rational points of this curve correspond to solutions in the above set.

All the theorems we’ve just quoted are really strong. We’ve seen some of that already, and as further
evidence, the ABC conjecture implies the following stronger version of the last paragraph:

2.1 Conjecture (Fermat–Catalan). The set{
(a, b, c) ∈ Z3

>0
a+ b = c, gcd{a, b, c} = 1, and there exists x, y, z ∈ Z and m,n, k ∈ Z>0

such that a = xm, b = yn, c = zk, and 1
m + 1

n + 1
k < 1.

}
is finite.

Proof of the Fermat–Catalan conjecture using ABC. Because a, b, and c have the same prime divisors as x,
y, and z (respectively), we have∏

p|abc

p ≤ xyz ≤ zk/mzk/nz = zk( 1
m

+ 1
n

+ 1
k

) = c( 1
m

+ 1
n

+ 1
k

).

By choosing a sufficiently small ε, we see that this is bounded above by c1−ε for all choices of (m,n, k),
and the ABC conjecture tells us that there are only finitely many such (a, b, c) for which (a, b, c) = 1.

The Fermat–Catalan conjecture is an amalgamation of Fermat’s last theorem and the following result.

2.2 Theorem (Catalan conjecture). The only solution to xm − yn = 1, for m, n ≥ 2 and positive integers
x and y, is 32 − 23 = 1.

Even though the ABC conjecture implies the generalized finitude that the Fermat–Catalan conjecture
brings, it doesn’t seem to give the precise, concrete description that the Catalan conjecture provides. The
Catalan conjecture was proved by Mihăilescu in 2002, and it was a big deal.

We will now discuss a connection with P1 r {0, 1,∞}, which leads to a geometric generalization of our
ABC discussion (and of our Diophantine approximation business at large). First, let O(C) denote the set of
holomorphic functions C−→C, and let us discuss a strange fundamental philosophy:
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what happens for O(C)←→ what happens for A,

where A is any integral domain containing Z that is finitely generated over Z. By this, I mean that (analytic)
properties in O(C) correspond to (arithmetic) properties in A.

Let us begin by recasting Siegel’s theorem in this setting. For potentially ultimate confusion, write
A = O(C). We can consider the set

{(f, g) ∈ A× ×A× | f + g = 1}

just as in Siegel’s theorem, and this corresponds to taking the set

{f ∈ A | f(α) /∈ {0, 1} ∀α ∈ C},

which in turn is just the set of holomorphic functions f : C−→P1(C) r {0, 1,∞}. A theorem of Picard
says that such functions must be constant. This constraint on such functions indicates that, in our analogy,
we have

a theorem of Picard←→ a theorem of Siegel.

Of course, this philosophy gives no proofs, but it tells us what we ought to expect is true and is not true.
We shall pass the ABC conjecture through this analogy, and it corresponds to a certain (already proven)

theorem in Nevanlinna theory. This could be construed as evidence for the ABC conjecture. For more
on this connection, see Vojta’s article “Diophantine approximation and Nevanlinna theory.” The slogan
of the aforementioned theorem in Nevanlinna theory is that, when we have a non-constant holomorphic
map f : C−→P1(C), it takes values in {0, 1,∞} at many points. On the number theory side, this shall
correspond to p dividing abc for many p.

More precisely, we geometrize the statement of ABC by noticing that the set

{(a, b, c) ∈ (Z r {0})3 | a+ b = c, (a, b, c) = 1}/{±1}

bijects to P1(Q) r {0, 1,∞} via the map (a, b, c) 7→ x := a/c. For every prime number p, we have a map
P1(Q)−→P1(Fp) given by reduction mod p after expressing points of P1(Q) as [a : c], where a and c are
coprime integers.

As often is the case, prime numbers p correspond to points α in C. Furthermore, in our analogy

evaluation at α←→ evaluating along P1(Q)−→P1(Fq),

and rational numbers (well, really Q-points of P1) correspond to meromorphic functions, that is,{
holomorphic maps C−→P1(C)

}
←→ P1(Q).

We see that x lands in {0, 1,∞} in P1(Fp) if and only if p|abc, where we still write x = a/c for (a, c) = 1.
For now, let us define height of x to be H(x) := max{|a|, |c|}. Additionally, write

N (1)(x) :=
∏

p is prime
x∈{0,1,∞} (mod p)

p.

Then the ABC conjecture becomes the statement that for all ε > 0, the set

{x ∈ P1(Q) r {0, 1,∞} | N (1)(x) ≤ H(x)1−ε}

4
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is finite. Given that, for any fixed C > 0, the set

{x ∈ P1(Q) | H(x) ≤ C}

is also finite2, we see that the ABC conjecture in this light implies that

{x ∈ P1(Q) r {0, 1,∞} | N (1)(x) ≤ C}

is finite. From this, one can deduce Siegel’s theorem.
The ABC conjecture says that we roughly have N (1)(x) ≥ H(x). The corresponding Nevanlinna

statement is that we roughly have N (1)(α) ≥ Tf (α), and this latter statement is known to be true.3

In this geometric optic, we can replace P1r{0, 1,∞}with more general algebraic varieties over number
fields. Let F be a number field, and let X be an algebraic variety4 over F . Let X be a compactification of
X over F , and here now X rX takes the role of {0, 1,∞}. We can consider both the C-points as well as
F -points of these varieties, and this is the setting in which Vojta formulates his conjectures.

3 January 8, 2018

Recall from Lecture 1 that the ABC conjecture implies Siegel’s theorem for Z[ 1
N ]. This time, let me begin

by saying a few words on the work of Mochizuki. We have a map

P1(Q) r {0, 1,∞}−→{elliptic curves over Q}/∼
λ 7−→ Eλ : y2 = x(x− 1)(x− λ).

And roughly speaking, for any prime number p,

λ ∈ {0, 1,∞} (mod p) ⇐⇒ Eλ has bad reduction at p.

The reason for this is that the equation defining Eλ becomes singular modulo p precisely when λ becomes
0, 1, or∞ modulo p.

Define the height of Eλ to be H(Eλ) := H(λ), and recall that the latter height is defined to be
max{|a|, |c|}, where λ = a/c for coprime a and c. Now Mochizuki was Faltings’s student, the latter
of whom defined the heights of abelian varieties over number fields (and used them to prove the Mordell
conjecture!).

Last time, we saw that the ABC conjecture corresponds to saying we roughly have∏
p is prime

λ∈{0,1,∞} (mod p)

p ≥ H(λ)

which hence corresponds to saying that we roughly have∏
p is prime

Eλ has bad reduction at p

p ≥ H(Eλ),

which ties our story of the ABC conjecture to the story of elliptic curves.

2See Proposition 9.4.
3For the definitions of N (1)(α) and Tf (α), see Lecture 17.
4For me, all algebraic varieties are assumed to be geometrically irreducible.
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Around the 2000s, Mochizuki was studying Hodge–Arakelov theory (a form of “p-adic Hodge theory”
for elliptic curves over number fields). He had expected this theory to be useful for proving the ABC
conjecture, but he has since changed his strategy. His current strategy also studies elliptic curves, and its
goal is to extract information from πét

1 (E r {0}), which is related to his previous work from the 1990s on
Grothendieck’s conjecture:

3.1 Theorem (Mochizuki). Let X be a hyperbolic curve over a number field, that is, a smooth algebraic
curve such that the universal cover of X(C) is the upper half plane ∆. Then πét

1 (X) determines X up to
isomorphism.

Let us now move into §2, which is concerned with various finitude results and conjectures. Let’s begin
with the curve case. Let X be a smooth algebraic curve over C, which we can treat via the analytic theory.
Let X be a smooth projective curve over C that compactifies X , and write S for the finite subset X r X .
Then X(C) is a compact Riemann surface, and it is topologically a donut with g holes, where g := g(X) is
the genus of X . We form the following table for the universal covering of X(C), which depends on g(X)
and #S:

g(X) #S = 0 #S = 1 #S = 2 #S ≥ 3

0 P1(C) C C ∆

1 C ∆

≥ 2 ∆

That is, X is hyperbolic if and only if 2 − 2g − #S < 0. Next, let us consider holomorphic maps
C−→X .

3.2 Proposition. All such maps are constant if and only if the universal covering X̃(C) is isomorphic to ∆.

Proof. Suppose that X̃(C) is ∆. Then the result follows from first lifting C−→X(C) to a map C−→ X̃(C)
(which we can do because C is simply connected) and then applying the theorem of Picard.5

If X̃(C) is not ∆, then we are in one of the exceptional cases in the above table. Here, the maps

C ↪−→ P1(C), C−→C, exp : C−→C×, C−→C/Λ

yield nonconstant holomorphic functions, as advertised.

We now turn back to arithmetic. Recall from a first course in algebraic number theory that the set

{(x, y) ∈ Z2 | y2 = 2x2 − 1} = {(5, 7), (29, 41), . . . }

is infinite, and its members yield progressively better approximations of
√

2. On the other hand, the sets

{(x, y) ∈ Z2 | y3 = 2x3 − 1} and {(x, y) ∈ Z2 | y3 = 2x3 − 3}

are finite. One point in the latter set is (4, 5), which corresponds to using 5
4 to approximate 3

√
2. In fact,

both these sets correspond to rational approximations of 3
√

2, and that’s one reason why they’re finite (use
Roth’s theorem). The fact that 5

4 and 3
√

2 are close is a crucial fact in even-tempering notes—it allows the
even-tempered major third (21/12)4 to approximate the aesthetically pleasing ratio of frequencies 5

4 .

5Alternatively, we can just use the fact that ∆ is isomorphic to the open unit disk and apply Liouville’s theorem.

6



MATH 383 — Height Functions in Number Theory Siyan Daniel Li

In the Vienna Boys’ choir, they use 5:4 instead of 3
√

2 for their frequency ratio of do:mi. Note that 5
4 has

small height, and while I don’t know why it’s the case because I don’t know physics, this ratio of frequencies
is pleasing to the ear. Similarly, the golden ratio

φ :=
1 +
√

5

2

also has small height (we haven’t defined heights of arbitrary algebraic numbers yet, but we can6), and this
quantity is known to be beautiful for the eyes. The moral of the story is that algebraic numbers of small
height are aesthetically pleasing.

Returning to pure mathematics, let us introduce the Mordell conjecture, which is a theorem of Faltings:

3.3 Theorem (Faltings). Let F be a finitely generated field over Q (i.e. a finite extension of some purely tran-
scendental extension Q(T1, . . . , Tn)), and suppose thatX is a smooth algebraic curve over F . If g(X) ≥ 2,
then X(F ) is finite.

The Mordell conjecture is usually stated for F a number field, but it has also been proved in this addi-
tional generality.

Suppose that F is a subfield of C. Combining Proposition 3.2 with Faltings’s theorem yields the follow-
ing result.

3.4 Corollary. Assume that X = X . Then every holomorphic map C−→X(C) is constant if and only if
X(A) is finite for all integral domains A containing Z that are finitely generated over Z and whose quotient
field Q(A) contains F .

Here, we can interpret X(A) in many ways—for example, by locally fixing embeddings X ↪−→ AN
and taking X(Q(A)) ∩ AN (A), or by using a model of X over A. They all yield a correct statement.
Additionally, in Corollary 3.4, it’s true that it suffices to check the finitude criterion for those A which are
orders of number fields.

Today was the curve case—next time, I will introduce general conjectures for general algebraic varieties.

4 January 10, 2018

My presentation of the curve case last time was bad, so let me improve it now (as well as present the general
case for algebraic varieties).

Let F be a finitely generated field over Q, and let X be a smooth curve over F . Now suppose F is a
subfield of C, which enables us to take C-points of X and obtain a Riemann surface X(C). Let X be a
compactification of X over F . When X = X , recall that Corollary 3.4 gives us a connection between the
arithmetic and analysis of X .

In the case that X 6= X , our curve X must then be affine, that is, defined by polynomial equations

X = {x | fi(x) = 0 for all integers 1 ≤ i ≤ m}

for some polynomials fi in F [T1, . . . , Tn]. In this setting, it turns out that Corollary 3.4 continues to hold,
including our remark on the sufficiency of checking on A satisfying [Q(A) : F ] <∞:

4.1 Proposition (Siegel). Assume that X 6= X . Then the following are equivalent:

• Every holomorphic map C−→X(C) is constant,

6See Definition 10.3.
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• X(A) is finite for all integral domains A containing Z that are finitely generated over Z and whose
quotient field Q(A) contains F ,

• X(A) is finite for all such integral domains A such that [Q(A) : F ] is finite.

Before we explain what X(A) means, let us turn to the case of general algebraic varieties. They are
governed by the conjectures of Lang and Vojta. Let X be an algebraic variety over F , which means that it
can be covered by finitely many affine algebraic varieties. First, consider the case where X itself is affine,
which once again means that it is of the form

X = {x | fi(x) = 0 for all integers 1 ≤ i ≤ m}

for some polynomials fi in F [T1, . . . , Tn]. For any commutative ring A over F , we write

X(A) := {x ∈ An | fi(x) = 0 for all integers 1 ≤ i ≤ m} = HomF (O(X), A),

where O(X) := F [T1, . . . , Tn]/(f1, . . . , fm).
For general algebraic varietiesX over F , consider an open coverX =

⋃r
j=1 Uj ofX by affine algebraic

varieties Uj . Then, for any integral domain A over F satisfying the condition

A =
⋂

m∈mSpec(A)

Am in Q(A),

we have the following description of the A-points of X:

X(A) = {x ∈ X(Q(A)) | ∀m ∈ mSpec(A), ∃ an integer 1 ≤ j ≤ r such that x ∈ im(Uj(Am)−→X(Q(A))}.

This also holds if we replace every instance of mSpec with Spec. In particular, we stress that X(A) does
not simply equal

⋃r
i=1 Ui(A).

4.2 Examples. Let us now examine some algebraic varieties.

• X = P1 r {0, 1} is affine and corresponds to the ring F [T, 1
T ], which is isomorphic to

F [X,Y ]/(XY − 1) via X 7→ T, Y 7→ 1

T
.

• X = P1 r {0, 1,∞} is affine and corresponds to the ring F [T, 1
T ,

1
T−1 ], which is isomorphic to

F [X1, X2, Y1, Y2]/(X1X2 − 1, Y1Y2 − 1, X1 − Y1 + 1) via X1 7→ T, X2 7→
1

T
, Y1 7→ T − 1, Y2 7→

1

T − 1
.

Let us now travel to the analytic side. Let X be an algebraic variety over C, and write

A = Ohol(C) := {holomorphic functions C−→C},
X(A) := {morphisms C−→X(C) of complex analytic spaces}.

That is, X(A) is the set of holomorphic maps C−→X(C). More explicitly, when X is affine and cut out
by polynomials f1, . . . , fm in C[T1, . . . , Tn], we have

X(A) = {ϕ = (ϕ1, . . . , ϕn) ∈ Ohol(C)n | fi(ϕ) = 0 for all integers 1 ≤ i ≤ m}.

8
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For general algebraic varieties X over C, we can compute X(A) exactly as we did in the algebraic setting.
Now Q(A) is the field of meromorphic functions C 99K C, the maximal ideals m of A are in bijection with
points α in C, and under this correspondence we have

Am = Q(A) ∩ Ohol
C,α,

where Ohol
C,α is the stalk at α of the sheaf of holomorphic functions C−→C. Note that Ohol

C,α equals the
subring of convergent series in C[[T − α]], and Am equals the ring of meromorphic functions that are holo-
morphic at α. In particular, if X =

⋃r
j=1 Uj for some open affine algebraic subvarieties Uj , we once again

have X(A) 6=
⋃r
j=1 Uj(A) in general.

We now need a notion of hyperbolicity for general algebraic varieties over C.

4.3 Definition. We say that X(C) is (Brody) hyperbolic if any holomorphic map C−→X(C) is constant.

This definition is from 1978. There is an older notion of Kobayashi hyperbolicity (from 1967, so it’s
older) that is phrased in terms of differential geometry, but it only applies whenX(C) is a complex manifold
(i.e. when X is smooth). I will not explain Kobayashi hyperbolicity for two reasons: it requires some
differential geometry to set up, and Brody hyperbolicity fits better with our leanings toward Diophantine
geometry. However, we do have the following comparison between the two notions.

4.4 Proposition. If X(C) is Kobayashi hyperbolic, then it is Brody hyperbolic. Furthermore, when X(C)
is compact, the converse holds as well.

When X(C) is not compact, the converse is known to be false.7 A few years ago, I was wondering
whether Kobayashi hyperbolicity was good or Brody hyperbolicity was good, so I wrote to Vojta. He said
that Kobayashi hyperbolicity was bad and that Brody hyperbolicity was good. So from now on, let us only
work with Brody hyperbolicity.

Return to the situation of a subfield F of C that is finitely generated over Q, and let X be an algebraic
variety over F . If X is affine and of the form

X = {x | fi(x) = 0 for all integers 1 ≤ i ≤ m},

then for any integral domain A containing Z and for which Q(A) contains F , we set

X(A) := An ∩X(Q(A)).

For general algebraic varieties X over F , we define X(A) as in our previous description.

4.5 Conjecture (Lang–Vojta).

1. Assume that X(C) is compact. Then the following are equivalent:

• X(C) is hyperbolic,

• X(K) is finite for any finitely generated extension K of F ,

• X(K) is finite for any finite extension K of F .

2. Suppose that X is affine. Then the following are equivalent:

• X(C) is hyperbolic,

• X(A) is finite for any integral domain A containing Z that is finitely generated over Z and
whose quotient field Q(A) contains F ,

7See Remark 6.5.
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• X(A) is finite for all such integral domains A such that [Q(A) : F ] is finite.

3. Let X be any algebraic variety over F . Then the following are equivalent:

• X(C) is hyperbolic,

• X(A) is finite for any integral domain A containing Z that is finitely generated over Z and
whose quotient field Q(A) contains F ,

• X(A) is finite for all such integral domains A such that [Q(A) : F ] is finite.

Of course, part 3 generalizes part 2. Someone also notes that the conjectures imply that open subvarieties
of hyperbolic varieties remain hyperbolic, but this also follows directly from the definition of hyperbolicity.
Note that hyperbolicity is equivalent to saying that X(Ohol(C)) = X(C), and on the number theory side,
hyperbolicity is replaced with finitude results.

Next time, I hope to introduce a generalized version of Conjecture 4.5. Now Conjecture 4.5 itself is
great, but hyperbolic varieties are quite rare as well as hard to understand. On the other hand, varieties of
general type are much better understood as a whole, and we would like to formulate an analogous conjecture
for them as well. Lang has a generalized version of Conjecture 4.5 in precisely this context.

5 January 12, 2018

Let us now introduce new conjectures that encompass the ones given last time.

5.1 Conjecture (Lang). Let F be a finitely generated field over Q, let X be a proper algebraic variety over
F , and let Y ⊆ X be a Zariski closed subset. Then the following are equivalent:

(i) X(K) r Y (K) is finite for any finitely generated field K over F ,

(ii) X(K) r Y (K) is finite for any finite extension K of F ,

(iii) For any embedding F ↪−→ C, the image of any non-constant morphism C−→X(C) of complex
analytic spaces is contained in Y (C),

(iv) For any abelian variety A over F , the image of any non-constant morphism A−→XF of varieties
over F is contained in YF .

Last time’s Conjecture 4.5 covered the case when Y is empty. In Conjecture 5.1, the implication (i) =⇒
(ii) is clear, but I claim we can also readily get (iii) =⇒ (iv).

Proof of (iii) =⇒ (iv). Every abelian variety A over C can be characterized by A(C) = Cg/Γ for some
discrete cocompact subgroup Γ of Cg. By composing with Cg −→A(C) and applying (iii), we see that any
non-constant morphism A(C)−→X(C) of complex analytic spaces lands inside Y (C). GAGA gives you
the corresponding statement for algebraic varieties over C, and, finally, by viewing F ⊂ C and descending
from C to F , we obtain the desired result.

These are the only statements we can prove in general. However, when X is a curve, we know Conjec-
ture 5.1 by the theorems of Faltings and Siegel.

I was trying to phrase this all in terms of algebraic varieties last time, but it’s better to do this with
schemes. Usually algebraic varieties are easier than schemes, but you already saw that my presentation on
Wednesday was quite messy, and someone told me that schemes are the right choice in this setting. Recall
that a semiabelian variety is a group variety G that fits into a short exact sequence

1−→T −→G−→A−→ 0,

10
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where T is a torus, and A is an abelian variety.

5.2 Conjecture (Lang–Vojta). Let R be an integral domain containing Z that is finitely generated over Z,
let X be a scheme over R of finite type, and let Y ⊆ X be a Zariski closed subset. Then the following are
equivalent:

(i) X(A) r Y (A) is finite for any finitely generated integral domain A over R,

(ii) X(A)rY (A) is finite for any finitely generated integral domainA overR satisfying [Q(A) : Q(R)] <
∞,

(iii) For any embedding R ↪−→ C, the image of any non-constant morphism C−→X(C) is complex
analytic spaces is contained in Y (C),

(iv) Write F = Q(R). For any semi-abelian variety G over F , the image of any non-constant morphism
G−→XF of varieties over F is contained in YF .

5.3 Remark. We equip Y with any closed subscheme structure (e.g. the reduced closed subscheme struc-
ture). Because we only consider A-points of Y for reduced rings A, this leaves our conjectures unaffected.

On Wednesday, I used varieties over Q(A) instead of schemes over A, but this made the description of
A-points became quite complicated.

5.4 Examples.

• In part (iv) of Conjecture 5.2, the fact that we allow semiabelian varieties instead of merely abelian
one is rather necessary, as we can see from taking X = A1 and Y = ∅.

• Let R = Z, and consider the situation X = P1 r {0, 1,∞} and Y = ∅. Examples 4.2 shows that

P1 r {0, 1,∞} = SpecZ[T, 1
T ,

1
T−1 ] and thus (P1 r {0, 1,∞})(A) is finite

by the theorem of Siegel. The theorem of Picard verifies condition (iii) as well, and one can readily
show condition (iv). Altogether, this verifies the Lang–Vojta conjecture in this case. The scheme
P1 r {0, 1,∞} over Z is really the surface P1

Z with three horizontal curves punched out, and they’re
punched out in a way that results in no Z-points.

When Y is empty, condition (iii) in Conjecture 5.2 becomes the condition that X is (Brody) hyperbolic.
But there are not many hyperbolic varieties. Hyperbolicity is a differential geometric notion, and it’s better
to refine these conjectures for varieties of log general type, which is a version of general type for non-proper
varieties. I will not define either of these in general today, but rest assured that most varieties are of log
general type.

5.5 Conjecture. Let F be a subfield of C that is finitely generated over Q, and letX be an algebraic variety
over F . Then the following are equivalent:

(i) X is of log general type,

(ii) There is a proper Zariski closed subset Y of X such that every non-constant morphism C−→X(C)
of complex analytic spaces has image in Y (C).

We have the following corollary of the above conjecture.

5.6 Conjecture. The following are equivalent:

11
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(i) Any closed subvariety of X is of log general type,

(ii) X(C) is hyperbolic.

Proof of Conjecture 5.6 using Conjecture 5.5. If X(C) is hyperbolic, then it satisfies these condition (ii) in
Conjecture 5.5 for Y = ∅. Every subvariety Z of X contains Y , so applying Conjecture 5.5 to Z shows
that Z is of log general type.

Conversely, suppose that every closed subvariety of X is of log general type. By using Conjecture 5.5
to find a descending chain of algebraic varieties that every holomorphic map C−→X(C) has to land into,
we see that X(C) is hyperbolic.

If we assume Conjecture 5.1 and Conjecture 5.6, we can deduce the following conjecture.

5.7 Conjecture (Bombieri–Lang). Let F be a finitely generated field over Q, and let X be a proper variety
of general type over F . Then X(F ) is not Zariski dense in X .

In the curve case, the Bombieri–Lang conjecture is equivalent to the Mordell conjecture, because a pro-
jective curve X is of general type if and only if g(X) ≥ 2. I should give some explanation on what general
type means, shouldn’t I? In the case of non-singular projective hypersurfaces X ⊂ Pn+1 of dimension n
and degree m, it is of general type if and only if m ≥ n+ 3.

5.8 Examples. Note that we are working in characteristic zero for the moment.

• For an example with n = 1, note that the Fermat curve

{[x : y : z] | xm + ym = zm}

is of general type if and only if m ≥ 4.

• For an example with n = 2, we see that

{[x : y : z : w] | x5 + y5 + z5 + w5 = 0}

is of general type.

Hyperbolic varieties are harder to characterize. There is a conjecture of Kobayashi8 from 1970 that
characterizes hyperbolic non-singular projective hypersurfaces as those with sufficiently large m9, given n.

6 January 17, 2018

Last time, I introduced some very general conjectures, and today I’ll discuss some examples and comple-
ments of these. I hope to get to the definition of the important notion of log general type from last time.

6.1 Example. Over C, consider the affine variety

X := {(x1, . . . , xn+1) |
n+1∑
i=1

xi = 1, xi 6= 0 for all 1 ≤ i ≤ n+ 1}.

8See Conjecture 7.5.
9In this sense, perhaps hyperbolic varieties are also quite common—we just don’t understand them as well.

12
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Note that when n = 1, this variety becomes P1r{0, 1,∞}, which we have thoroughly discussed previously
via Siegel’s theorem, Examples 4.2, and Examples 5.4. So X is a generalized version of the P1 r {0, 1,∞}
situation. Recall that our conjectures also involve an auxiliary closed subvariety Y—here, it shall be

Y :=
⋃

I⊆{1,...,n+1}
2≤#I≤n

YI , where YI = {(x1, . . . , xn+1) ∈ X |
∑
i∈I

xi = 0}.

If n = 1, then X is Brody hyperbolic as we have seen before. However,for n ≥ 2 it is not—for example,
when n = 2 we have a non-constant holomorphic map

C−→X(C)

t 7−→ (et,−et, 1) ∈ YI for I = {1, 2}.

We first proceed to condition (iii) of Conjecture 5.2. Stay in the situation of Example 6.1.

6.2 Theorem (Borel (1897)). Let f : C−→X is a non-constant morphism of complex analytic spaces, and
write f = (f1, . . . , fn+1). Then there exists an I as above such that

∑
i∈I fi = 0 and the fi for i 6= I are

constant.

This is an improvement on the theorem of Picard, which covered the n = 1 case. Next, what about the
algebraic aspect of Conjecture 5.2? In that situation, take R = Z, and form the finite type Z-scheme

X := SpecR[T1, . . . , Tn,
1
T1
, . . . , 1

Tn
, 1
T1+···+Tn−1 ].

This recovers the variety X over C from Example 6.1, because we can simply replace xn+1 with 1− x1 −
· · · − xn. In general, for any Z-algebra A we have

X(A) = HomZ(Z[T1, . . . , Tn,
1
T1
, . . . , 1

Tn
, 1
T1+···+Tn−1 ], A)

= {a1, . . . , an+1 ∈ A× |
n+1∑
i=1

ai = 1}.

Similarly, form Y =
⋃
I YI , where the YI are closed subschemes of X cut out by

∑
i∈I Ti = 0, respectively

(where Tn+1 = 1− T1 − · · · − Tn). As Conjecture 5.2 predicts, the following result holds (but the proof is
hard, and we won’t describe it in class):

6.3 Theorem (Poorten–Schlickewei (1982), Evertse (1984)). The setX(A)rY (A) is finite for any integral
domain A containing Z that is finitely generated over Z.

However, the set X(A) itself might be infinite.

6.4 Example. Let A = Z[1
2 ] and n = 2. Then X(Z[1

2 ]) contains the infinite subset (2m,−2−m, 1), so the
content of Theorem 6.3 is that infinite subsets of X(A) only arise from the patterns cut out by the YI , up to
an error of finitely many points lying outside of YI(A).

Borel’s theorem and Conjecture 5.5 tell us that XQ should be of log general type.

6.5 Remark. Borel’s theorem shows us thatX(C)rY (C) is Brody hyperbolic. When n = 2, it turns out that
the related set X(C) r {(1,−1, 1), (−1, 1, 1)} is Brody hyperbolic but not Kobayashi hyperbolic! So the
converse of Proposition 4.4 is not true in general, even though we remind ourselves that Brody hyperbolicity
implies Kobayashi hyperbolicity when X(C) is compact.

13
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6.6 Remark. Stay in the n = 2 case. Then (X r Z)(A) is always finite, where Z is the union

Z := {T1 = 1, T2 = −1} ∪ {T1 = −1, T2 = 1}.

This can be shown using the theorem of Siegel. Note that that (XrZ)(C) = X(C)r{(1,−1, 1), (−1, 1, 1)},
so Remark 6.5 remains consistent with Conjecture 4.5.

I hope now to explain the notion of log general type. Let F be a field, let X be an algebraic variety over
F , and let X be a compactification of X . We begin with the case where X is smooth, and choose X such
that D := X rX is a divisor with normal crossings. Form the sheaf

Ω1
X

(logD) := {meromorphic Kähler differentials that are regular on X with at worst log poles at D},

where a meromorphic differential has at worst log poles at D if it is locally of the form

g + h · df

f
,

where g is a regular differential, h is a regular function, and f and f−1 are both regular outside of D.

6.7 Example. Consider the case of X = A1 = SpecF [T ], and write S = 1
T . Then D = {∞} is a single

point. If f dT is any differential on X , the quotient rule shows that

f dT = f d( 1
S ) = −f dS

S2 .

Therefore here Ω1
X

(logD) has no nonzero global sections.

In general, Ω1
X

(logD) is a vector bundle of rank n on X , where n is the dimension of X . Therefore
ω :=

∧n Ω1
X

(logD) is a line bundle on X . We can now define the log Kodaira dimension of X .

6.8 Definition. The log Kodaira dimension of X is defined to be

κ(X) := inf
{
k ∈ Z

∣∣∣m 7→ dimF Γ(X,ω⊗m)

mk
is a bounded function

}
.

In general, we have different choices of compactification X . However, the F -vector space Γ(X,ω⊗m) will
not depend on the particular X we choose, so κ(X) is well-defined.

Return now to the case of a general algebraic variety X over F , which might be singular. Assuming the
resolution of singularities (which is known for charF = 0), take a proper birational morphism X ′−→X ,
where X ′ is smooth, and define κ(X) to be κ(X ′). It turns out that κ(X) is also independent of the X ′

chosen.
Finally, use log Kodaira dimension to finally define log general type.

6.9 Definition. We say that X is of log general type if κ(X) = dimX .

6.10 Example. We begin by considering the case of X = P1, using the coordinates from Example 6.7.
Suppose F has characteristic not equal to 2, and form the following table of values for Γ(X,ω⊗m):

X Γ(X,ω) Γ(X,ω⊗m) for m ≥ 2

P1 0 0

P1 r {∞} 0 0

P1 r {0,∞} F · dT
T F · (dT

T )⊗m

P1 r {0, 1,∞} F · dT
T + F · dT

T−1

∑
F · (dT

T )⊗a( dT
T−1)⊗b

P1 r {0, 1, 2,∞} F · dT
T + F · dT

T−1 + F · dT
T−2 something with dimension 2m+ 1

14
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Therefore we see that the first three have log Kodaira dimension 0 and thus are not of log general type, while
the last two have log Kodaira dimension 1 are thus are of log general type.

In general, we have either κ(X) = −∞ or 0 ≤ κ(X) ≤ dimX . Next time, we’ll wrap this up and then
turn to the Vojta conjectures.

7 January 19, 2018

Today, let’s discuss some complements to the notions of log Kodaira dimension and log general type.

7.1 Example. Let F be a field, and form the varietyX as in Example 6.1 over F . As predicted by Conjecture
5.5, X is of log general type. To see this, consider the compactification X ↪−→ X := Pn given by

(x1, . . . , xn+1) 7→ [−1 : x1 : · · · : xn].

Then the divisor D = X rX at infinity is

n⋃
i=0

{xi = 0} ∪ {x0 + · · ·+ xn = 0},

so it is indeed a normal crossings divisor. Form ω =
∧n Ω1

X
(logD) as before, and consider Γ(X,ω⊗m).

Writing

e1 :=
dT1

T1
, . . . , e1 :=

dTn
Tn

, en+1 :=
d(T1 + · · ·+ Tn − 1)

T1 + · · ·+ Tn − 1
=

d(T1 + · · ·+ Tn)

T1 + · · ·+ Tn − 1
,

we see that Γ(X,ω) has an F -base given by

αj := ei1 ∧ · · · ∧ ein

for any integers 1 ≤ i1 < · · · < in ≤ n+ 1. In general, Γ(X,ω⊗m) has an F -base given by

α
a(1)
1 · · ·αa(n+1)

n+1

for any non-negative integers a(i) totaling m. Calculating dimensions via stars and bars gives us

dimF Γ(X,ω⊗m) =

(
m+ n

n

)
=

(m+ 1) · · · (m+ n)

n!
,

which is a polynomial of degree n in m. Therefore κ(X) = n, which shows that X is of log general type.

I haven’t defined what a normal crossing divisor is! In the case of a complex analytic manifold X , this
notion is relatively easy to explain.

7.2 Definition. Let D be a closed complex analytic submanifold of X . We say D is a normal crossings
divisor if we can locally identify X with an analytic submanifold of Cn such that, on these charts, D is of
the form

D = {z = (z1, . . . , xn) ∈ Cn |
r∏
i=1

zi = 0} ∩X =

 r⋃
i=1

{z ∈ Cn | zi = 0}

 ∩X
for some integer 1 ≤ r ≤ k.
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The algebraic theory of normal crossings divisors is more complicated. For this, we begin by discussing
the case of simple normal crossings divisors. Let F be a field, and let X be a smooth variety over F .

7.3 Definition. Let D be a closed subscheme of X . We say that D is a simple normal crossings divisor if,
for all x in X , there exists a regular sequence t1, . . . , tk for OX,x such that ID,x is generated by t1, . . . , tr
for some integer 1 ≤ r ≤ k, where ID denotes the quasicoherent ideal sheaf corresponding to D.

Observe that Definition 7.3 imitates Definition 7.2. However, to obtain the definition for general normal
crossings divisors in the scheme-theoretic setting, we need to first pass to an étale cover.

7.4 Example. Consider a non-singular hypersurfaceX in Pn+1 of degreem, which is the homogeneous zero
set of a homogeneous polynomial f in F [T1, . . . , Tn+1] of degree m. Then dimX = n, and the Kodaira
dimension of X turns out to be

κ(X) =


n if m > n+ 2,

0 if m = n+ 2,

−∞ if m < n+ 2,

where we omit the adjective “log” since our varieties are projective. The first case visibly corresponds to
general type hypersurfaces, while the second case is referred to as Calabi–Yau varieties. When n = 1, this
corresponds precisely to elliptic curves, and when n = 2 this corresponds precisely to K3 surfaces.

In this setting, we have the following conjecture of Kobayashi from 1970.

7.5 Conjecture (Kobayashi). A general hypersurface of dimension n and degree m is hyperbolic if m ≥
2n+ 1.

By general, I mean in the sense that it’s true for a Zariski dense subset of PN , after we fix n and m and
then parameterize such hypersurfaces via their coefficients. Some partial results are known, but we do not
know Kobayashi’s conjecture in any great generality.

We now move into §3, which concerns heights of numbers, the Vojta conjectures, the heights of func-
tions, and Nevanlinna theory. These are related via analogy. We plan to start by discussing the case of an
open subset of P1 (on both the Vojta and Nevanlinna sides) and its relation to Roth’s theorem. Later, I’ll
discuss Koshikawa’s work on algebraic cycles as well as Faltings’s proof of the Mordell conjecture and Tate
conjecture for abelian varieties.

Let’s begin with the P1 situation. Write X := P1
Q, and let X be a non-empty proper open subvariety of

X . Similarly, form X := P1
Z, and let D be a closed subscheme of X such that D := X rX equals DQ.

7.6 Conjecture (Vojta). Fix a positive ε. Then there are only finitely many x in X(Q) such that∏
primes p

x∈D(Fp) (mod p)

p ≤ H(x)degD−2−ε.

7.7 Example. In the case when X = P1 r {0, 1,∞}, we have degD = 3. Therefore Vojta’s conjecture
becomes precisely the ABC conjecture.

I have to explain more about this, but I’m out of time. We’ll continue next time! It’s known that
hyperbolicity for hypersurfaces is stable under small analytically open subsets of PN , but it’s not know that
we can take a Zariski open subset (which are all quite big) instead.
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8 January 22, 2018

Let X be P1
Q, let X be P1

Z, and let D be a closed proper subset of X. Write D for DQ, write X for X rD,
and write X for XrD. We denote our affine coordinate for P1 using T .

8.1 Examples.

1. Consider the case where D consists of the Z-points {0, 1,∞}. Then this recovers the setting X =
P1 r {0, 1,∞} to which we have become accustomed.

2. If D = SpecZ[T ]/(T 3 − 2) in SpecZ[T ] ⊂ P1
Z, then D is the closed point in P1

Q corresponding to
the Galois orbit of 3

√
2.

3. This example subsumes the previous one—fix a monic polynomial f(T ) in Z[T ], and form D =
SpecZ[T ]/(f). Then D is the set of Galois orbits of the roots of f in P1

Q. We don’t exactly need
f(T ) to be monic, but assuming otherwise would change the setup a bit.

By viewing D as scheme over Z10, we can form D(Fp), which is defined by the same equation. Recall that
we have a reduction map P1(Q)−→P1(Fp). Vojta’s conjecture for Example 8.1.2 implies that the sets

{(a, b) ∈ Z2 | a3 − 2b3 = 1} and {(a, b) ∈ Z2 | a3 − 2b3 = −3}

are finite. To see this, the conjecture itself says that∏
primes p

x∈D(Fp) (mod p)

p ≤ H(x)1−ε

for only finitely many x in X(Q), since degD = 3. Writing x = a/b for coprime integers a and b, we see
that

x (mod p) ∈ D(Fp) ⇐⇒ (a/b)3 ≡ 2 (mod p) ⇐⇒ a3 − 2b3 ≡ 0 (mod p).

Now the (a, b) lying in our sets of interest only have the prime 3 (at most) dividing a3 − 2b3. Therefore the
quantity ∏

primes p
x∈D(Fp) (mod p)

p

is bounded from above by 3. Recalling from Lecture 2 there are only finitely many x with bounded height,
we see that Vojta’s conjecture concludes the proof.

Note that this also shows that X(Z[ 1
N ]) is finite for degD > 2, since

X(Z[ 1
N ]) = {x ∈ X(Q) | x (mod p) /∈ D(Fp) for p - N}.

Thus the Vojta conjecture encapsulates our earlier conjecture conjectures and results.
Let us discuss the connection with geometry. In our P1 setting, recall from Proposition 3.2 that X(C)

is hyperbolic if and only if degD ≥ 3. In turn, one can extend Example 6.10 to show that this occurs
if and only if X is of log general type. The degD ≥ 3 condition here coincides with the condition that
degD − 2 = deg(Ω1

X
(logD)) > 0, which is an important criterion in the general Vojta conjectures.

The following theorem of Roth also follows from Vojta’s conjecture:
10With any scheme structure we like—see Remark 5.3.
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8.2 Theorem (Roth). Let α be an algebraic number, which we view as a complex number, and fix a positive
number ε. Then there are only finitely many rational numbers x satisfying

|x− α| ≤ 1

H(x)2+ε
.

This is a statement that limits how well we can approximate algebraic numbers using rational numbers.
8.3 Example. While this example can be proven rather elementarily, we could use Roth’s theorem to show
that

α =
∞∑
n=0

1

10n!

is transcendental, because the series
∑∞

n=m
1

10n!
approximates α too well for α to be algebraic.

Proof sketch of Roth’s theorem using Vojta’s conjecture. One can reduce to the case where α is an algebraic
integer, so assume this is the case. Let f(T ) be the monic irreducible polynomial of α over Q. Furthermore,
assume that α lies in R, since otherwise of course we cannot approximate α by rational numbers.Integrality
implies that f(T ) has coefficients in Z. Applying Vojta’s conjecture to the situation of Example 8.1.3 tells
us that cofinitely many rational numbers x satisfy∏

x∈D(Fp) (mod p)

p ≥ H(x)degD−2−ε,

where D and D are as in Example 8.1. Now write

f(T ) = Tn + c1T
n−1 + · · ·+ cn

for some integers ci. Writing x = a/b for coprime integers a and b, emulating the above calculation for
f(T ) in place of T 3 − 2 shows that

Nx := |an + an−1c1b+ · · ·+ cnb
n| ≥

∏
x (mod p)∈D(Fp)

p.

Next, form Mx := max{|f(x)|−1, 1}. Then Mx is large if and only if f(x) is close to zero, which occurs if
and only if x is close to some conjugate of α. It turns out that we roughly have

MxNx ∼ H(x)degD,

where ∼ means that both sides bound one another up to a constant factor. We should view Mx as an
archimedean contribution and Nx as a nonarchimedean contribution. Combining our estimate for Nx with
our estimate from Vojta’s conjecture yields

Nx & H(x)degD−2−ε =⇒ Mx . H(x)2+ε =⇒ |x− α| ∼M−1
x &

1

H(x)2+ε
.

I will flesh out this argument next time.

The weaker estimate Nx & H(x)dimD−2−ε that we used above is actually known unconditionally to be
true, so this yields Roth’s theorem unconditionally. The main difference between this weaker estimate and
the Vojta conjecture itself is that Nx might not just contain the primes p involved in∏

x (mod p)∈D(Fp)

p

with multiplicity 1 but rather with some very high multiplicity. We can already see this phenomenon in the
above situation, as Nx is the sum of many high powers.
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9 January 24, 2018

Last time, I started explaining how Roth’s theorem is a special case of Vojta’s conjecture. I was using
some bad notation, so let me now use some better notation. Keeping everything else from Lecture 8 unless
otherwise specified, write

HD,∞(x) := max{|f(x)|−1, 1}
HD,f (x) := |an + c1a

n−1b+ · · ·+ cnb
n|

HD(x) := HD,∞(x)HD,f (x),

where our notation is now much more suggestive of the archimedean and nonarchimedean contributions.
We have the following three key points:

(1) Note that ∏
p is prime
p|HD,f (x)

p =
∏

p is prime
x∈D(Fp) (mod p)

p divides HD,f (x),

divides HD,f (x). However, the above product of primes does not contain the multiplicity of the primes
dividing HD,f (x), i.e. it is the radical of HD,f (x).

(2) We roughly have HD(x) ∼ H(x)degD, where we note that degD = deg f . More precisely:

9.1 Proposition. There exists positive numbers C1 and C2 such that

C1H(x)degD ≤ HD(x) ≤ C2H(x)degD

for all x in Q such that f(x) 6= 0.

I will not prove this, but the key step is

HD(x) = max


∣∣∣∣∣
(
a

b

)n
+ · · ·+ cn

∣∣∣∣∣
−1

, 1

 |an + · · ·+ cnb
n|

= max

{
|b|n

|an + · · ·+ cnbn|
, 1

}
|an + · · ·+ cnb

n| = max{|b|n, |an + · · ·+ cnb
n|}.

One immediately sees that we can set C2 := max{|c1|, . . . , |cn|, 1}, since H(x) = max{|a|, |b|}. The
other direction also becomes relatively straightforward.

(3) When |x− α| is small enough, we have |x− α| ∼ HD,∞(x)−1. This is the case because

f(x) =

deg f∏
i=1

(x− αi),

where the αi range over the conjugates of α over Q. When |x− α| is small, the value |f(x)|−1 blows up
from the |x− α|−1 contribution (while the other factors stay bounded), so this term is what HD,∞(x)
equals. The constants involved in ∼ comes from considering these other factors∏

αi 6=α
|α− αi|.
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9.2 Remark. If f(T ) equals the polynomial T , then HD(x) equals the height H(x) of x as defined before.
To see this, take

HD(x) = max{|x|−1, 1}|a| = max{| ba |, 1} = max{|b|, |a|} = H(x).

Now that we have elucidated these three key points, the proof of Roth’s theorem of Vojta’s conjecture follows
as in Lecture 8.

We can also interpret HD,f (x) as

HD,f (x) =
∏

p is prime

HD,p(x),

where HD,p(x) := max{|f(x)|−1
p , 1} for the normalized p-adic norm |·|p. Therefore HD(x) can be written

as

HD(x) =
∏

v a place of Q
HD,v(x) =⇒ H(x) =

∏
v a place of Q

max{|x|−1
v , 1} =

∏
v a place of Q

max{1, |x|v}, (?)

where the last equality is due to the product formula. This segues nicely into our next topic: heights on Pn!

9.3 Definition. Let x lie in Pn(Q), and write x as [a0 : · · · : an] for some integers ai such that (a0, . . . , an) =
1. Then the height of x, which we denote using H(x), is defined to be

H(x) := max{|a0|, · · · , |an|}.

9.4 Proposition. For all real B, the set

{x ∈ Pn(Q) | H(x) ≤ B}

is finite.

I don’t have time to discuss heights in further detail today, so we’ll conclude by giving examples of
interesting questions about heights you could study instead. Let X be a closed subvariety of Pn over Q, and
let X be a dense open subset of X . The following conjecture was studied by Manin and Tschinkel, where
Manin studied the a part and Tschinkel studied the b part.11

9.5 Conjecture (Manin–Tschinkel). There exist real numbers a, b, and c such that

#{x ∈ X(Q) | H(x) ≤ B} = cBa log(B)b(1 + o(1))

as B →∞.

For another interesting question, we also have a more general conjecture of Vojta. Let X be a closed
subset of P1

Z, and let X be a dense open subset of X. Write D := X r X, and form their respective base
changes X , X , and D to Q. There is a version of Conjecture 7.6 that continues to use heights, but this time
the exponent of H(x) is related to

∧m Ω1
X

(logD) (as we remarked in Lecture 8), where m is the dimension
of X . I’ll explain this in detail next time.

11For further discussion, see Lecture 13.
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Today, I’ll continue talking about heights in Pn over a number field. In the situation of a general number
field F , it’s not generally possible to take a representative of x in Pn(F ) of the form [a0 : · · · : an] with
(a0, . . . , an) = 1, by the failure of unique factorization. In this situation, we adopt the perspective of
Equation (?), and define heights using the following product over all places.

10.1 Definition. Let x = [a0 : · · · : an] be a point of Pn(F ). We say the height of x (relative to F ) is

HF (x) :=
∏

v a place of F

max{|a0|v, . . . , |an|v},

where we normalize the absolute values to be the “big” ones, i.e. the ones that make the complex places the
square of the usual absolute value on C. By the product formula, HF (x) is well-defined.

In the case of F = Q, Equation (?) shows that we recover our previous definition of H(x).

10.2 Proposition. For any finite extension F ′ of F and x in F , we have HF ′(x) = HF (x)[F ′:F ].

Proof. For all places v′ of F ′ lying over a place v of F , we have |x|v′ = |x|[F
′
v′ :Fv ]

v . Therefore this equality
follows from the sum formula

∑
v′|v[F

′
v′ : Fv] = F .

10.3 Definition. Let x be a point of Pn(Q). We say the (absolute) height of x is H(x) := HF (x)1/[F :Q],
where F is any number field over which x is defined.

Proposition 10.2 shows that the map H : Pn(Q)−→R>0 is well-defined. Now this H map is very
complicated—for instance, it’s certainly far from being continuous for the complex topology on P1(Q), but
that makes sense because that’s just the topology induced from one place. Similar statements would be
expected and indeed true at the nonarchimedean places, for instance.

10.4 Example. Consider the n = 1 situation. Here, we define the height of any x in Q via taking the height
of [x : 1] in P1(Q). The algebraic numbers α satisfying [Q(α) : Q] ≤ 2 of smallest height are

α H(α)

0,±1,±2,±ζ2
3 1

±1±
√

5
2

√
1+
√

5
2

Note that the second row includes the golden ratio, and its low height encapsulates its simplicity. This
simplicity appears to our eyes, even if we don’t explicitly compute its height. Small numbers give us some
beauty.

Our eyes can enjoy 2-dimensional beauty, but our ears are not so good for this. Our ears detect sound,
which comes from time and hence is 1-dimensional.

do re mi fa so
1 12

√
2

12
√

22 12
√

23 12
√

24

These ratios are good when used by pianos, but for the harmony of human voices, it may be better to use

do:mi do:fa do:so
5:4 4:3 3:2

On the other hand, the piano needs even-tempering for the changing of keys. The problem of which system is
better is probably why ancient Greek mathematicians discovered irrational numbers. To them, mathematics
and music were the same subject.
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The following theorem is an important generalization of Proposition 9.4.

10.5 Theorem. Fix n, fix d, and fix a positive number C. Then

{x ∈ Pn(Q) | H(x) ≤ C and x is defined over a field of degree at most d}

is a finite set. In particular, {x ∈ Pn(F ) | HF (x) ≤ C} is finite for any number field F .

I will not prove it, but the idea is to bound the possible coefficients for the minimal polynomial of any x
in the above set using our constraints.

10.6 Example. The sequence H(21/n) is bounded, which does not contradict Theorem 10.5 because the
degrees of 21/n are unbounded.

Let’s now turn to a version of Vojta’s conjecture for (Brody) hyperbolic spaces. Embed F into C, and
let X be a locally closed subscheme of PnOF , i.e. a quasi-projective scheme over OF . Assume that X(C) is
Brody hyperbolic.

10.7 Conjecture (Vojta). There exists a positive number a such that, for almost all x in X(F ), we have∏
v∈Σ(x)

#Fv ≥ H(x)a,

where Σ(x) denotes the set of primes of F for which x (mod v) does not lie in X(Fv), and Fv denotes the
residue field at v.

Conjecture 10.7 does not seem to explicitly appear in the literature, but I believe many experts think it
is true.

10.8 Example. Because Pn(F ) = Pn(OF ), it follows from Conjecture 10.7 that X(OF,S) is finite for any
finite subset S of places containing the places at infinity, whereOF,S denotes the S-integers of F . This is the
case because for any x in X(F ), this point x lies in X(OF,S) if and only if x (mod v) lies in X(Fv) for all
places v lying outside of S, which follows from the description of schemes given in Lecture 5. Conjecture
10.7 bounds the heights of cofinitely many such x, and Theorem 10.5 yields the result.

10.9 Example. Take F = Q, and let X be P1
Z r {0, 1,∞} as usual. Then the ABC conjecture predicts that

Conjecture 10.7 holds for X with a = 1− ε for any positive ε.

11 January 29, 2018

We now turn to the (Batyrev)–Manin conjecture, beginning with an extended example for motivation.

11.1 Example. Let X denote P1
Q rD, where D is either ∅, {∞}, {0,∞}, or {0, 1,∞}. Let X be an open

subscheme of P1
Z whose generic fiber is X , which could be given by P1

Z or a subscheme analogous to one
given in Examples 4.2. For any positive integer M and positive number B, write

N(X(Z[ 1
M ]), B) := #{x ∈ X(Z[ 1

M ]) | H(x) ≤ B}.

We shall consider the limit

lim
B→∞

logN(X(Z[ 1
M ]), B)

logB
,

often testing it out on small values of M .
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• In the D = ∅ case, we have X(Z[ 1
M ]) = P1(Q). Therefore N(X(Z[ 1

M ]), B) becomes the number of
points in P1(Q) with height at most B. After forgetting scalars and the relative primeness of a lowest
terms fraction expression, this is roughly the set

{(a, b) ∈ Z2 | |a| ≤ B, |b| ≤ B},

which has size B2. Thus here the limit becomes 2.

• In the D = {∞} case, we have X(Z) = Z. Therefore N(X(Z), B) roughly has size 2B, and

N(X(Z[1
2 ], B) = #{n = m

2r ∈ Z[1
2 ] | |m| ≤ B, |2r| ≤ B, where (m, 2r) = 1}

roughly has size 2(B + B
2 + B

4 + · · · ) = 4B. In both these situations, we see that the limit becomes
1.

• In the D = {0,∞} case, we have have

N(X(Z[1
2 ]), B) = #{±2m | 2|m| ≤ B} ∼ 4

logB

log 2
.

Therefore the limit here is 0.

• In the D = {0, 1,∞} case, the set X(Z[ 1
M ]) is finite by Siegel’s theorem. Therefore the limit here is

0.

This behavior is related to the sheaf Ω1
P1
Q
(logD) on P1

Q. Recall that we have an isomorphism OP1
Q
(−2(∞))

∼−→Ω1
P1
Q

given by f 7→ f dT . We can see this from the descriptions

Ω1
P1
Q
(U) = {f dT | f has no poles on U} and OP1

Q
(−2(∞)) = {f | f + 2(∞) ≥ 0 restricted to U},

where U is any open subset of P1
Q, because the coordinate S = 1

T at infinity satisfies dS = −dT/T 2.
Therefore we have Ω1

P1
Q
(logD) ∼= OP1

Q
(D − 2(∞)). Furthermore, note in our examples that

lim
B→∞

logN(X(Z[ 1
M ]), B)

logB
= max{2− degD, 0}.

We are now ready to present the Manin conjecture in general. Let F be a number field, let X be an
irreducible smooth closed subscheme of PnF , let D be a normal crossings divisor of X , and write X :=
X rD. Furthermore, let X be a locally closed subscheme of PnOF whose generic fiber is X . Set

α := {s ∈ Q≥0 | cl(ω) + s · cl(H) is effective},

where ω denotes
∧dimX Ω1

X
(logD), and H is the hyperplane associated to our choice of height function

H .12 I will explain these notions next time—for now, let us just proceed to the conjecture.

11.2 Conjecture (Batyrev–Manin). There exists a finite extension F1 of F and a finite set of places S1 of
F1 containing the archimedean places such that, for any finite extension F ′ of F1 and finite set S′ of places
of F ′ containing those lying above S1, then there exists a proper closed subscheme Y of X such that

lim
B→∞

#{x ∈ X(OF ′,S′) | x /∈ Y (F ′), H(x) ≤ B}
logB

= α.

In the case when X has dimension 1, the subscheme Y has dimension 0, so the x /∈ Y (F ′) condition
does not change this limit, as it only affects finitely many points. However, this may not be true in general.

12This definition of α is incorrect as given here—see Lecture 12.
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We shall continue discussing the Batyrev–Manin conjecture today, and for this we begin with some prelim-
inaries on divisors and line bundles. Let k be a field, and let V be a connected proper smooth algebraic
variety over k.

12.1 Definition. A divisor is a formal finite sum
∑

P aP · P , where the aP are integers and P ranges over
closed irreducible codimension 1 subvarieties of V . We write Div(V ) for the abelian group of divisors on
V , which is a free abelian group on the set of P .

For any f in k(V )×, we write

Div(f) :=
∑
P

ordP (f)P,

where ordP (f) is the order of f at P . We define ordP (f) via the normalized valuation induced from the
discrete valuation ring OV,v, where v is the generic point of P . We define the divisor class group C`(V ) via
the exact sequence

k(V )×
Div−→Div(V )−→C`(V )−→ 0.

On the other hand, for any D =
∑

P aPP in Div(V ), write OV (D) for the sheaf of OV -modules given by

U 7→ {f ∈ k(V ) | ordP (f) + aP ≥ 0 for all v ∈ U}.

Then OV (D) is a line bundle, i.e. it is locally isomorphic to OV as an OV -module. Form the set

Pic(V ) := {isomorphism classes of line bundles on V},

which becomes an abelian group under tensor products. We get an isomorphism C`(V )
∼−→Pic(V ) given

by sending D 7→ OV (D).

12.2 Example. Let V = P1
k with the coordinate T , and consider the sheaf Ω1

V on V . It is a line bundle on V
because it is OV dT when restricted to Spec k[T ] and OV d( 1

T ) when restricted to Spec k[ 1
T ]. However, it is

not the trivial line bundle. In fact, we can show that Ω1
V
∼= OV (−2(∞)).

For simplicity in defining the Néron–Severi group, assume that k lies in C. Then we can form the
complex manifold V (C), and we define the Néron–Severi group to be

NS(V ) := im(C`(V )−→H2(V (C),Z)),

where the map is given by sending P to the cohomology class of P (C). In particular, this map factors
through C`(V ). This may be an analytic construction, but it can be made algebraic in some way that I won’t
specify.

12.3 Example. When dimV = 1, the Néron–Severi group embeds into H2(V (C),Z) = Z, and it’s the
image of the map sending P to deg(P ) := [k(P ) : k]. Therefore if k is algebraically closed, we see that
NS(V ) equals the entirety of H2(V (C),Z).

In the setting of general V , the sheaf of Kähler differentials Ω1
V is a vector bundle of rank n, where

n := dimV . Therefore the canonical class ω :=
∧n Ω1

V is a line bundle on V .

12.4 Definition. We say a divisor K on V is canonical if its corresponding line bundle is isomorphic to ω.
For any normal crossings divisor D of V , we say that K +D is log canonical for (V,D) or for V rD.
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It can be shown that the line bundle corresponding to K +D is isomorphic to
∧n Ω1

V (logD).

12.5 Example. Suppose that V = Pnk , and let H ⊂ Pnk be the hyperplane corresponding to [a0 : · · · : an]
in Pn(k). Then the isomorphism class of the line bundle corresponding to H is independent of H , and we
denote it using OPnk (1). The isomorphism class corresponding to K equals −(n+ 1) times OPnk (1).

Next, suppose that V is now a closed subscheme of Pnk . If H is a hyperplane that does not contain V ,
then we say V ∩ H is a hyperplane section of V . In this situation, the line bundle associated to V ∩ H is
independent of H , and it equals the pullback of OPnk (1) to V .

Next, let F be a number field, which we view as a subfield of C. Let X be a connected smooth closed
subvariety of PNF . Let D be a normal crossings divisor on X , and write X := X r D. Write n for the
dimension of X . Here comes my first mistake—the definition of α should have been

α := inf{s ∈ R≥0 | cl(K +D) + s · cl(H) ∈ NS(X)R-eff},

where NS(X)R-eff is the closure in NS(X)⊗Z R of the subset

NS(X)R-eff := {
m∑
i=1

ai cl(Ei) | ai ≥ 0, Ei is an effective divisor on X}.

We remark that NS(X)R-eff might be generated by rays of of slope tending towards a limit, so NS(X)R-eff
itself might not be closed. I’m not sure how Vojta came up with α in the formulation of his conjectures, but
in any case it’s a very geometric (rather than arithmetic) quantity.

Finally, let X be a locally closed subscheme of PNOF whose generic fiber is X , and let X be the closure
of X in PNOF . Now that we have the right setup, we can state the Batyrev–Manin conjecture, which actually
comes with two parts:

12.6 Conjecture (Batyrev–Manin).

(1) Assume that α is positive. Then if F ′ ⊇ F is a sufficiently large number field, then if S is a sufficiently
large finite set of places of F ′ containing the archimedean ones, then if Y is a sufficiently large proper
closed subset of X , then

lim
B→∞

#{x ∈ X(OF ′,S) | x /∈ Y (F ′), H(x) ≤ B}
logB

= α.

In the Batyrev–Manin, I’m not sure whether the S or Y should come first, that is, which “sufficiently
large” condition depends on which. I’ll get to the next part of the conjecture next time.

13 February 2, 2018

Last time, I was stating the conjecture of Batyrev and Manin. Recall that α is some real number that was
defined in a highly geometric manner. I stated the conjecture for positive α, but I didn’t get to finish.

13.1 Conjecture (Batyrev–Manin). Keeping our setup from before,

(2) If α is zero, then for any finite set of places S of F containing the archimedean places and any positive
ε, there exists a proper closed subset Y of X such that

#{x ∈ X(OF,S) | x /∈ Y (F ), H(x) ≤ B}
Bε

is a bounded function of B.
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More on the Batyrev–Manin conjecture can be found in their article “Sur le nombre des points rationnels
de hauteur borné.” In the case when X = X is proper, we see that X(OF,S) = X(F ), so we can replace
X(OF,S) with X(F ) in the Batyrev–Manin conjecture.

13.2 Example. Consider the case X = X = PnF . In this case, α = n + 1, because in this case Pic(Pn) is
isomorphic to Z, where any integer a corresponds to the isomorphism class of the line bundle corresponding
to any hyperplane H . Thus we see that NS(PnF )R-eff equals R≥0. Furthermore, the canonical divisor K of
PnF has class equal to −(n+ 1) times the class of H , and here D = ∅. Altogether we see that α = n+ 1.

The case of a general number field F is difficult to understand, so let us specialize to F = Q. Then

#{x = [a0 : · · · : an] ∈ Pn(Q) | H(x) = max{|a0|, . . . , |an|} ≤ B} ∼ Bn+1,

where we choose a0, . . . , an satisfying (a0, . . . , an) = 1. Therefore we see that the Batyrev–Manin conjec-
ture indeed holds for PnQ.

13.3 Example. Let X = X be a projective (which is the same thing as proper in this case, and I’ll move
between these readily) smooth curve over F , and embed X as a subvariety of PmF . Example 12.3 shows that
NS(X)R-eff consists of the preimage of R≥0 ⊂ H2(X(C),R) = R in NS(X)R. Therefore

NS(X)R-eff = R≥0,

and because here the degree of K is 2g − 2 (where g is the genus of X), we see that

α =

0 if g ≥ 1,⌊
2

degH

⌋
if g = 0,

where H is a hyperplane section (that is, a closed point) of X with minimal degree.
Now suppose that g = 1, and write E for X . Then the theory of elliptic curves tells you that

#{x ∈ E(F ) | H(x) ≤ B} = c log(B)r/2(1 + o(1)),

where r is the Mordell–Weil rank of E(F ). Taking the limit from the Batyrev–Manin conjecture indeed
yields 0, because the extra log factor kills the rank term regardless.

For g ≥ 2, the Mordell conjecture tells us that #X(F ) is finite, which verifies the conjecture too, and
we have dealt with the g = 0 case in Example 13.2 (assuming Example 13.2 extends to general F ), since
here X = P1

F if and only if it has rational points at all.

13.4 Example. If X is of log general type, then the class of K + D always already lies in NS(X)R-eff, so
here α = 0. Recall that the definition of X being of log general type is equivalent to

∧n Ω1
X

(logD) being
big, whose definition we give below.

13.5 Definition. Let L be a line bundle on X . We say that L is big if

κ(L ) := inf

{
s ∈ Z | m 7→ dim Γ(X,L ⊗m)

ms
is a bounded function

}

equals dimX .

The notion of height zeta functions are important in this subject, so we review it now.
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13.6 Definition. Let Λ be a set, and let H : Λ−→R>0 be a map. Their height zeta function is defined to be

ZΛ,H(s) :=
∑
x∈Λ

1

H(x)s
,

ignoring convergence issues for now.

13.7 Example. In our setup, we take Λ to be X(OF,S) and H to be the usual absolute height function:

• When X = P1
Z, then the resulting height zeta function is

ZP1(Q),H(s) =
4ζ(s− 1)

ζ(s)
,

where ζ is the Riemann zeta function. To see this, note that

ZP1(Q),H(s) =
∞∑
n=1

#{x ∈ P1(Q) | H(x) = n}
ns

=

∞∑
n=1

4ϕ(n)

ns
= 4

ζ(s− 1)

ζ(s)
,

where ϕ denotes the Euler phi function.

In general, suppose that we can write ZΓ,H as

ZΓ,H(s) =
c

(s− a)b
+

g(s)

(s− a)b−1

for some non-negative real number a, positive integer b, positive real number c, and holomorphic function
g(s) on the domain {s ∈ C | Re(s) > a − S} for some positive S. The ZΓ,H(s) absolutely converges for
Re(s) > a, and we have

#{x ∈ Γ | H(x) ≤ B} =
c

a(b− 1)!
Ba log(B)b−1(1 + o(1)),

where our asymptotic is taken with respect to B.

13.8 Example. Consider the situation of Example 13.7. As

ζ(s) =
1

s− 1
+ a holomorphic function

around s = 1, we see that

ZP1(Q),H(s) = 4
ζ(s− 1)

ζ(s)
=

4

ζ(2)

1

s− 2
+ a holomorphic function

around s = 2. Then a = 2, b = 1, and c = 4/ζ(2), so we have

#{x ∈ P1(Q) | H(x) ≤ B} =
4

2ζ(2)
B2(1 + o(1)) =

12

π2
B2(1 + o(1)).

The method of zeta functions is very powerful. Batyrev–Manin further conjectured that a = α. They
also have some conjectures concerning b, but they are very complicated, so I do not plan to discuss them in
class.
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Let us now discuss the height functions associated to line bundles. Next time, we’ll investigate a question
that Olivier brought up after class last time, since it’s an interesting question that I spent a lot of time thinking
about. I would do it now, but he’s not here, so that’d be weird.

Let F be a number field, and let X be a smooth closed subvariety of PnF . Let D be a normal crossings
divisor of X , and form X := X rD. As usual, let X be a locally closed subscheme of PnOF whose generic
fiber is X . We have the following general conjecture of Vojta.

14.1 Conjecture (Vojta). Let ε be positive. Then there exists a proper closed subset Y of X such that, for
cofinitely many x in X(F ) r Y (F ), we have ∏

v a prime
x∈X(Fv) (mod v)

#Fv


1/[F :Q]

≥ HK+D(x)H(x)−ε,

where H denotes our absolute height as before, and HK+D has not yet been explained yet.

For any proper algebraic variety V over F and line bundle L on V , we shall obtain a height function

HL : V (F )−→R>0,

via constructing a height function HF,L : V (F )−→R>0 and setting HL := H
1/[F :Q]
F,L . The exponent’s role

is to ensure that we can repeat this for all finite extensions F ′/F and get a well-defined function HL .

14.2 Example. If V = X and L =
∧dimX Ω1

X
(logD), thenHL yields the desiredHK+D in the statement

of Vojta’s conjecture.

14.3 Example. If V = PnF and L is the line bundle associated to a hyperplane H , then the resulting HL is
the usual absolute height on PnF .

Well, these examples are not exact on the nose—the height function HL depends on certain choices
made. However, for any such choices, the resulting height functions HL and H ′L shall satisfy HL ∼ H ′L ,
that is, there exists C ≥ 1 such that

C−1HL (x) ≤ H ′L (x) ≤ CHL (x)

for all x in V (F ). What exactly are these choices? Well, let us fix

• a metric |·|v on L for each archimedean place v,

• an integral structure of L (which can be replaced by a norm |·|v on L for each non-archimedean
place v, indicating that this is an analog of the first choice).

14.4 Example. Let us first consider the case when V = SpecF is a point. Then line bundles L on V are
just 1-dimensional vector spaces. Let L is a 1-dimensional F -vector space. Then an integral structure on L
is just the choice of a finitely-generated OF -submodule LOF of L, and a metric |·|v for archimedean v is a
map L⊗v C−→R≥0 such that

• |ax|v = |a|v|x|v for all a in F and x in L, where now we use the “small” absolute value for |a|v,

• |x|v 6= 0 for x 6= 0.
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Then the associated height function (which is just a single value, because V (F ) = V (F ) is just a point) is

HF (L) := #(LOF /OFx)
∏
v|∞

|x|−1
v

for any nonzero x in LOF , which is independent of the choice of x.

14.5 Example. Let F = Q in Example 14.4, let |·|∞ be the usual absolute value, let L = Q, and let LZ be
n−1Z for any n ≥ 1 in Z. Taking x = 1 shows that HQ(L) = n.

For another presentation of Example 14.4, let v be a non-archimedean place of F . Choose a basis e of the
OF,(v)-module LOF,(v) := OF,(v) ⊗OF LOF , and let |x|v := |x/e|v, where the right-hand side denotes the
usual “small” absolute value. We see that

HF (L) =
∏

v a place of F

|x|−1
v ,

which is independent of the choice of x because any two choices differ by an element of F×, and the product
formula implies that this doesn’t change HF (L).

Now let’s tackle case of general varieties, where we begin by discussing metrics at the archimedean
place. Let V now be a proper algebraic variety over C, and let L be a line bundle on V .

14.6 Definition. A metric on L is a morphism of sheaves

|·|L : L top−→CR≥0,

where L top is the sheaf of topological sections of the (geometrically realized) line bundle L on V (C), and
CR≥0 is the sheaf of R≥0-valued continuous functions on V (C), such that

• |fλ|L = |f ||λ|L for any sections f of CR≥0 and λ of L ,

• if λ is a nonvanishing section of L , then |λ|L is a nonvanishing section of CR≥0.

I only have five minutes left, so I can’t treat the nonarchimedean condition yet.

14.7 Example. For V = P1
C and L = OV ((∞)), the assignment

|f |L (x) :=
|f(x)|

max{1, |x|}

yields a metric on L . This shall be the metric that we use to obtain the usual absolute height on P1
F .

I didn’t get time to do so today, but next time I’ll discuss the nonarchimedean component of this height
function construction.

15 February 7, 2018

Last time, we were trying to set up general height functions on proper varieties V over a number field F , but
it’s easier when V is actually projective, so we make this assumption from now on. Let L be a line bundle
on V . Recall that we were trying to construct an associated height function

HL : V (F )−→R>0,

and that while this construction depends on some choices, these choices yield equivalent functions under the
relation ∼. The choices we need to make are:
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• a metric |·|L in the sense of Definition 14.6 on L over V (F v) for all archimedean place v of F ,

• a projective scheme VOF overOF whose generic fiber is isomorphic to V and a coherentOF -module
on VOF whose generic fiber, under the previous identification, is isomorphic to L .

Recall that, for a locally Noetherian scheme, a coherent module is one that correspond to finitely generated
modules on affine patches.

15.1 Example. Such objects do exist. For instance, we can take the Zariski closure of V in PnOF for VOF ,
where we view V as living inside PnF .

15.2 Definition. Using the above choices, we construct

HF,L : V (F )−→R>0

as follows. For any x in V (F ), form the fiber L (x) of L at x, which is a 1-dimensional F -vector space.
Then set

HF,L (x) := HF (L (x)),

where HF denotes the function from Example 14.4 constructed using the pullbacks of the norms ‖·‖L and
the integral structures VOF and LOF to SpecF via x.

15.3 Example. Let V be PnF , and let L be OPnF (1). Let’s choose VOF to be PnOF , and let LOF be OPnOF
(1),

which is formed in the same way as OPnF (1), except that you use OF throughout instead of F . Write
T0, . . . , Tn for the homogeneous coordinates of Pn, and let Uj be the affine patch where Tj is nonzero. We
write

x = [x1 : · · · : xj−1 : 1 : xj+1 : · · · : xn]

for any F -point of Uj , where the x1, . . . , x̂j , . . . , xn lie in F . Note that x is anOF -point if and only if these
x1, . . . , x̂j , . . . , xn actually lie in OF . In this situation, we have

LOF (x) = OFx1 + · · ·+OFxj−1 +OFxj+1 + · · ·+OFxn,

so for any nonarchimedean place v of F we get LOF,v(x) = OF,ve, where e is any element of F satisfying

|e|v = max{|x1|v, . . . , |xj−1|v, 1, |xj+1|v, . . . , |xn|v}.

Of course, for general F -points x, we have L (x) = F .
Let’s now turn to the archimedean contribution. For any section f of L , let |·|L on V (F v) be the metric

given by sending

|f |F (x) :=
|f(x)|

max{|x1| . . . , |xj−1|, 1, |xj+1|, . . . , |xn|}
.

With this metric in hand, we see that HF,L (x) = HF (L (x)) is well-defined.

15.4 Definition. We extend our height functions to V (F ) by defining

HL (x) := HF ′,L ′(x)1/[F ′:F ],

where F ′ is any number field for which x lies in V (F ′), L ′ is the base change of L to VF ′ , and we construct
HF ′,L ′ using the pullbacks of our choices for V and L over F .

Now that we have completed a description of the theory of height functions, Conjecture 14.1 makes
sense.
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16 February 12, 2018

Given all the conjectures we’ve introduced in the course, it’s always nice to see what these conjectures
concretely mean.

16.1 Example. Let n ≥ 4 be an integer, and consider the situation where

X = P2
Z r {xn0 + xn1 + xn2 = 0} = SpecZ[T1, T2]/(Tn1 + Tn2 + 1)

Then X := XQ is of log general type, and we see that

X(Z[ 1
N ]) = {[x0 : x1 : x2] ∈ P2(Q) | gcd{x0, x1, x2} = 1, xn0 + xn1 + xn2 ∈ Z[ 1

N ]×}.

Conjecture 5.2 and Conjecture 5.5 together predict that there exists a proper closed subscheme Y of X such
that

{x ∈ X(Z[ 1
N ]) | x /∈ Y (Q)}

is finite. Furthermore, these conjectures predict that this Y can be taken to be the smallest closed subset of
X such that any non-constant holomorphic map f : C−→X(C) has image in Y (C). I expect this Y equals

Y = {xn0 + xn1 = 0} ∪ {xn0 + xn2 = 0} ∪ {xn1 + xn2 = 0},

as we have a holomorphic map C−→X(C) given by t 7→ [t : αt : 1], where α is an n-th root of −1. In the
case when n = 5 and N = 2, we also see that X(Z[ 1

N ]) is infinite, because it contains the elements

[2m : −2m : 1]

for all integers m. This infinitude would also be blocked by punching out Y . If my description of Y is
correct, then X(Z[ 1

N ]) should be finite when n = 4, for arbitrary N . More strongly, I expect that

{(x, y, z) ∈ Z3 | gcd{x, y, z} = 1, xn + yn + zn ∈ Z[1
3 ]×} = {±(0, 0, 1), ±(1, 0, 0), ±(0, 1, 0), ±(1, 1, 1)}

for any n ≥ 4. My evidence for believing this is that it holds for max{|x|, |y|, |z|} ≤ 4 and n = 4.

Let’s use the Vojta conjectures as not evidence (as they’re not proven), but rather support for this con-
jecture. Suppose that n ≥ 16 and that 4|n. As background motivation, consider the following result of
Legendre, which was originally stated by Fermat.

16.2 Theorem (Legendre). If m is an integer that cannot be written as 4a(8b+ 7) or any integers a and b,
then m can be written as a sum of three perfect squares.

Returning to Example 16.1, rewrite our desired condition as

(xn/4)4 + (yn/4)4 + (zn/4)4 ∈ Z[1
3 ]×.

At this point, let X be the n = 4 case of the original setup (not our new n ≥ 16 setup), and let Y be the
proper closed subset of X given to us by Conjecture 14.1.

16.3 Remark. In the case when X is of log general type, it is conjectured that the Y appearing in Conjecture
5.2 and Conjecture 5.5 can be taken to be the same as the one appearing in Conjecture 14.1. I am not sure if
this conjecture is written down in Vojta’s papers, however.
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Anyways, choosing a small ε and using Conjecture 14.1 shows that cofinitely many of our desired triples
(x, y, z) satisfy

∏
p|(xn+yn+zn)

p ≥ C max
{
|x|n/4, |y|n/4, |z|n/4

}1−ε

for some constant C. Our N = 3 condition implies that the left-hand side is at most 3, which would
narrowly bound the possibilities for (x, y, z). In general, this problem seems very hard—we can think of
it as a second Fermat’s last theorem. It’s can’t be the first Fermat’s last theorem, because that’s already
been solved, but this seems just as hard. Furthermore, you can readily obtain many second Fermat’s last
theorems, by changing N from 3 to 2 or 5.

Returning to general principles, let’s discuss the height functions appearing in Conjecture 14.1 and the
line bundles appearing in their formulation. Recall the situation of Definition 13.5. Let V be a projective
variety over a field F , and let L be a line bundle on V .

16.4 Definition. We say that L is

• very ample if it is the pullback of the canonical bundle on PM for some closed embedding V ↪−→ PM ,

• ample if L ⊗k is very ample for some positive integer k.

For any divisor D on V , we say that D is very ample, ample, or big if the line bundle OV (D) has the
corresponding property.

We relate bigness to ampleness.

16.5 Proposition. Ample line bundles are also big. Furthermore, a divisor B is big if and only for any
ample divisor A, there exists positive integers b and a and an effective divisor E such that

b · OV (B) = a · OV (A) + OV (E)

in Pic(V ), and this is also equivalent to saying that there exists some positive integer b, ample divisor A,
and effective divisor E satisfying

b · OV (B) = OV (A) + OV (E).

16.6 Example. Let X be a smooth quasiprojective variety, let X ↪−→ Pn be a compactification of X such
that D := X rX is a normal crossings divisor of X , and let K be a canonical divisor of X . Recall from
Example 13.4 thatX being of log general type is equivalent to saying thatK+D is big, so Proposition 16.5
indicates that we can find positive integers b and a such that

b(K +D) ∼ aA+ E,

where A is the ample divisor of a hyperplane section of X , and E is some effective divisor.

We can combine Example 16.6 with the following statement on heights to decompose HK+D in terms
of the standard height on Pn.

16.7 Proposition. Suppose everything is over a number field F . For any divisorsD1 andD2 onX , we have
HD1+D2 ∼ HD1HD2 .
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In the situation of Example 16.6, we see that HA corresponds to the standard height on Pn. Therefore
we can replace the

HK+D(x)H(x)−ε

on the right-hand side of Conjecture 14.1 with

H(x)a/b−εHE(x)1/b.

Outside of E, there exists a constant C such that HE ≥ C, because its archimedean contribution is always
bounded above by some constant on V (F ), and its non-archimedean contribution is bounded above by some
constant on (V r E)(F ).

Next time, I’ll probably introduce Nevanlinna theory, and on Friday I’ll probably discuss the Mordell
conjecture and its proof.

17 February 14, 2018

I’ll introduce Nevanlinna theory today. I hope you can appreciate the mysterious connection between num-
ber theory and analysis that it helps to formulate. Recall from Lecture 2 that

a theorem of Siegel←→ a theorem of Picard,

where Siegel says that {x ∈ Q | x, 1 − x ∈ Z[ 1
N ]×} is finite, and Picard says that any holomorphic map

C−→P1(C) r {0, 1,∞} is constant. A finer version of the above analogy is given by

Vojta’s conjecture (namely, Conjecture 14.1)←→ a conjecture of Griffiths.

17.1 Example. In the case of X = P1 r{0, 1,∞}, for which Conjecture 14.1 becomes the ABC conjecture,
Griffith’s conjecture asks the following question. For any non-constant holomorphic map f : C−→P1(C),
how often does f(α) lie in {0, 1,∞}?
In the case of general varieties, let X be a projective smooth variety over a number field F as usual, let D be
a normal crossings divisor of X , and form X := X rD as before. We’ll also fix models X and D for these
objects over OF . Then the question of Griffiths becomes: given a holomorphic function f : C−→X(C)
that is nonconstant, how often do we have f(α) in D(C)? Recall that on the number theory side, Conjecture
14.1 relates the quantity ∏

v is prime
x∈D(Fv) (mod v)

#Fv

with the height of x associated to certain line bundles. We can construct a similar notion of height functions
in the analytic setting. To remove uninteresting cases, suppose that the image of C under f does not lie in
D(C).

17.2 Definition. The analog of the above product of primes on the Nevanlinna side is the quantity

N
(1)
f,D(r) :=

∑
α∈C
|α|<r

f(α)∈D(C)

log r
|α| if α 6= 0,

log r if α = 0,

where r is any non-negative number. Since D is a normal crossings divisor and f(C) does not lie in D(C),
we see that f−1(D(C)) has codimension 1 in C, that is, it is discrete. Thus its intersection with {|z| < r} is
finite, so N (1)

f,D(r) is indeed a finite sum.
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17.3 Example. In the setting of P1r{0, 1,∞}, we could consider functions f : C−→P1(C) like f(z) = ez

or f(z) = zn for integers n ≥ 1.

As for the analog of the arithmetic height function, let L be a holomorphic line bundle on X(C). Just
like the arithmetic situation, our height function (which we denote using f 7→ Tf,L (r)) depends on a choice
of metric on L , but different metrics yield functions that are equivalent under∼, where the implied constant
is independent of f and r. Griffiths’s conjecture then becomes that we roughly always have

N
(1)
f,D(r) ≥ Tf,K+D(r).

17.4 Example. Recall the situation of Example 17.3. In this situation, line bundles are classified by degree,
and degK = −2 and degD = 3. Therefore K +D is a hyperplane class.

(1) For f(z) = ez , note that f never hits 0 nor∞. Then we only need to consider 1, and for this we see that

N
(1)
f,D(r) =

(
2

⌊
r

2π

⌋
+ 1

)
log r − 2 log

(⌊
r

2π

⌋
!

)
− 2

⌊
r

2π

⌋
log 2π.

We will see in Example 18.2 that

Tf,K+D(r) = Tf,H(r) =
r

π
,

so the Griffiths conjecture indeed holds in this case. However, it barely holds—Stirling’s formula im-
plies that

N
(1)
f,D(r)− Tf,K+D(r)→ 0

as r →∞.

(2) For f(z) = zn when n is a positive integer, note that f(z) = 0 only at z = 0 and that f(z) = 1 precisely
for the n-th roots of unity. Therefore for r > 1, we have

N
(1)
f,D(r) = (n+ 1) log r,

and it turns out in Example 18.2

Tf,H(r) = n log r

in this case, which once again verifies Griffiths’s conjecture.

We shall now turn to actually defining Tf,L (r). Let V be a projective smooth complex manifold, let L
be a holomorphic line bundle on V equipped with a metric |·|L , and let f : C−→V be a holomorphic map.
Write L = OV (D) for some divisor D on V such that f(C) is not contained in the support of D.

17.5 Definition. Let r be positive. The function Tf,L (r) is defined to be

Tf,L (r) := mf,D(r) +Nf,D(r),

wheremf,D(r) is the analog of the archimedean component of arithmetic heights, andNf,D(r) is the analog
of the non-archimedean component. We shall define these two components below.
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GAGA tells us that our complex analytic setup is actually algebraic, and we can choose a generator 1
for L on the Zariski open subset U := V r suppD of V . Write W = log |1|−1

L , which is a real-valued
function on U . Then we get a function

W ◦ f : Cr some discrete set(= f−1(D))−→R

because the image of f is not contained in the support of D. We define

mf,D(r) :=
1

2π

ˆ 2π

0
dθ (W ◦ f)(reθi),

which converges because the singularities of W ◦ f when considered as a function on all of C are “mild” in
a manner we shall not describe. Finally, we define

Nf,D(r) :=
∑
α∈C
|α|<r

ordα(f∗D)

log r
|α| if α 6= 0,

log r if α = 0.

Note that Nf,D(r) is almost exactly equal to N (1)
f,D(r), except now we count the multiplicity with which f

reaches a value α rather than just always weight it as 1.

18 February 16, 2018

Let’s recall the setup of Nevanlinna theory. Let V be a smooth projective algebraic variety over C, and let
f : C−→V (C) be an analytic morphism. Let L be a line bundle on V (C), which we take to be algebraic,
although GAGA tells us this is the same as taking a holomorphic vector bundle on V (C). Then we have
defined a height function Tf,F (r) for all positive r, and while this function depends on the choice of a
generator of L (U) for U = V r suppD as well as a metric |·|L on L , different choices give equivalent
functions under the relation ∼.

Today, we’ll cover some examples of these functions. WriteD for a divisor of V such that L = OV (D),
and choose D such that f(C) is not contained in the support of D. As the absolute value of the generator
|1|L on U goes to ∞ as we approach suppD, we see that W = log |1|−1

L goes to −∞. Therefore the
mf,D(r) term measures how close f gets to suppD, where this value is more negative when f gets closer
to suppD. This is analogous to the inversion of the archimedean sizes in, say, Example 14.4, and this is
also why we say that mf,D(r) is an analog of the archimedean contribution.

The philosophy on Nf,L is that it measures how often the function f crosses suppD on C, whereas
mf,L measures how f crosses suppD at infinity. Our motivation is further solidified by Jensen’s formula:

18.1 Proposition (Jensen). For any meromorphic function g : C 99K C, we have

∑
|α|<r

ordα(g)

log r
|α| if α 6= 0,

log r if α = 0,
=

1

2π

ˆ 2π

0
dθ log |g(reiθ)| − “ log |g(0)|”,

where “log |g(0)|” is the leading coefficient of the Laurent expansion of g.

Thus we can also interpret mf,D(r) as trying to count hits of f on D on the neighborhood of∞ whose
boundary is the circle of radius r around the origin. We write U(0) for “log |g(0)|”. You can also use
Jensen’s formula to show that Tf,L (r) is independent of the choice of D.
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18.2 Example. Suppose that V = PnC, where we use the homogeneous coordinates z0, . . . , zn. Identify Cn
as an open subset of V (C) via the 0-th coordinate, and suppose that f(C) lies in Cn. (In the n = 1 case,
this just amounts to asking that f is actually a holomorphic function C−→C.)

Let D be Pn(C) r Cn, and choose the metric from Example 15.3. Then Nf,D(r) is constantly zero,
because f∗(D) = 0. A generator for our bundle of choice L = OV (D) on Cn is given by z0, so we have

Tf,L (r) =
1

2π

ˆ 2π

0
dθ log max

{
|f1(reiθ)|, . . . , |fn(reiθ)|, 1

}
,

where we write f = (f1, . . . , fn). Pulling out the maximum yields

1

2π

ˆ 2π

0
dθ max

{
log |f1(reiθ)|, . . . , log |fn(reiθ)|, 0

}
.

Let n = 1, and try out the functions from Example 17.3. When f(z) = ez , we see that

Tf,L (r) =
1

2π

ˆ 2π

0
dθ max{Re(reiθ)︸ ︷︷ ︸

r cos θ

, 0} =
r

π
,

and if f(z) = zm for an integer m ≥ 1, then

Tf,L (r) =
1

2π

ˆ 2π

0
dθ max{m log r, 0} = m log r

for r ≥ 1. This finishes a computation that we advertised in Example 17.4.

We may now give the Griffiths conjecture. LetX be a smooth closed subvariety of PnC, letD be a normal
crossings divisor on X , set X := X rD, and let H be a hyperplane section of X .

18.3 Conjecture (Griffiths). Let ε be positive. Then there exists a closed proper subvariety Y of X such
that, for any real c and holomorphic function f : C−→X(C) with image in Y (C), we have

N
(1)
f,D(r) ≥ Tf,K+D(r)− εTf,H(r) + c

for r in a subset of R≥0 with cofinite Lebesgue measure.

18.4 Example. Take X = P1
C and D to be any finite subset. Here K + D ∼ (degD − 2)H , so Griffiths’s

conjecture becomes the statement that the right Y exists such that

∑
|α|<r
f(α)∈D

log r
|α| if α 6= 0,

log r if α = 0,
≥ (degD − 2)

2π

ˆ 2π

0
dθ max{log |f(reiθ)|, 0}

for r in a subset of cofinite Lebesgue measure. This statement is known to be true.

More generally, the Griffiths conjecture known for curves. However, very little known for general
varieties. Apologies for the lack of any discussion on the Mordell conjecture—we’ll discuss the Mordell
conjecture as well as the Tate conjecture for abelian varieties next time!
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19 February 19, 2018

We now move to §4 today: how Faltings proved the Mordell conjecture. He used the theory of heights.
We’ll also discuss how one could hope to prove the Tate conjecture for algebraic cycles using the theory of
heights. Let’s start with the following historical picture. Faltings proved four big theorems in 1983:

(1) the Tate conjecture for abelian varieties,

(2) the Shafarevich conjecture for abelian varieties,

(3) the Shafarevich conjecture for curves,

(4) the Mordell conjecture.

Actually, he proceeded as (1) =⇒ (2) =⇒ (3) =⇒ (4). Part (1) is where he used the notion of heights of
abelian varieties over number fields, and I hope to discuss this today. I also want to describe how to travel
from one implication to another, beginning with part (1): the Tate conjecture!

Let F be a finitely generated field over its prime subfield (i.e. Q or Fp for some prime p, depending on
charF ). Let A and B be abelian varieties over F , and let p be a prime number not equal to charF .

19.1 Theorem (Tate conjecture for abelian varieties). The map

Hom(A,B)⊗Z Zp−→HomGF (TpA, TpB),

that sends a morphism to the induced morphism on p-adic Tate modules, where GF := Gal(F/F ) for a
fixed separable closure F of F , is an isomorphism.

Tate proved his conjecture in the case when F is a finite field, and in general it’s a theorem of Faltings.
I guess I should discuss abelian varieties a bit first.

19.2 Definition. Let k be a field. An abelian variety over k is a projective smooth algebraic variety over k
with the structure of an algebraic group.

It turns out that all abelian varieties are commutative algebraic groups, and hence the name. I won’t
explain so much. Over C, we can interpret abelian varieties A as complex analytic varieties via taking
A(C) with the analytic topology, and in this case A(C) is a complex Lie group that is isomorphic to Cg/L
for some discrete cocompact subgroup L of Cg satisfying a polarizability condition. I won’t elaborate upon
polarizability, but without this condition, such a Cg/L is just called a complex torus. Polarizability is always
satisfied for g = 1, but it’s not satisfied in general—there exist complex tori that are not abelian varieties
when g ≥ 2.
19.3 Example. An abelian variety of dimension 1 is precisely an elliptic curve E. When char k 6= 2, we can
always describe E as a projective plane curve of the form

E = {(x, y) ∈ A2 | y2 = ax3 + bx2 + cx+ d} ∪ {∞}

for some a, b, c, and d in k, where ax3 + bx2 + cx + d has no multiple roots. In projective coordinates
x0, x1, x2 that correspond to our affine coordinates via (x, y)↔ [1 : x : y], this is amounts to

E = {[x0 : x1 : x2] | x2
2x0 = ax3

1 + bx2
1x0 + cx1x

2
0 + dx3

0},

where∞ becomes [0 : 0 : 1]. In this presentation for E,∞ is always the identity for the group operation,
and the map (x, y) 7→ (x,−y) is always the the inversion map.

For a specific example, consider the elliptic curve E given by the equation y2 = x3 + 1. Then the group
of R-points E(R) is isomorphic to R/Z, and the group of C-points is isomorphic to C/Z[ζ3]. Note that we
get a nice automorphism on C/Z[ζ3] from multiplication by ζ3, which corresponds to (x, y) 7→ (ζ3x, y) on
the algebraic side.
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Let A be an abelian variety over F of dimension g. For any n such that charF does not divide n, it is a
fact that its n-torsion subgroup satisfies

A(F )[n] := ker(n : A(F )−→A(F )) ∼= (Z/nZ)2g.

In the case when F ↪−→ C, we can see this from the lattice description via

A(C)[n] = ker(n : Cg/L−→Cg/L) = ( 1
nL)/L ∼= (Z/nZ)2g.

In the setting of general fields F , we naturally have a Galois action on A(F ).

19.4 Example. Return to our concrete elliptic curve from Example 19.3. When n = 2, its 2-torsion is

E(Q)[2] = {∞, (−ζa3 , 0)}

as a ranges through {0, 1, 2}. Thus we get a nontrivial Galois action already, and this Galois action only
gets bigger (i.e. the subgroup acting trivially gets smaller) as we increase n.

19.5 Definition. The p-adic Tate module of A, denoted using TpA, is defined to be

TpA = lim←−
n

A(F )[pn],

where the transition maps are given by multiplication by p.

If p is a prime such that charF does not divide p, our previously stated fact indicates that TpA is
isomorphic to Z2g

p as a Zp-module. In the situation where F ↪−→ C, our description of A(C)[n] yields

TpA = lim←−
n

A(C)[pn] = lim←−
n

( 1
pnL)/L = lim←−n L/p

nL = L⊗Z Zp.

Furthermore, note that H1(Cg/L,Z) = L, so we can rewrite the Tate module as H1(Cg/L,Z) ⊗Z Zp =
H1(Cg/L,Zp). This reformulation leads to the Tate conjecture for general algebraic varieties:

19.6 Conjecture (Tate conjecture for algebraic cycles). Let F be a field that is finitely generated over its
prime subfield, and let X be a proper smooth algebraic variety over F . Then for all primes p such that
charF does not divide p, the cycle map

CHr(X)⊗Z Qp−→
(
H2r

ét (XF ,Qp)(r)
)GF

,

where CHr(X) denotes the r-th Chow group of codimension r algebraic cycles modulo rational equiva-
lence, and (r) denotes a Tate twist, is surjective.

For the remainder of my life, I hope to study this conjecture via studying the “heights of the motive
H2r(X)(r).” Maybe you can pick it up too—you’re young. Koshikawa has shown that this general conjec-
ture of Tate follows from some finitude statements for heights on motives.

Now how does this conjecture of Tate relate to the Tate conjecture for abelian varieties from earlier?
Injectivity is already known for the Tate module map, so the whole statement lies in surjectivity. By taking
X = A×B and sending h in Hom(A,B) to its graph, we obtain an element of CHg(X)⊗ZQp. Interpreting
p-adic Tate modules asH1

ét((−)F ,Qp)
∨ and using the Künneth formula to decomposeH2g

ét (XF ,Qp) allows
us to obtain the Tate conjecture for abelian varieties as stated earlier.

Let’s now turn to the Shafarevich conjecture for abelian varieties. Let F be a number field, and let S be
a finite set of places of F containing the archimedean ones. Let g be a positive integer.
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19.7 Theorem (Shafarevich conjecture for abelian varieties). There are only finitely many isomorphism
classes of abelian varieties over F of dimension g with good reduction outside of S.

19.8 Example. For an example of what bad reduction means, consider the equation y2 = x3 + 1 from
Example 19.3. Then modulo 3, this equation becomes singular, because then y2 = (x+ 1)3. Therefore we
say that E has bad reduction at p = 3.

Let’s now state the Shafarevich conjecture for curves too.

19.9 Theorem (Shafarevich conjecture for curves). There are only finitely many isomorphism classes of
smooth projective curves over F with good reduction outside of S.

These conjectures are a natural follow-up to our discussion of heights in arithmetic geometry up to now,
for the following reason. In brief, we can deduce Shafarevich’s conjecture for abelian varieties by applying
Conjecture 4.5 to moduli spaces. Let h be the complex upper half plane, and recall that we have a map

h −� {elliptic curves over C}/∼=
τ 7−→ C/(Z + Zτ).

We can generalize this to general abelian varieties by forming the Siegel upper half space

hg := {τ ∈ Mg(C) | τ is symmetric, and Im(τ) is positive definite},

and we similarly get a map

hg −� {dimension g abelian varieties over C}/∼=

τ 7−→ Cg/

 g∑
i=1

Zei + Zτei

 ,

where e1, . . . , eg is the standard basis of Cg. We shall prove next time that hg is (Brody) hyperbolic, and it
turns out that there exists a discrete group Γ with a left action on hg such that Γ\hg consists of the C-points
of an algebraic variety X over Q.
19.10 Example. In the g = 1 case of the usual complex upper half plane, this discrete group is just

Γ(2) :=
{[

a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[

1
1

]
(mod 2)

}
.

Note that X(C) = Γ\hg must also be hyperbolic, by taking lifts to its universal cover hg. Furthermore,
roughly speaking, there exists an algebraic variety X over Z whose generic fiber is X and for which

X(OF,S) = {dimension g abelian varieties over F with good reduction outside of S}/∼= .

Then applying Conjecture 4.5 to X immediately yields Shafarevich’s conjecture for abelian varieties. I’ll
talk about how to move between these conjectures next time.

20 February 21, 2018

I will now explain the proofs of the Tate conjecture for abelian varieties, the Mordell conjecture, etc. by
Faltings. What I hope to show is that the ideas are natural and the proofs are easy, once the ideas come. To
this end, I hope I don’t spend too much time explaining complicated things—some of the details regarding
moduli spaces shall be rough, but I hope you find it natural nonetheless.

Recall our labeling of the Tate conjecture for abelian varieties, the Shafarevich conjecture for abelian
varieties, the Shafarevich conjecture for curves, and the Mordell conjecture as (1)–(4), respectively. There
should also be an even deeper level:
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(0) finitude of isomorphism classes of abelian varieties in any given isogeny class,

as well as the following variant of the Tate conjecture:

(1)’ for any two abelian varieties A and A′, if VpA is isomorphic to VpA′, then A and A′ are isogeneous.

I will explain these additional ingredients. It’s not easy to discern all these points (as well as the implications
between them) from papers written on their proofs, and I hope to make this all clearer. The proofs go like
(0) =⇒ (1) =⇒ (1)’ and (0)+(1)’ =⇒ (2). Let’s now backtrack and define the terms involved.

20.1 Definition. Let A and A′ be abelian varieties over a field k. We say that A and A′ are isogeneous and
write A ∼ A′ if there exist homomorphisms f : A−→A′ and g : A′−→A and a positive natural number n
such that g ◦ f = f ◦ g = n.

20.2 Example. Let k = C, let A be C/Z[ζ3], and let A′ = C/(Z + nZ[ζ3]). There is a canonical quotient
map g : A′−→A, and the map C−→C given by multiplication by n induces a map f : A−→A′. We see
then that f and g witness the fact that A and A′ are isogeneous.

We can now make sense of (0):

20.3 Theorem. Let F be a field that is finitely generated over Q or F`, and let A be an abelian variety over
F . Then the set {A′ abelian variety over F | A′ ∼ A}/∼= is finite.

Part (0) is actually the hardest part of Faltings’s proofs, and he proved it using the theory of heights. It
was known beforehand the case when F is finite by Tate, and the implication (0) =⇒ (1) was also known
by Tate.13 The second implication (1) =⇒ (1)’ is also relatively accessible. While it’s not easy to extract
this from the literature, I want to give the feeling that everything is easy. It’s a nice feeling.

Sketch of (1) =⇒ (1)’. We can turn an isomorphism VpA ∼= VpA
′ into an injective morphism TpA ↪−→ TpB

with finite cokernel, after multiplying by some power of p. The Tate conjecture then yields the mapA−→B
up to Zp-coefficients, and multiplying out the previous factor of p (along with passing down to Z-coefficients
somehow) gives the desired result.

We shall focus on the cases when F is actually finite over its prime subfield, that is, F is either a number
field or a finite field. In the latter case, part (0) is evident because the entire set

{abelian varieties of dimension g over F}/∼= = X(F )

is finite, where X is the moduli space of abelian varieties of dimension g. This is true because X is some-
thing like an algebraic variety, roughly speaking. When F more generally is finitely generated over a finite
field, a similar argument works by considering F geometrically. On the other hand, when F is a number
field, it contains no “base” field, so we cannot play such tricks.

Therefore let us move to the situation when F is a number field F , and let’s begin our rough discussion
of the moduli space of abelian varieties of dimension g. Our hg has another description:

hg
∼−→{z ∈ Mg(C) | z is symmetric, 1− tz · z is positive definite}

τ 7→ z := (τ − i)(τ + i)−1.

The inverse of the above map sends z 7→ τ := i(1 + z)(z − z)−1.

20.4 Example. When g = 1, this alternative description of h is {z ∈ C | |z| < 1}, which is precisely the
bounded open disk model of the Poincaré upper half plane.

13We shall discuss (0) =⇒ (1) in Lecture 22.
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Our bounded realization of hg shows that it is (Brody) hyperbolic, since Liouville’s theorem indicates
that bounded holomorphic functions are constant.

20.5 Example. In the g = 1 case, the map realizing complex tori as elliptic curves over C yields an isomor-
phism

Γ(2)\h ∼−→{elliptic curves over C}/∼= = P1(C) r {0, 1,∞},

where the last identification is given by the parameter λ in the Legendre form y2 = x(x − 1)(x − λ) of an
elliptic curve over C. Now P1 r {0, 1,∞} is a nice convenient scheme X over Z, and for any ring R, we
roughly have

{elliptic curves over R}/∼= = X(R) = Hom(Z[λ, 1
λ(1−λ) ], R) = {λ ∈ R× | 1− λ ∈ R×}.

I will not explain what an elliptic curve over a general ring is. However, for any number field F and finite
set of places S of F containing the archimedean ones, we do have

{elliptic curves over OF,S}/∼= = {elliptic curves over F with good reduction outside S}/∼=

via taking Néron models. Our above description (along with Siegel’s theorem) tells you that this set is finite.

Returning to the situation of arbitrary g, we can play a similar game, which we indeed played last time.
This showed us that, if we knew Conjecture 4.5, then we would have (2) as a consequence. So (2) is natural.

It’s a fact that isogeneous abelian varieties have good reduction at the same places, which follows from
the converse of (1)’ (which is immediate) and the Néron–Ogg–Shafarevich criterion:

20.6 Proposition (Néron–Ogg–Shafarevich criterion). Let A be an abelian variety over F , and let v - p be
a prime. Then the Galois representation VpA is unramified at v if and only if A has good reduction at v.

In the general setting of abelian varieties, the Néron–Ogg–Shafarevich criterion is a theorem of Serre–
Tate. Thus if the abelian variety A over F of dimension g is given, and if S is the finite set of bad reduction
places of A (together with the infinite places), we see that

{A′ abelian variety over F | A′ ∼ A}/∼=
↪−→{A′ abelian variety over F | dimA = g, A′ has good reduction outside of S}.

The latter set is finite by (2), so we see one could actually deduce (0) from (2) as well.
What actually happened was that we eventually deduced (2) from (0). And Faltings proved (0) itself

roughly as follows: he took the moduli space X of abelian varieties of dimension g (well, there’s all sorts
of additional data like polarizations, endomorphisms, and level structure involved, but we’ll pretend that
all doesn’t exist), which is a projective variety X ↪−→ Pn, and he studied heights on X . He found that if
A′ ∼ A, then most of the time H(A′) = H(A), where H(−) denotes the naive height of the F -point on X
corresponding to A, and he proved that

{H(A′) | A′ ∼ A}

is finite. Coupled with Theorem 10.5, we’d obtain (0).
. . . Well, the above sketch is not quite true. What Faltings actually did was define the Faltings height

HFal(A), which is an improved version of H(A) that’s roughly the equal to H(A). He then he used HFal to
carry out the above strategy. We’ve run out of time now, but I’ll continue discussing this next time.
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21 February 23, 2018

Let us restrict to the case where F is a number field for today. I hope to finish this course by the end of next
week! Recall that we cursorily described (1) =⇒ (1)’ last time.

Sketch of (0)+(1)’ =⇒ (2). By (0), it suffices to prove that

{A abelian variety over F | dimA = g, A has good reduction outside of S}/∼

is finite. Now (1)’ indicates that A modulo ∼ is determined by VpA, and we may assume that the primes
above p lie in S, because this only enlarges the above set of interest. By the Néron–Ogg–Shafarevich
criterion, our condition becomes equivalent to asking that VpA is unramified outside of S. Thus it would
suffice to show that only finitely many isomorphism classes (that is, conjugacy classes) of continuous Galois
representations GF −→GL2g(Qp) are unramified outside of S.

By taking Tate twists, we see that this preliminary statement is utterly false. However, we know the
weight of VpA, as it is a Galois representation of weight −1. That is, for any v not in S, the characteristic
polynomial of geometric Frobenius has coefficients in Z, and its roots have size #F1/2

v for all complex
absolute values on Qp. Once we restrict the weight of our Galois representations, the number of such
objects is finite. The proof of this uses the Chebotarev density theorem as well as reduction modulo p
from GL2g(Zp) to GL2g(Z/pZ). I shall not explain more here, but this is a standard technique in number
theory.

The proof of (2) =⇒ (3) follows immediately from the fact that

{smooth projective curves of genus g with good reduction outside of S}/∼=
↪−→{abelian varieties of dimension g with good reduction outside of S}/∼=,

where the map sends C to its Jacobian JC . And what is the Jacobian, you ask? The general construction
over arbitrary fields is complicated, but for the situation over C, we can proceed with complex geometry as
follows:

21.1 Definition. LetC be a smooth projective curve over C of genus g. Its Jacobian, as a complex manifold,
is defined by

JC(C) :=
HomC(Γ(C,Ω1

C),C)

H1(C(C),Z)
≈ HomC(Cg,C)

Z2g
= Cg/Z2g,

where the embedding H1(C(C),Z)−→HomC(Γ(C,Ω1
C),C) sends γ to the map ω 7→

´
γ ω. It turns out

that JC has a natural structure of an abelian variety over C.

We could try to redo this for more general singular curves C, but it’s not clear what “good reduction”
means for a variety that is already singular itself. I think I used to think about this problem, but I can’t recall
now, and I’m no expert in the field. Apologies.

Finally, let us deduce the Mordell conjecture from (3).

Proof of (3) =⇒ (4). Let C be a proper smooth curve of genus g over F , for g ≥ 2. We want to prove that
C(F ) is finite. It was already known by Manin (and probably others) there exists an integer c ≥ 2 and a
finite set of places S containing the archimedean ones such that we can construct a map

C(F )−→

 ϕ : C ′−→C

ϕ is a surjective map from a proper smooth curve over F ,
ϕ is ramified at exactly one point, which is F -rational,
the genus of C ′ lies in [2, c], and
C ′ has good reduction outside of S.

/∼= .
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This construction and strategy were known well before Faltings. It’s known that the map in the opposite
direction that sends ϕ : C ′−→C to the corresponding ramified point is a retract, which implies that the
above map is an injection. Then it suffices to show that the set on the right-hand side is finite.

Now the finitude of isomorphism classes of C ′ appearing in the above set follows from (3). And it’s a
standard piece of geometry that, for any proper smooth curvesC1 andC2 over a field k satisfying g(C1) ≥ 2,
the number of surjective morphisms C1−→C2 is finite. This finishes the proof.

While I may not be giving all the details, I want to give the impression that most of the deductions should
be considered straightforward, after one proves (0). As for deducing (0) itself, the method for doing so shall
be to construct the Faltings height HFal(A), which will be some positive number. Embedding

X = “the moduli space of abelian varieties of dimension g” ↪−→ PN

yields a naive height function A 7→ H(A), but this depends on the choice of embedding. It turns out that
there exists a positive C such that HFal(A) ≤ H(A)C for all abelian varieties A over F . Our goal will be to
define HFal(A) and prove that

{HFal(A
′) | A′ ∼ A}

is a bounded set. By applying our comparison HFal(A) ≤ H(A)C with naive heights as well as Theorem
10.5, this would imply (0). There was an expert on this topic who spoke last week at the number theory
seminar last week!

21.2 Definition. Let A be an abelian variety over F . We define its Faltings height to be

HFal(A) := H(L),

where L is the 1-dimensional F -vector space
∧g Γ(A,Ω1

A), and the integral structure LOF and metrics |·|v
are given as follows:

• Choose an F -basis ω1, . . . , ωg of Γ(A,Ω1
A). Then ω1 ∧ · · · ∧ ωg is an F -basis of L, and we define its

absolute value to be
ˆ
A(F v)

ω1 ∧ · · · ∧ ωg ∧ ω1 ∧ · · · ∧ ωg

for complex v, and the square root of this quantity for real v.

• We take LOF to be
∧n Γ(A,Ω1

A), where A is the Néron model of A over OF .

We still need to compare Faltings heights with the naive heights as well as bound the set of Faltings
heights itself in an isogeny class, which will need to spill over to next time.

22 February 26, 2018

I want to get to generalizations of our discussion to motives, so we will not have the time to discuss the
proof of (0) any further. Many apologies!

The proof that (0) =⇒ (1) was carried out by Tate when F is a finite field, and the number field case is
merely a slight modification. We give the proof below:

Proof of (0) =⇒ (1). We break this up into five steps:
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1. “Easy” (background) things:

• For any abelian varietiesA andB over a field k, the group Hom(A,B) is a finitely generated abelian
group. One can readily see this when k = C using the analytic theory, for which we can deduce the
general case when char k = 0 (and hence for number fields). This result is also immediate when k
is finite, but the argument for general k is harder.

• When char k does not divide p, the map Hom(A,B)⊗ZZp−→HomZp(TpA, TpB) is injective. We
have already used this fact earlier, when we discussed the relationship between the Tate conjectures
for abelian varieties and algebraic cycles. Thus we may focus on surjectivity.

• The proof of the Tate conjecture can be reduced to the case A = B by using the decomposition

Hom(A⊕B,A⊕B) = Hom(A,A)⊕Hom(A,B)⊕Hom(B,A)⊕Hom(B,B),

as the A = B case implies isomorphisms for the left-hand side as well as the outer terms of the
right-hand side, and dimension counting yields the result for Hom(A,B) and Hom(B,A), where
we use the fact that these are finitely generated Z-modules.

• It turns out that it suffices to prove that End(A)⊗Z Qp−→EndGF (Vp(A)) is an isomorphism.

2. Basic things about isogenies:

• If T ′ is a finite index subrepresentation of TpA over Zp, then there exists an isogeny A′−→A such
that TpA′ ↪−→ TpA has image T ′. We can immediately see this by quotienting out the subgroup
scheme corresponding to (TpA)/T ′.
More precisely, for any positive integer N such that char k does not divide N and any Gk-stable
subgroup H of A[n](k), there exists an abelian variety A′ := A/H over k and a map g : A′−→A
such that its composition with the canonical quotient map f : A−→A′ both ways equals N . Any
T ′ as above lies in pnTpA for some positive integer n, so applying the N = pn case yields the
desired result.

22.1 Example. Return to our concrete elliptic curve E from Example 19.3, whose complex points
are given by E(C) = C/Z[ζ3]. Then

E[3](Q) = {∞, (0,±1)},

so we can take H = {∞, (0,±1)}. Multiplication by ζ3 in the complex picture corresponds to
(x, y) 7→ (ζ3x, y) in the plane curve picture, so for z in C, the condition (ζ3−1)z ≡ 0 (mod Z[ζ3])
becomes equivalent (on the affine patch) to asking that x = ζ3x and hence x = 0. Thus y = ±1
for such a point, so altogether we see that H is the kernel of multiplication by ζ3 − 1. Therefore
(E/H)(C) = C/(ζ3 − 1)−1Z[ζ3] under the identification of E(C) with C/Z[ζ3], and in this situa-
tion we actually get an isomorphism E/H

∼−→E given by multiplication by ζ3 − 1 on C-points.
On the other hand, if we take H = {∞, (−1, 0)} inside E[2], then (E/H)(C) is sandwiched
between C/Z[ζ3] and C/2−1Z[ζ3] for similar reasons. While C/2−1Z[ζ3] is isomorphic to E, here
E/H is not isomorphic to E.

3. We shall use (0) in the following proposition.

22.2 Proposition. Let F be a number field, and let A be an abelian variety over F . For any subrepre-
sentation W of VpA over Qp, there exists a θ in End(A)⊗Z Qp such that θ(VpA) = W .
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Proof. Let T ′ be the intersection W ∩ TpA. Now in general T ′ will not have finite index in TpA,
but we can create an object that must have finite index in TpA: the sum T ′ + pnTpA. This sum is
also Galois-stable, so Step 2 gives us an abelian variety A(n) over F and an isogeny fn : A(n)−→A
such that TpA(n) is identified with T ′ + pnTpA under fn. Now (0) implies that these A(n) range over
finitely many isomorphism classes, so we can find an increasing sequence {ni}i such that the {A(ni)}i
are all isomorphic. Because T ′ + pn0TpA contains T ′ + pniTpA, we can replace fni with its factor
fni : A(ni)−→A(n0).

Choose isomorphisms hi : A(n0) ∼−→A(ni), and form the endomorphism θi := fni ◦ hi. Then θi sends
T ′+ pn0TpA to T ′+ pniTpA, and because End(A)⊗Z Zp is compact, some subsequence {ik}k of {θi}i
converges. Letting θ be the limit of this subsequence, we see that θ sends T ′ + pn0TpA to

∞⋂
k=1

T ′ + pnikTpA = T ′

and hence (T ′ + pn0TpA)[1
p ] = VpA to T ′[1

p ] = W , as desired.

The proof of Proposition 22.2 is a nice slick argument.

4. (More) basic things:

• It is known that End(A)⊗ZQ is a (finite-dimensional) semisimple algebra over Q, which indicates
that End(A)⊗Z Qp is a semisimple algebra over Qp. Now finite-dimensional semisimple algebras
over a field k are all of the form

r⊕
i=1

Mni(Di),

where the Di are finite-dimensional skew fields (that is, division algebras) over k.

5. Recall the double centralizer theorem, which says the following.

22.3 Theorem (Double centralizer). Let R be a semisimple k-subalgebra of Mn(k). Then we have

C(C(R)) = R,

where C(A) denotes the centralizer C(A) := {x ∈ Mn(k) | xy = yx for all y in S} of A.

Our goal is to apply this to End(A)⊗ZQp inside EndQp(VpA), in order to show that any β in EndGF (VpA)
lies inside End(A)⊗Z Qp. The double centralizer theorem tells us that is it enough to prove that

βc = cβ

for all c in C(End(A)⊗Z Qp), and we’ll pick up on this next time.

23 February 28, 2018

Recall from Step 1 that we reduced the Tate conjecture to showing that End(A) ⊗Z Qp−→EndGF (VpA)
is an isomorphism, where A is an abelian variety over a number field F . Let β be in EndGF (VpA), and
consider the graph

W := {(x, βx) | x ∈ VpA} ⊂ (VpA)2 = Vp(A
2)
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of β. It’s a subrepresentation of Vp(A2), so Proposition 22.2 (which is a consequence of (0)) yields a u
in End(A2) ⊗Z Qp for which W = u(Vp(A

2)). The semisimplicity of End(A) ⊗Z Qp and the double
centralizer theorem indicate that it suffices to prove

cβ = βc

for all c in C(End(A)⊗Z Qp). The fact that End(A2)⊗Z Qp = M2(End(A)⊗Z Qp) implies that the map

(x, y) 7→ (cx, cy)

preserves u((VpA)2), because c commutes with the matrix entries of u. As u((VpA)2) = W , we see that this
map preserves W . In other words, for all x in VpA, the pair (cx, cβx) lies in W , indicating that cβx = βcx.
Hence cβ = βc, completing our proof.

This proof of (0) =⇒ (1) may seem like a series of slick tricks, but this material was well-known and
relatively straightforward in Faltings’s time. The real difficulty lies in proving (0), which is the core of the
argument.

Today, I want to begin discussing how one could possibly attack the Tate conjecture for algebraic cycles
in general. We shall describe the analog of (0) =⇒ (1) in this setting, where (1) now denotes the general
Tate conjecture for algebraic cycles. Let k be a field contained in C. We now give the definition of a motive,
and while it’s different from the original definition of Grothendieck, our description is simpler and not too
different.

23.1 Definition.

• A motive over k is a formal symbol

t⊕
i=1

Hmi(Xi)(ri),

where the Xi are smooth projective varieties over k, and the mi and ri are integers.

• For any motive M =
⊕t

i=1H
mi(Xi)(ri), we write MB for its Betti realization

MB :=
t⊕
i=1

Hmi
sing(Xi(C),Q)⊗Q Q(2πi)ri .

We also frequently denote this using
⊕t

i=1H
mi
B (Xi)(ri).

• For any two motives of the formHm(X)(r) andHn(Y )(s), we define the set of morphisms of motives
to be

Hom(Hm(X)(r), Hn(Y )(s)) :=

{
0 if m− 2r 6= n− 2s,

HomQ(Hm
B (X)(r), Hn

B(Y )(s)) otherwise.

We say that m− 2r is the weight of Hm(X)(r).

• For any two motives A =
⊕t

i=1H
mi(Xi)(ri) and B =

⊕u
j=1H

nj (Yj)(sj), we define the set of
morphisms from A to B to be

Hom(A,B) :=
t⊕
i=1

u⊕
j=1

Hom(Hmi(Xi)(ri), H
nj (Yj)(sj)),
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Here’s an important idea we have already used to deduce the Tate conjecture for abelian varieties from
the general Tate conjecture: the maps on cohomology arising from morphisms of varieties come from
algebraic cycles. More specifically, for any smooth projective variety Z over k, we have a cycle map
CHi(Z)−→H2i

sing(Z(C),Z)⊗Z Z(2πi)i.14 Tensoring with Q and setting Z = X × Y yields a map

CHi(X × Y )Q−→H2i
B (X × Y )(i)

and the graph Γf of a morphism f : X −→Y yields a codimension dimY cycle in X × Y , whose images
in

H2 dimY
B (X × Y )(dimY ) =

2 dimY⊕
j=0

Hj
B(X)⊗Q H

2 dimY−j
B (Y )(dimY ) =

2 dimY⊕
j=0

Hj
B(X)⊗Q H

j
B(Y )∨

=
2 dimY⊕
j=0

HomQ(Hj
B(Y ), Hj

B(X))

via the Künneth formula and Poincaré duality correspond to the induced maps f∗ : Hj
B(Y )−→Hj

B(X).

23.2 Example. Consider the motive H0(Spec k). Its Betti realization is the 1-dimensional Q-vector space
Q, so we will denote this motive using Q. It turns out that

Hom(Q, H2r(X)(r)) = CHr(X)Q/(homological equivalence),

which is also the image of CHr(X)Q−→H2r
B (X)(r). Our linear-algebraic definition of motives indicates

that this implies the Tate conjecture for when the source is Q.

The theory of étale cohomology shows that

Hm
B (X)(r)⊗Z Ẑ = Hm

ét (XC,Af )(r) = Hm
ét (Xk,Af )(r) = Hm

ét (Xk,Af )⊗Af Af (r)

has a continuous action of Gk := Gal(k/k), if we give this space the discrete topology. Here, we define
Af (r) := Af (1)⊗r and Af (1) := Q ⊗ lim←−n µn. Similarly, we can define the p-adic realization Mp of a
motive M using étale cohomology. With this, we can now reformulate the Tate conjecture for algebraic
cycles in terms of motives.

23.3 Conjecture (Tate conjecture for motives). Suppose that k is finitely generated over Q. If M and N
are two motives over k, then Hom(M,N)⊗Q Qp

∼−→HomGk(Mp, Np) for any prime p.15

We can relate this to our previous formulation of the Tate conjecture using graphs of morphisms and the
cycle map as in Lecture 19.

As for the analog of (0) =⇒ (1), let k = F be a number field, let X be a smooth projective variety
over F , and consider the motive M := Q⊕H2r(X)(r). Let β lie in H2r

ét (XF ,Qp)(r)
GF . Then the motivic

analog of (0), which is something like “finitude of isomorphism classes of motives in an isogeny class,” shall
imply that if we set

W := {(x, xβ) | x ∈ Qp} ⊆Mp,

then there exists a u in End(M) ⊗Q Qp such that W = uMp. This is the motivic version of Proposition
22.2, and I’ll finish this up on Friday.

14The i in the parentheses is the imaginary unit, whereas the i in the superscript is the codimension of the cycles.
15The note-taker thinks that, given our definition of Hom(M,N), this is not correct. For instance, if M = H1(A) and N =

H1(B) for two abelian varieties A and B of dimension g, then the left-hand side has dimension 4g2, whereas the right-hand side
has dimension at most 4g2, with equality not generally attained. However, if we use the actual definition of Hom(A,B) instead,
this conjecture is stated correctly.
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Fix a field k inside C. Recall that a motive over k, in our sense, is just a symbol

M =
t⊕
i=1

Hmi(Xi)(ri),

where the Xi are smooth projective varieties over k. We want a notion of integral structures for motives,
which will be defined as follows.

24.1 Definition. Let M be a motive over k. A Z-structure on M is a free Z-module TZ ⊆MB of finite rank
such that MB = TZ ⊗Z Q, and T := TZ ⊗Z Ẑ ⊆MB ⊗Z Ẑ is stable under the action of Gal(k/k). For any
two motives (M,TZ) and (M ′, T ′Z) over k with Z-structures, a morphism h : (M,TZ)−→(M ′, T ′Z) is just a
morphism h : M −→M ′ for which h(TZ) lies in T ′Z.

As we play with all these Z-lattices and Ẑ-lattices, we should observe the following fact: for any finite-
dimensional Q-vector space V , there is a bijection

{Z-lattices in V } ←→ {Ẑ-lattices in V ⊗Z Ẑ}

given by TZ 7→ TZ ⊗Z Ẑ in one direction and T 7→ T ∩ V in the other. Therefore, we can interpret a
Z-structure equivalently as the data of a Gal(k/k)-stable Ẑ-lattice T in MB ⊗Z Ẑ.

If we don’t write the twist r, it means that r = 0. Furthermore, recall that for any morphism f : Y −→X
of smooth projective varieties over k, we obtain an induced map

Hm(X)(r)−→Hm(Y )(r),

and this map comes from the graph Γf of f , which is a codimension dimY cycle in X × Y .

24.2 Example. Let A and B be abelian varieties over k, let M = H1(A), and let N = H1(B). Then
MB ⊗Z Ẑ = HomA(V A,Af ), where V A denotes the adelic Tate module

V A := Q⊗Q lim←−
n

A[n](k).

of A. Therefore T := HomẐ(TA, Ẑ) yields a Z-structure on M , where T denotes the integral adelic Tate
module of A. Upon carrying out the same construction for B and B, we see that the Tate conjecture says
that the natural map is an isomorphism

Hom(B,A)
∼−→Hom((M,T ), (N,S)).

With the notion of Z-structures in hand as well as the motivating Example 24.2, we can now state the
analog of (0) for motives.

24.3 Conjecture. Let F be a finitely generated field over Q, and let M be a motive over F . Then the set

{(M,T ) | T is a Z-structure on M}/∼=

is finite.

24.4 Example. In the case of an abelian variety A, where the motive M equals H1(A), we have seen that Z-
structures on M are the same thing as isomorphism classes of abelian varieties isogeneous to A. Therefore
(0) for motives is equivalent to (0) for abelian varieties, which was proved by Faltings.

48



MATH 383 — Height Functions in Number Theory Siyan Daniel Li

We’ll now prove the analog of (0) =⇒ (1) in the motivic context, where now (1) is the Tate conjecture
for algebraic cycles. This shall be similar to our original (0) =⇒ (1) in the case of abelian varieties. And
while (0) is still wildly conjectural in the setting of general motives, this might prove to be a fruitful angle
of attack on (1).

24.5 Remark. Any motive M =
⊕t

i=1H
mi(Xi)(ri) always has a Z-structure. For example, we can take

TZ =
t⊕
i=1

Hmi(Xi(C),Z)/torsion⊗Z Z(2πi)ri ⊆MB

on the Betti realization side, or we could (equivalently, by comparison theorems) take

T =

t⊕
i=1

Hmi
ét (Xk, Ẑ)/torsion⊗Ẑ Ẑ(ri) ⊆MB ⊗Z Ẑ

on the étale realization side.

Proof of (0) =⇒ (1) for motives. We work with our algebraic cycle formulation of the Tate conjecture.
Write M for the motive Q⊕H2r(X)(r), and let β lie in (H2r

ét (XF ,Qp)(r))
GF . Form the Qp-vector space

W := Qp(1, β) ⊆Mp = MB ⊗Z Zp = Qp ⊕H2r
ét (XF ,Qp)(r).

Now fix a Z-structure T on M , and decompose it as T =
∏
` Tp, where the T` is the Z`-module, corre-

sponding to the decomposition Ẑ =
∏
` Z`. Set WZp := W ∩ Tp, and consider the Z-structure

T (n) :=
∏
` 6=p

T` × (WZp + pnTp).

By (0), the set

{(M,T (n)) | n ≥ 0}/∼=

is finite, and the same argument as in Proposition 22.2 generalizes to show that W = uMp for some u in
EndQp(Mp) = End(M) ⊗Q Qp. Using the decomposition Mp = Qp ⊕ H2r

ét (XF ,Qp)(r), we break up u
into the matrix form

u =

(
u11 u12

u21 u22

)
,

where

u11 : Qp−→Qp, u12 : H2r
ét (XF ,Qp)(r)−→Qp, u21 : Qp−→H2r

ét (XF ,Qp)(r),

and u22 : H2r
ét (XF ,Qp)(r)−→H2r

ét (XF ,Qp)(r)

are Qp-linear maps. Example 23.2 indicates that u21 comes from the image of CHr(X)Qp inH2r
ét (XF ,Qp)(r),

and because Poincaré duality yields

HomQp(H
2r
ét (XF ,Qp)(r),Qp) = HomQp(Q∨p , (H2r

ét (XF ,Qp)(r))
∨)

= HomQp(Qp, H
2(dimX−r)
ét (XF ,Qp)(dimX − r)),

we also see that u12 comes from the image of CHdimX−r(X)Qp in H2(dimX−r)
ét (XF ,Qp)(dimX − r).
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For all x in Qp and y in H2r
ét (XF ,Qp)(r), we have

u

(
x
y

)
=

(
u11x+ u12y
u21x+ u22y

)
=

(
z
βz

)

for some z in Qp. Setting y = 0 and x = 1 yields(
u11

u21(1)

)
=

(
z
βz

)
=⇒ u21(1) = βu11.

If u11 6= 0, then β = u21/u11 already comes from CHr(X)Qp , as desired. If instead u11 = 0, this implies
that u21 = 0 as well, so altogether we have

(
u12(y)
u22(y)

)
∈ Qp ⊕H2r

ét (XF ,Qp)

∣∣∣∣∣∣ y ∈ H2r
ét (XF ,Qp)(r)

 = uMp = W = Qp

(
1
β

)
.

This shows us that u22(y) = u12(y)β for all y in H2r
ét (XF ,Qp)(r). Now if u12 = 0, then u22 = 0 as well

and hence u = 0, which cannot be the case. Therefore u12 6= 0. Somehow, we know that u22 comes from
the image of CHdimX(X ×X)Qp , and if we allow ourselves the conjecture that the intersection pairing on
Chow groups modulo homological equivalence is non-degenerate, we can pair u12 with its dual to show that
β comes from an algebraic cycle too.

Thus the Tate conjecture for algebraic cycles can be reduced to a generalized version of (0). Concerning
(0) itself, Koshikawa has defined a height function HKos(M,T ) on motives with Z-structure. The goal
would be to show, for a fixed motive M , that

{HKos(M,T ) | T is a Z-structure on M}

is bounded, in analogy with Faltings’s result on HFal for abelian varieties. However, to conclude a proof of
(0), the issue is that one also needs a variant of Faltings’s rough comparison between HFal and naive heights
on the moduli space of abelian varieties. In the motivic setting, we have no moduli space of motives to use
for a similar strategy.

I wanted to spend the rest of my time defining HKos(M,T ), but I only have three minutes left. So I
will just describe it a little. The construction of HKos is similar to that of HFal, where we use the de Rham
realization of M and the graded pieces of its natural filtration to obtain the line bundle whose height we’d
compute, á la Definition 21.2.

I don’t have time to do the rest, and I refer you to Koshikawa’s paper “On heights of motives with
semistable reduction” for more details. The construction involves a seemingly strange tensor product, but
it’s not that strange—it can be motivated16 by the formula

m∑
r=0

r dim grrHm
dR(M) =

m

2
dimHm

dR(M),

so it’s not too weird.

24.6 Example. In the case of an abelian varietyA, where the motive isM = H1(A), we have gr1HdR(M) =
Γ(A,Ω1

A). This will end up showing that Koshikawa height is a natural generalization of Faltings height.

16Get it?
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