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1 January 3, 2018

Well, nobody is talking, so it must be time to start. This is Analysis II (functional analysis), and I’m Charlie
Smart, one of the faculty here. There’s some administrative stuff, but it’s mostly just to read the syllabus on
Canvas. The grading will be 40% homework, 30% midterm, and 40% final. The midterm is. . . sometime in
February, probably? I should also read the syllabus.

There are no official textbooks, but there are at least three good options you could follow for the course:

• The main notes that I will roughly follow are notes by Bühler–Salamon, two fellows at ETH Zürich,

• The traditional textbook for Analysis II is by Brezis,

• Another good one is by Lax. It’s only not our course text because I think it’s out of print.

Now let’s get to the course itself. What is functional analysis? It’s the use of topology to tame infinite-
dimensional linear algebra. We all know finite-dimensional linear algebra, point-set topology, and metric
spaces, but there isn’t much we can prove for infinite-dimensional linear algebra a priori. We would like
our bread-and-butter linear algebra (over R or C or something like that) to work in infinite dimensions, for
various applications, so that’s the motivation for the course.

Let’s consider a certain problem in which this comes up: the vibrating membrane. I got this impression
from action movies that everything has resonant frequencies, like the Tacoma Narrows Bridge or like pieces
of metal (which we hear by hitting them with hammers). But what are resonant frequencies? Consider an
open bounded subset Ω ⊂ R2, and consider a map u : R × Ω−→R which is supposed to send time and
space to displacement. Say it satisfies a differential equation ∂2t u = (∂2x + ∂2y)u on R× Ω, which is saying
that the membrane is accelerating at every point proportionally to the curvature there. This seems intuitive,
but let’s not say more about why this is the case—we’re not in a physics class, after all. Let’s also impose
u = 0 on R× ∂Ω, which corresponds to fixing the boundary of our membrane.

It’ll take us several weeks to solve this in general, but we can already perform some special cases. Say
that Ω = (0, 1)2 is a square. Then it’s an undergraduate exercise to find a separation of variables solution.
Suppose that u(t, x, y) is of the form v(t)w(x, y). Then our equations become

∂2t v = λv in R,
(∂2x + ∂2y)w = λw in Ω,

w = 0 in ∂Ω,

λ ∈ R.

1



MATH 313 — Functional Analysis Siyan Daniel Li

We know how to find some solutions to these equations:

un,m(t, x, y) := sin(π(m+ n)t) sin(πnx) sin(πmy) or

ũn,m(t, x, y) := cos(π(m+ n)t) sin(πnx) sin(πmy)︸ ︷︷ ︸
wn,m

,

and Fourier analysis indicates that all solutions are linear combinations of the above.
The next question is: does this method work if Ω isn’t a square? In general the answer is no, though it

does work in special cases. For example, if Ω = B is a disk, we can use polar coordinates to give solutions
in the form of Bessel functions of the first kind. If we go to three dimensions are take Ω to be a sphere, then
we can use spherical harmonics. But in general. . . ? These special results were known classically, even to
Renaissance mathematicians.

In our above work, we started with a PDE from physics, and then we proceeded to separate variables
and solve the separated equations. Abstractly, what are we doing? What’s really happening is that we have
an operator L : C∞c (Ω)−→C∞c (Ω) given by, say, Lw := (∂2x + ∂2y)w, and the wn,m form a basis of
eigenvectors. (Nevermind for now that the wn,m aren’t actually compactly supported—we’ll deal with that
later.)

In the same way that the Greeks didn’t know about e or arbitrary real numbers (as opposed to special
examples like π or

√
2), which are obtained from rational numbers via a completion process, Renaissance

mathematicians didn’t know about larger function spaces, which are also obtained from completing with
respect to some metric. I’m pretty sure much of what I’m saying is wrong—I only thought about this
over the summer, when I was trying to think of history to present in my first lecture, and I haven’t thought
about it since! However, you can consult an article entitled “The Establishment of Functional Analysis” by
Birkhoff–Kreyszig.

That was all history—what is functional analysis itself? I’ll assume Hahn–Banach, Hilbert spaces, and
Banach spaces. We’ll start with a possibly new perspective on Lebesgue integration.

1.1 Definition. A metric space is a set X and a function d : X × S−→R such that

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ d(x, y) + d(y, z).

This endows X with a topology, generated by the metric balls

B(x, r) := {y ∈ X : d(x, y) < r}.

We say that X is complete if

(4) every Cauchy sequence is convergent.1

1.2 Theorem. For every metric space X , there is a complete metric space X and isometric i : X −→X
such that, for any complete metric space Y and continuous map f : X −→Y , there is a unique continuous
f : X −→Y for which f = f ◦ i.

We’re only recalling this in metric space generality to remind ourselves that completions are purely metric
space theoretic. Now let’s add more algebraic structure.

1The originally stated criterion was that if B(x1, r1) ⊇ B(x2, r2) ⊇ · · · , then
⋂
nB(xn, rn) is nonempty. However, this

original criterion is actually stronger than spherical completeness, and there are certainly complete metric spaces that are not
spherically complete.
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1.3 Definition. A normed vector space is a (real) vector space V together with a function ‖·‖ : V −→R
such that

(1) ‖x‖ = 0 if and only if x = 0,

(2) ‖tx‖ = |t|‖x‖,

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A Banach space is a complete normed vector space.

For the most part, I want to stick to using real vector spaces in this course. When we discuss the spectral
theorem for compact operators, we’ll want to use complex vector spaces instead. This V forms a metric
space via setting d(x, y) := ‖x− y‖ and therefore has a topology and notion of completeness. Recall the
following result, which is on your homework.

1.4 Theorem. If f : V −→W is linear, then f is continuous if and only if f is bounded.

The completion also satisfies a universal property with respect to normed vector spaces, but it doesn’t
follow directly from the corresponding metric space result. The following is also on your homework.

1.5 Theorem. If V is a normed vector space, then there is a Banach space V and an isometric linear map
i : V −→V such that, if W is a Banach space and f : V −→W is a bounded linear map, then f = F ◦ i
for a unique bounded linear map f : V −→W .

1.6 Remark. Almost (but not all!) of our examples of Banach spaces will come from Theorem 1.5. We will
usually take a function space, define some norm, and then take its completion with respect to said norm.

1.7 Example. Take the Lebesgue measure µ on Rd, let p be in [1,∞), and consider Lp(Rd, µ). This is
isometric to the completion of C∞c (Rd) with respect to the Lp-norm. I think you know this from Analysis I,
but I’ve put it as a homework problem.

This has applications to integration. Taking p = 1 and using Theorem 1.5 shows that Lebesgue inte-
gration is the completion of Riemann integration from C∞c (Rd) to L1(Rd, µ). This indicates that Lebesgue
integration is quite natural—we constructed it originally to solve problems, but this shows that it’s perhaps
inevitable. Despite the fact that L1(Rd, µ) arises as a completion, its explicit description of equivalence
classes of integrable functions remains useful, since it’s far more concrete and simple than the Cauchy
sequence completion description.

Next time, we’ll start really talking about functional analysis, rather than just review and points of view.

2 January 5, 2018

Last time, we discussed completions of normed vector spaces. Recall from the toy example of completing
Q to R that we take completions to obtain theorems which required “filling in holes” (like the intermediate
value theorem), and a similar heuristic applies to spaces of functions. For example, we need these properties
to solve extremal problems in function spaces, such as perform the calculus of variations. In order to ensure
the existence of “minimal” points given certain conditions, you need completeness.

Today, we’ll discuss dual spaces and alternative topologies. For the latter, our motivation is that we
often want certain subspaces to be compact, which is tricky and in general not true for the usual topology
on infinite-dimensional spaces. Our strategy is to rectify this by cheating and taking a coarser topology in
which our desired subspaces are compact. For the problems we face, we can often pass back to our original
topologies via some argument. Much of today will likely be review.
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2.1 Definition. Let X and Y be normed vector spaces. Then L (X,Y ) denotes the space of bounded linear
maps f : X −→Y equipped with the operator norm

‖f‖L (X,Y ) := sup{‖f(x)‖Y : ‖x‖X ≤ 1}.

This satisfies the triangle inequality due to the properties of sup.

2.2 Theorem. If Y is Banach, then L (X,Y ) is Banach.

Proof. Take a Cauchy sequence of operators {fn}n in L (X,Y ). For any x in X , we have

‖fn(x)− fm(y)‖Y ≤ ‖fn − fm‖L (X,Y )‖x‖X ,

so {fn(x)}n is a Cauchy sequence in Y . The completeness of Y allows us to define the limit

f(x) := lim
n→∞

fn(x),

and we can show that fn → f in the operator norm.

In particular, our operator spaces allow us to define dual spaces.

2.3 Definition. The dual space of X is defined to be X∗ := L (X,R).

We’re going to spend a lot of time thinking about duals (and duals of duals), and in fact we’ll use them
to obtain our aforementioned alternative topologies. Here’s a useful fact about dual spaces.

2.4 Theorem. For any x in X , we have

‖x‖X = max
f∈X∗
‖f‖X∗≤1

f(x).

Proof. This follows from the Hahn–Banach theorem. First, we immediately get

‖x‖X ≥ sup
f∈X∗
‖f‖X∗≤1

f(x)

from the definition of the operator norm. Next, set Y := {tx : t ∈ R} ⊆ X . By scaling, we may
assume that ‖x‖X = 1. Let ` : Y −→R be defined by sending tx 7→ t. Because this linear functional
satisfies `(y) ≤ ‖y‖X for y in Y , the Hahn–Banach theorem yields an extension ` : X −→R satisfying
`(y) ≤ ‖y‖X for all y in Y . Therefore ‖`‖X∗ ≤ 1, and the fact that `(x) = 1 shows that we attain equality
in the above inequality (and that the supremum is actually attained, so we have a maximum).

2.5 Definition. Write J : X −→X∗∗ for the canonical evaluation map.

2.6 Exercise. Check that J is an isometric injection.2

The next concept will appear over and over again, so we give it a name:

2.7 Definition. We say that X is reflexive if J is bijection (equivalently, by the above exercise, if J is a
surjection).

2This follows immediately from Theorem 2.4.
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2.8 Example. If H is a Hilbert space, that is, if it is Banach and if the norm comes from some inner product
〈·, ·〉H via ‖x‖2H = 〈x, x〉H , then the Riesz representation theorem says that H is isometric to H∗ via the
map x 7→ Λx, where Λx(y) := 〈x, y〉H .

Hilbert spaces are the prototypical example of reflexive Banach spaces, and they form a motivating
example for reflexivity in general. Throughout the course, we’ll see that many proofs are much easier for
Hilbert spaces. We often end up proving these theorems in greater generality than the Hilbert setting by
retooling the proofs to only use reflexivity rather than H = H∗.

Anyways, let’s continue with examples of normed vector spaces.

2.9 Example. If (X,µ) is a finite measure space, and we have 1 ≤ p < ∞ and 1 < q ≤ ∞ satisfying
1
p + 1

q = 1, then Lq(X,µ) is isometric to Lp(X,µ)∗ via the map g 7→ Λg, where Λg(f) :=
´
Xdµ fg. This

is a consequence of Hölder (which shows that Λ· is injective) and Radon–Nikodym (which shows that Λ· is
surjective).

In general, we haveL1(X,µ) ( (L∞(X,µ))∗ = L1(X,µ)∗∗. It’s an exercise to show that the latter isn’t
quite a space of countably additive measures but rather of finitely additive ones, which aren’t too useful—it’s
a disaster. That’s why this isn’t usually covered in texts.

2.10 Example. If K is a compact metric space, then let C(K) be the space of continuous functions on K
equipped with the sup norm. We can show that C(K)∗ is the space of signed Borel measures on K with the
total variation norm (which was not covered last quarter, so I’ll probably prove it sometime later).

The following reflexivity statement follows from our discussion in Example 2.9.

2.11 Theorem. For 1 < p <∞ and a finite measure space (X,µ), the space Lp(X,µ) is reflexive.

Next, let’s turn towards building the weak and weak-∗ topologies. Our usual topology on X comes from
its norm. We can build a new topology from a map to another topological space Y by taking the coarsest
topology for which all the inverse images of open sets of Y are now open inX . This is the coarsest topology
for which said map is continuous.3

More explicitly, if S is a set, and F is a collection of maps from S to a topological space Y , then the
coarsest topology for which all the maps in F are continuous has a sub-basis given by

{f−1(U) : f ∈ F , U ⊆ Y open}.

Denote this topology using σ(S,F ).

2.12 Definition. The weak topology on X is σ(X,X∗), that is, the coarsest topology for which all strongly
continuous linear functionals are continuous. The weak-∗ topology on X∗ is σ(X∗, X), where we view
X ↪−→ X∗∗ via J .

2.13 Remark. Because the maps in X∗ (respectively X) were already continuous in the strong topology, the
weak (respectively weak-∗) topologies are coarser than the norm topology. Similarly, because X ⊆ X∗∗,
we see that the weak-∗ topology is coarser than the weak topology on X∗.

In the coming days, we’ll prove that the unit ball is compact in the weak-∗ topology. However, what we
really care about is the weak topology. Fortunately, we’ll also prove that X is reflexive in some situations,
so in those settings we can upgrade this compactness to the weak topology.

2.14 Theorem. The weak and weak-∗ topologies are Hausdorff.
3I use map in the singular here and maps in the plural below, but by taking the product of many maps with domain X , the

distinction between them evaporates.
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Proof. For the weak-∗ topology σ(X∗, X), take f and g in X∗, and suppose that f 6= g. Reorder f
and g such that there exists an x in X with f(x) < g(x). Take two real numbers a and b such that
f(x) < a < b < g(x). Then f and g lie in the disjoint open subsets {h ∈ X∗ : h(x) < a} and
{h ∈ X∗ : h(x) > b}, respectively.

As for the weak topology σ(X,X∗), this is harder and requires a result from last quarter. Take x 6= y
in X . Because {x} and {y} are closed and disjoint, the geometric Hahn–Banach theorem yields a bounded
linear map f in X∗ and a < b in R such that f(x) < a < b < f(y). At this point, the same construction as
above yields the desired disjoint neighborhoods.

We conclude today by pointing out that we can put the weak, weak-∗, and strong topologies in the same
category by using locally convex topological vector spaces. Their topologies are generated by families of
seminorms rather than norms, which makes sense because linear functionals really feel like seminorms, as
they seem to measure “distance” (albeit with a sign, which is lost after taking absolute values) but can also
have nontrivial kernel.

3 January 8, 2018

Let’s continue talking about the weak and weak-∗ topologies today. We’ll be discussing compactness this
time, via the Banach–Alaoglu theorem, which I think was not covered last quarter. Recall that the weak
topology σ(X,X∗) is the coarsest topology for which every f in X∗ is continuous, whereas the strong
topology is the usual metric space topology (which we can view as the coarsest topology for which all
translates of the norm are continuous).

3.1 Remark. If X is finite-dimensional, I claim that the weak and strong topologies coincide. As we already
have σ(X,X∗) ⊆ σ(X,x 7→ ‖x+ s‖), it suffices to show containment in the other direction. It’s enough to
show that every open ball centered at a point contains a σ(X,X∗)-open neighborhood of said point.

Proving this isn’t too hard. Choose a basis e1, . . . , en for X , and choose fk in X∗ such that x =∑n
k=1 fk(x)ek for all x in X . Then the triangle inequality yields

‖x‖ ≤
n∑
k=1

‖fk(x)ek‖ ≤
n∑
k=1

‖fk‖X∗ · ‖ek‖X︸ ︷︷ ︸
M

·‖x‖.

Applying the above to x− y shows that

x ∈
n⋂
k=1

{y : |fk(y − x)| < M−1ε} ⊆ B(x, ε),

giving us our desired neighborhood. Therefore the weak topology is only interesting in infinite dimensions.

Let us now recall the Riesz lemma, which was used to prove Hahn–Banach last quarter.

3.2 Lemma (Riesz). If X is a normed vector space, Y ( X is a closed linear subspace, and δ is a real
number in (0, 1), then there exists x in X such that ‖x‖ = 1 and

inf
y∈Y
‖x− y‖ > δ.

If you haven’t seen the Riesz lemma before, you should prove it as a fun exercise.

3.3 Corollary. If X is a normed vector space, then the set B1 := {x ∈ X : ‖x‖ ≤ 1} is compact if and
only if dimX <∞.
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Proof. This is compact in finite dimensions by, say, Heine–Borel. In infinite dimensions, one can use the
Riesz lemma to find a sequence in B1 that has no convergent subsequence.

Let’s continue by exploring the difference between the strong and weak topologies.

3.4 Example. If X is a normed vector space with dimX = ∞, then S1 := {x : ‖x‖ = 1} is not weakly
closed (in contrast, it’s immediately seen to be strongly closed). In fact, we can prove a stronger4 statement:
the weak closure of S1 is equal to B1. This shall follow from the these two results:

(1) B1 is weakly closed,

(2) B1 is contained in the weak closure Sσ(X,X
∗)

1 of S1.

For (2), it is enough to show that for all x in B1 and weakly open neighborhoods V ∈ σ(X,X∗) of x, the
intersection V ∩ S1 is nonempty. To see this, it suffices to check it for ‖x‖ < 1 and for V in a base of
σ(X,X∗), so suppose that

V =
n⋂
k=1

{y : |fk(y − x)| < ε}

for some f1, . . . , fn in X∗ and positive ε. Note that ker fk has codimension at most 1 (it could have codi-
mension 0, as fk could be 0), so

⋂n
k=1 ker fk has codimension at most n. Because dimX =∞, there exists

a nonzero z such that fk(z) = 0 for all 1 ≤ k ≤ n. Therefore V = tz + V for any t in R. If we choose t
such that ‖x+ tz‖ = 1, then we see that x+ tz lies in V ∩ S1.

For (1), it follows from Theorem 3.5, as B1 is convex and strongly closed.

3.5 Theorem. If X is a normed vector space and C ⊆ X is convex, then C is strongly closed if and only if
C is weakly closed.

Proof. As the weak topology is coarser, being weakly closed certainly implies being strongly closed. Con-
versely, suppose that C is strongly closed. It shall suffice to show that X r C is weakly open, that is,
every x in X r C has a weak neighborhood in X r C. Since C is convex and the singleton x is compact,
Hahn–Banach yields an f in X∗ and a and b in R such that

f(x) > b > a > f(y)

for all y in C. Then V := {f : f(y) > b} is a weakly open subset for which V ∩ C = ∅, as desired.

Theorem 3.5 shows that weak and strong closedness coincide for convex subsets, while Example 3.4
shows that they can differ wildly for non-convex subsets. However, Theorem 3.6 shall show that, in some
sense, this is the only discrepancy.

3.6 Theorem (Mazur). If xn → x weakly, then there exists a sequence {yn}n in the convex hull of the xn
such that yn → x strongly.

3.7 Remark. In the course, I shall usually denote the topology in which a sequence xn → x converges using
words. However, the traditional notation of the field is to write xn ⇀ x for weak convergence and xn

∗
⇀ x

for weak-∗ convergence.

I shall now prove the Banach–Alaoglu theorem.

4Get it?
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3.8 Theorem (Banach–Alaoglu). The subset

B
∗
1 := {f ∈ X∗ : ‖f‖X∗ ≤ 1}

is compact in the weak-∗ topology σ(X∗, X).

Banach–Alaoglu was the original motivation for Tychonoff’s theorem—the former is just a killer app of
the latter. While the proof of Tychonoff’s theorem requires some real work and depends on the axiom of
choice, the proof of Banach–Alaoglu is extremely soft and is essentially a direct consequence of Tychonoff.
We just have to be careful with which category we’re working in.

Proof. We break it down into three abstract steps:

Step 1. Identify X∗ = {f : X −→R bounded linear} as a subset of RX .

Step 2. I claim that σ(X∗, X) is the subspace topology on X∗ inherited from the product topology on RX .
Now the product topology is the coarsest topology for which the projection maps are continuous,
which in the case of X∗ corresponds to evaluation maps.

Step 3. Write B∗1 = K1 ∩K2 ∩K3, where

K1 := {f ∈ RX : for all x, y ∈ X, f(x+ y) = f(x) + f(y)},
K2 := {f ∈ RX : for all x ∈ X and t ∈ R, f(tx) = tf(x)},
K3 := {f ∈ RX : for all x ∈ X, |f(x)| ≤ ‖x‖}.

Note that the Ki are cut out by closed conditions and hence are closed subsets of RX . Furthermore,
note that K3 equals ∏

x∈X
[−‖x‖, ‖x‖] ⊆ RX ,

which is compact by Tychonoff’s theorem.

Now we’re done, because we’ve exhibited B∗1 as a closed subspace of a compact space.

This proof is incredibly abstract and non-constructive, as it must be since its result is incredibly general.
There’s also an interesting alternative proof for separableX . We begin by recalling what separability means.

3.9 Definition. A topological space X is separable if it contains a countable dense subset.

Many proofs are easier in the separable case, and in this quarter many of our results will begin with a
treatment of the separable special case.

3.10 Remark. When X is separable, there is a more constructive proof of (a slightly stronger version of)
Banach–Alaoglu. As a sketch, in this setting you only use your countable dense subset of X for your
evaluation maps, and then you dovetail to get up to all of X , by density. The whole proof can be found in
any of the recommended course textbooks (as well as in Theorem 4.1).
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4 January 10, 2018

I realized that I want to do the proof of separable Banach–Alaoglu, because I want to apply this stronger
result in the context of ergodic theory. We’re doing this just to see some sort of application of the abstract
machinery we’ve been developing.

4.1 Theorem (Separable Banach–Alaoglu). LetX be a separable normed vector space. Then the subsetB∗1
is weak-∗ sequentially compact.

Proof. Given sequence {fn}n in X∗ for which ‖fn‖X∗ is bounded by K < ∞, we want to find a weak-∗
convergent subsequence {f ′n}n. For this, begin by choosing a dense countable subset {xm}m of X . Now

|fn(xm)| ≤ ‖fn‖X∗‖xm‖X ≤ K‖xm‖X .

By diagonalization and the sequential compactness of closed intervals in R, we can choose a subsequence
{f ′n}n of {fn}n and real numbers am such that f ′n(xm)→ am as n→∞ for all m. The density of {xm}m
shows that {f ′n}n converges pointwise everywhere to a function f : X −→R, and continuity ensures that
f lies in X∗. The fact that f(x) = limn→∞ f

′
n(x) for all x in X shows that {f ′n}n converges to f in the

weak-∗ topology.

Let’s talk through how Banach–Alaoglu and separable Banach–Alaoglu differ.
4.2 Example. Let X = `∞ be the set of bounded sequences of real numbers with the supremum norm.
Consider the fn in (`∞)∗ given by

(x1, x2, . . . ) 7→ xn.

Then the fn clearly lie in B∗1, but I claim that {fn}n has no convergent subsequence. To see this, let {fnk}k
be any subsequence of {fn}n, where {nk}k is some increasing sequence of positive integers. Define

y ∈ `∞ via ym :=


1 if m = n2j ,

−1 if m = n2j+1,

0 otherwise.

Then fnk(y) = (−1)k does not converge, so {fnk}k can’t converge. So we see that B∗1 is not weak-
∗ sequentially compact. This shows that our separable and non-separable Banach–Alaoglu are different
statements, and it also gives an alternative proof that `∞ is not separable (which packages the diagonalization
argument of the usual proof of this into the proof of separable Banach–Alaoglu). It also shows that the
weak-∗ topology on `∞ is not metrizable, because if it were then sequential compactness would agree with
compactness.

Let’s now move into our ergodic-theoretic application, which is about invariant measures. Our setup is
a (non-empty) compact metric space (K, d), along with a homeomorphism φ : K −→K.
4.3 Example. Our prototypical example will be K = R/Z, where we shall take φ to be some translation.

To even say what invariance means, we need to expand our setup. Write C(K) for the space of contin-
uous functions K −→R equipped with the supremum norm, and write B for the Borel σ-algebra of K. Let
M (K) denote the set of signed Borel measures µ : B−→R topologized by the total variation norm

‖µ‖M (K) := sup
A∈B

µ(A)− µ(K rA).

Recall from Example 2.10 that M (K) is isometric to C(K)∗ via the map induced from the pairing

〈µ, f〉 :=

ˆ
K

dµ f.
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4.4 Definition. Let µ be in M (K). We say µ is probability if µ(K) = 1 and µ(A) ≥ 0 for all A in B. We
say µ is (φ-)invariant if it is probability and satisfies

ˆ
K

dµ f ◦ φ =

ˆ
K

dµ f.

In the language of our pairing, this is the same as saying that

〈µ, f ◦ φ〉 = 〈µ, f〉,

which is equivalent to saying that µ equals its pushforward φ]µ under φ, as φ]µ is defined by this property.
We write M (φ) for the space of φ-invariant probability measures on K. This lecture is taking so long
because this is our first discussion of ergodic theory, so I have to set up all the notation—next time, we’ll
just start where we left off and pretend that you remember everything I wrote down previously.

Our first observation is that M (φ) is bounded and convex. Boundedness follows from the fact that the
µ in M (φ) are probability, and convexity follows from the fact that invariance and being probability are
preserved under weighted averaging. Our next observation will be less obvious:

4.5 Lemma. The set M (φ) is non-empty.

The idea will be to take any point in K, move it around using φ, and construct a measure from there.

Proof. Fix x in K, and consider the (weighted) empirical measure µn for the points x, φ(x), . . . , φn−1(x):

µn :=
1

n

n−1∑
j=0

δφj(x).

Equivalently, we could define µn via our pairing as follows:

〈µn, f〉 :=
1

n

n−1∑
j=0

f(φj(x)).

Then {µn}n is a perfectly good sequence of probability measures lying in the closed unit ball. Since C(K)
is separable, separable Banach–Alaoglu shows that {µn}n has some subsequence {µnk}k that converges to
another measure µ in the weak-∗ topology as k →∞, where µ lies in B∗1. We have that

ˆ
K

dµnkf +
f(φn(x))− f(x)

nk
=

1

nk

nk∑
j=1

f(φj(x))) =
1

nk

nk−1∑
j=0

f(φ(φj(x))) =

ˆ
K

dµnkf ◦ φ,

and taking the limit k →∞ (using the fact that f is bounded) shows that µ is invariant.
How do we check that µ is a probability measure? We can read it off our identification of M (K) with

C(K)∗—being non-negative is equivalent to being non-negative on all non-negative functions, and having
total volume 1 is equivalent to the integral of 1 equaling 1, both of which are true via taking the limit.

Now that we have the existence of an invariant measure, we can ask: is it unique? On the flip side, if we
change the point x used in the above process, do we get different measures? (The answer is pretty easy for
the circle.) Note that the set of invariant measures is convex, and later we shall see that the extremal points
of this convex subset are ergodic.

10
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5 January 12, 2018

We talked about separable Hahn–Banach last time, and then we proceeded to apply it to construct invariant
measures. Today, we’ll talk about things that won’t see applications for a while, but they fit into the theory
at this stage: the Kakutani and Eberlein–S̆mulian theorems.

5.1 Theorem (Kakutani–Eberlain–S̆mulian). If X is a Banach space, then the following are equivalent:

(1) X is reflexive,

(2) B1 is weakly compact (that is, compact in the topology σ(X,X∗)),

(3) B1 is weakly sequentially compact.

The equivalence of (1) and (2) in Theorem 5.1 is Kakutani’s theorem, which is the relatively easy part.
The proof of (1) =⇒ (2) is rather simple, whereas the proof of (2) =⇒ (1) will take up most of today’s
lecture. The equivalence of (2) and (3) in Theorem 5.1 is the Eberlain–S̆mulian theorem, which we probably
won’t get to today.

Proof of (1) =⇒ (2). Suppose thatX is reflexive. Then J : X
∼−→X∗∗ is a homeomorphism from σ(X,X∗)

to σ(X∗∗, X∗), and J(B1) = B
∗∗
1 since J is isometric. Now Banach–Alaoglu tells you that B∗∗1 is compact

in σ(X∗∗, X∗), and we see that B1 is compact via pullback through J .

For the proof of (2) =⇒ (1) in Theorem 5.1, let me first introduce the following theorem of Helly.

5.2 Theorem (Helly). Let X be a normed vector space. Let f = (f1, . . . , fn) be an n-tuple of elements in
(X∗)n, and let c = (c1, . . . , cn) be in Rn. Then the following are equivalent:

(1) For every positive ε, there exists an x in B1 such that |fi(x)− ci| < ε for all integers 1 ≤ i ≤ n,

(2) For all λ = (λ1, . . . , λn) in Rn, we have∣∣∣∣∣∣
n∑
i=1

λici

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥

n∑
i=1

λifi

∥∥∥∥∥∥
X∗

.

Proof. For (1) =⇒ (2), let ε be any positive number, and take x as in the statement of (1). Then∣∣∣∣∣∣
n∑
i=1

λici

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
n∑
i=1

λifi(x)

∣∣∣∣∣∣+

 n∑
i=1

|λi|

 ε =

∣∣∣∣∣∣
n∑
i=1

(λifi)(x)

∣∣∣∣∣∣+

 n∑
i=1

|λi|

 ε

≤ ‖x‖X

∥∥∥∥∥∥
n∑
i=1

λifi

∥∥∥∥∥∥
X∗

+

 n∑
i=1

|λi|

 ε ≤

∥∥∥∥∥∥
n∑
i=1

λifi

∥∥∥∥∥∥
X∗

+

 n∑
i=1

|λi|

 ε,

and taking ε→ 0 yields the desired statement.
For (2) =⇒ (1), begin by defining ϕ : X −→Rn by sending x 7→ (f1(x), . . . , fn(x)). Note that (1)

is equivalent to saying that c lies in ϕ(B1) (via Remark 3.1). Thus if (1) fails, then Hahn–Banach for the
finite-dimensional vector space Rn allows us to choose λ = (λ1, . . . , λn) in Rn and numbers a < b such
that

n∑
i=1

λici = λ · c > b > a > λ · ϕ(y) =

 n∑
i=1

λifi

 (y)

for all y in B1. Taking the supremum over such y shows that (2) also fails.

11
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Next, we’ll present the following consequence of Helly’s theorem.

5.3 Theorem (Goldstine). LetX be a Banach space. Then J(B1) is dense inB∗∗1 with respect to the weak-∗
topology σ(X∗∗, X∗).

Proof. We shall show that, for any x∗∗ in B∗∗1 and any neighborhood V of x∗∗ in σ(X∗∗, X∗), the intersec-
tion J(B1) ∩ V is nonempty. For this, it suffices to take V as an element of a basis for σ(X∗∗, X), so we
assume that

V = {y∗∗ ∈ X∗∗ | |y∗∗ − x∗∗(fi)| < ε for all integers 1 ≤ i ≤ n},

where the fi are some points in X∗, and ε is a positive number. We want to find an x in B1 for which Jx
lies in V , which is equivalent to asking that

|fi(x)− x∗∗(fi)| = |(Jx− x∗∗)(fi)| < ε.

Set ci = x∗∗(fi). Because x∗∗ has norm at most 1 in X∗∗, we see that∣∣∣∣∣∣
n∑
i=1

λici

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
i=1

λix
∗∗(fi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣x∗∗
 n∑
i=1

λifi


∣∣∣∣∣∣∣ ≤

∥∥∥∥∥∥
n∑
i=1

λifi

∥∥∥∥∥∥
X∗

Therefore applying Helly’s theorem yields the desired x.

We can now show that (2) =⇒ (1) in Theorem 5.1, completing our proof of Kakutani’s theorem.

Proof of (2) =⇒ (1) in Theorem 5.1. Suppose that B1 is weakly compact. In any case, J : X −→X∗∗ is
always a continuous map from σ(X,X∗) to σ(X∗∗, X∗). Therefore the image J(B1) of B1 is compact in
σ(X∗∗, X∗), and Goldstine’s theorem tells us that J(B1) is dense in B∗∗1 with respect to σ(X∗∗, X∗). But
this topology is Hausdorff, so J(B1) is closed and hence equal to B∗∗1 . By scaling, this proves that J is
surjective, and the injectivity of J is always present, by Exercise 2.6.

As for the Eberlain–S̆mulian theorem, we’ll first need a couple of lemmas on Banach spaces. I didn’t
manage to assign these lemmas as homework problems, so I suppose we’ll have to discuss them in class.

5.4 Lemma. Let X be a normed vector space. If X∗ is separable, then X is separable.

This is one of those things where the proof is so easy, why would I write it in my notes? Why, to
embarrass myself in front of all of you, of course! I think there’s only one possible proof, so let’s find it.

Proof. Let’s use our first hypothesis: choose a countable sequence {x∗n}n in X∗ that is dense, and assume
all the x∗n are nonzero. Next, let’s use the only other thing we know: choose {xn}n in X with ‖xn‖ = 1
and |x∗n(xn)| ≥ 1

2‖x
∗
n‖X∗ , which is possible by the definition of the supremum norm on X∗. Note that the

Q-span of {xn}n in X∗ is countable, and the density of Q in R shows that it is dense in

spanR{xn}n.

For a contradiction, suppose that X is not the closure of spanR{xn}n. Then Hahn–Banach gives us a
nonzero y∗ in X∗ for which y∗(x) 6= 0 for all x in spanR{xn}n. The density of {x∗m}m (and the fact that y
is nonzero) lets us find a subsequence {x∗m}m such that ‖y∗ − x∗m‖ ≤ 1

4‖x
∗
m‖ for all m. Thus we get

0 = ‖y∗(xm)‖ ≥ ‖x∗m(xm)‖ − 1
4‖x

∗
m‖ ≥ 1

2‖x
∗
m‖ − 1

4‖xm‖ > 0,

which is a contradiction.
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6 January 17, 2018

Recall that we proved Kakutani’s theorem last time. Today, we’ll proceed to Eberlain–S̆mulian theorem. In
addition to the lemma I had trouble with last time, we’ll need another lemma:

6.1 Lemma. LetX be a Banach space, and let Y be a closed subspace. IfX is reflexive, then Y is reflexive.

There’s a direct proof of Lemma 6.1 in Bühler–Salamon that’s very hands on and takes two pages, but
given that we’ve already proven Kakutani’s theorem, we can use it to get an easy proof of this.5

Proof. The space Y has two kinds of weak topologies:

• the usual weak topology σ(Y, Y ∗),

• the topology induced from Y being a subset of X with the weak topology σ(X,X∗).

By Hahn–Banach, these two topologies coincide. Kakutani’s theorem impies that Y is reflexive if and only if
B
Y
1 is compact in σ(Y, Y ∗), and the coincidence of our weak topologies implies that this this is equivalent to

B
Y
1 being compact in σ(X,X∗). The reflexivity of X and Kakutani’s theorem indicate that BX

1 is compact
in σ(X,X∗), and the fact that BY

1 = B
X
1 ∩ Y completes our proof.

Lemma 6.1 is easy once you think about it in the right way, just like everything else in math.

6.2 Lemma. Let X be a Banach space, and let M be a finite-dimensional subspace of X∗. Then there exist
x1, . . . , xn in B1 such that, for any y∗ in M , we have

max
1≤k≤n

y∗(xk) ≥
1

2
‖y∗‖.

Of course we can always find points in X whose values on y∗ approximate ‖y∗‖ arbitrarily well, but
Lemma 6.2 says that we can do this roughly uniformly, to an extent, for any finite-dimensional subspace of
X∗.

Outline of the proof. By Banach–Alaoglu, B∗1 is compact in the weak-∗ star topology. Choose a 1
4 -net

y∗1, . . . , y
∗
n of B∗1 ∩M , and choose xk in B1 such that y∗k(xk) ≥

3
4‖y
∗
k‖.

With Lemma 6.2 in hand, we can now prove the Eberlain–S̆mulian theorem.

Proof of (1)⇐⇒ (3) in Theorem 5.1. First, suppose that X is reflexive, and let {xn}n be a sequence in
B1. Write Y for spanR{xn}n, which is separable, as remarked in the proof of Lemma 5.4. This Y is
also reflexive by Lemma 6.1, which makes Y ∗∗ = Y is separable. Applying Lemma 5.4 shows that Y ∗

is separable. From here, applying separable Banach–Alaoglu to Y ∗ indicates that BY ∗∗

1 = B
Y
1 is weakly

sequentially compact, and hence {xn}n has a weakly converging subsequence.
Conversely, suppose that B1 is weakly sequentially compact. We want to show that J : B1 ↪−→ B

∗∗
1 is

surjective, and the proof shall be one of those slick things. Fix x∗∗ in B∗∗1 . We want to choose xk in B1, x∗k
in B∗1, and nk in N := Z>0 such that

(1) nk < nk+1,

(2) maxnk<i≤nk+1
y∗∗(x∗i ) ≥ 1

2‖y
∗∗‖ for all y∗∗ in spanR{x∗∗, Jx1, . . . , Jxk},

5Ishan Banerjee observes that Lemma 6.1 also follows immediately from the surjective half of the five lemma.
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(3) |x∗∗(x∗i )− x∗i (xk+1)| < 1
k+1 for all integers 1 ≤ i ≤ nk+1.

We do this as follows: inductively apply Lemma 6.2 to obtain nk+1 and x∗nk+!, . . . , x
∗
nk+1−1 that satisfy (1)

and (2). As for (3), use Goldstine’s theorem to choose the appropriate xk+1.
Because B1 is weakly sequentially compact by assumption, we can assume that the {xk}k converge to

some x in B1 by replacing {xk}k with a subsequence—we see that this preserves our desired conditions.
Using (3) and taking k →∞, we obtain x∗∗(x∗i ) = x∗i (x) by weak convergence. Now (2) gives

sup
i≥1

y∗∗(xi) ≥
1

2
‖y∗∗‖

for all y∗∗ in spanR{x∗∗, Jx1, Jx2, . . . }, where we can pass to strong convergence (which is necessary for
the continuity of ‖·‖) by Mazur’s theorem. Observe that x∗∗ − Jx lies in spanR{x∗∗, Jx1, Jx2, . . . }, so

0 = sup
i≥1

(x∗∗ − Jx)(x∗i ) ≥
1

2
‖x∗∗ − Jx‖.

and thus x∗∗ = Jx.

This is a very slick proof—it works by trickily finding precisely the right sequence to prove reflexivity.
Of course, it’s been remixed over the years until it reached the textbook form you see now.

Finally, we’ll do one more abstract result and then apply our results to ergodic theory. This abstract
result shall be in convex analysis: we’ll be discussing extremal points.

6.3 Definition. Let X be a normed vector space, and let K be a convex subset of X . A face of K is a subset
F of K such that, if x lies in F and x1 and x2 are points in K satisfying x = λx1 + (1− λ)x2 for some λ
in (0, 1), then x1 and x2 lie in F .

In other words, F is closed under taking endpoints of segments through F .

6.4 Definition. Let K be a convex subset, and let x be a point of K. We say that x is extremal in K if {x}
is a face of K. Write E (K) for the set of extremal points of K.

I have but a few minutes left—let’s see whether I can rush through the proof!

6.5 Theorem (Krein–Milman). If X is a normed vector space and K is a convex subset of X , then

K = hull(E (K)).

Proof. Let’s break it down into four steps:

Step 1. Let K := {K ⊆ X : K is compact, convex, and non-empty}. We put an ordering on K by saying
that K1 � K2 if and only if K1 is a face of K2. Note that descending chains have minimums
because the intersection of nested compact spaces is nonempty, so we can run Zorn’s lemma on K .

Step 2. If K is in K and f is in X∗, then K ∩ f−1(maxK f) � K. This is true due to the linearity of f .

Step 3. Minimal elements of K are singletons, for if K in K were not a singleton, then by Hahn–
Banach we could find f in X∗ that is not constant on K. Applying Step 2 would then yield
K ∩ f−1(maxK f) in K that is strictly less than K.

Step 4. I claim K = hull(E (K)). Write Y for hull(E (K)). Then Y ⊆ K, and if there exists a point x in
K r Y , then we can choose f in X∗ such that f(x) > maxY f . Applying Step 2 yields a K̃ � K
in K that does not intersect Y . Any minimal element lying below K̃ (which exists by Step 1) will
yield an extremal point of K that isn’t in Y , which contradicts the construction of Y .

Next time, we’ll discuss some applications to ergodic theory.
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7 January 19, 2018

Last time, we discussed Eberlain–S̆mulian and Krein–Milman. I had promised that we’d get to applications
of these theorems to ergodic theory, but I realized we need a slightly more general version of Krein–Milman
for this. More precisely, we’ll need a version that works for the weak and weak-∗ topologies. For this, we
establish the following framework that I alluded to in Lecture 2.

7.1 Definition. Let X be a vector space. A topology on X is locally convex if it is generated by a family of
seminorms pa : X −→R, where a varies over some indexing set A.

7.2 Example. Let X be a normed vector space. Then σ(X,X∗) and σ(X∗, X) are locally convex, where
the former case the seminorms are of the form pf1,...,fn(x) = |f1(x)| + · · · + |fn(x)| for any f1, . . . , fn in
X∗. The story for the latter is analogous.

7.3 Theorem. The Krein–Milman theorem applies for locally convex vector spaces X .

Proof. The proof of the Krein–Milman theorem from last time works, because its most important step,
the Hahn–Banach theorem, works for arbitrary locally convex vector spaces. While Brezis does not prove
Hahn–Banach in this generality, the proof of Hahn–Banach in this setting remains the same as well.

Let’s now return to ergodic theory! Let (K, d) be a compact metric space, and let φ : K −→K be a
homeomorphism.

7.4 Remark. Recall from Lecture 4 that the space M (φ) of φ-invariant Borel probability measures on K is
a convex, non-empty, weak-∗ compact subset of C(K)∗.

7.5 Examples. Let K = R/Z, and let φa(x) = x+ a for any a in R, where a only depends on its image in
R/Z. Here are some examples of φ-invariant Borel probability measures on K:

(1) The Lebesgue measure (though recall that most treatments of the Lebesgue measure define it on not just
the Borel σ-algebra but rather its completion with respect to the Lebesgue measure),

(2) If a = p/q is rational, where p and q are integers and q is positive, then for any b in R, the measure

µb,q :=
1

q

q−1∑
k=0

δb+k/q

is φp/q-invariant.

(3) In the situation of (2), the convexity of M (φp/q) implies that scaled linear combinations of the µb,q (for
varying b) are invariant.

7.6 Definition. Let µ lie in M (φ). We say µ is ergodic if µ(B) ∈ {0, 1} for any Borel subset B satisfying
φ(B) = B.

7.7 Example. In the setting of Examples 7.5, the Lebesgue measure is not ergodic when a is rational. We
can see this by taking the union of a-translates of a small interval. However, in this situation, the µb,a are
ergodic, as is Lebesgue measure itself when a is irrational instead.

7.8 Theorem. Let µ lie in M (φ). Then µ is ergodic if and only if µ is extremal in M (φ).

For the moment, we shall only prove this modulo a harder theorem.

7.9 Remark. Theorem 7.8 shows that ergodicity is a characterization of extremal that is intrinsic to M (φ).
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We begin with the easier direction of Theorem 7.8.

7.10 Lemma. If µ is extremal, then it is ergodic.

The idea is that, if µ is not ergodic, we can break it up into pieces.

Proof. Suppose µ is not ergodic. Then we can choose a Borel subset B such that φ(B) = B and µ(B) lies
strictly between 0 and 1. Form new probability measures µ0 and µ1 via setting

µ0(A) =
µ(A ∩B)

µ(B)
and µ1 =

µ(ArB)

1− µ(B)
.

The φ-invariance of µ and B indicate that µ0 and µ1 remain φ-invariant. However, we have

µ = µ(B)µ0 + (1− µ(B))µ1,

and since µ0(B) = 1 and µ1(B) = 0, we see that the µ0 and µ1 are distinct. Thus µ is not extremal.

We won’t be able to finish everything today, but we will first introduce von Neumann’s mean ergodic
theorem:

7.11 Theorem (Von Neumann). If µ in M (φ) is ergodic and f lies in L2(µ), then

1

n

n−1∑
k=0

f ◦ φk →
ˆ
K

dµ f

in L2(µ).

Von Neumann’s mean ergodic theorem shall be the consequence of a more general statement on Hilbert
spaces. We won’t prove it today—for now, we’ll just prove how it finishes the proof of Theorem 7.8.

7.12 Lemma. If µ0 and µ1 in M (φ) are ergodic measures that satisfy

µ1(B) = µ0(B)

for all Borel subsets B such that φ(B) = B, then µ0 = µ1.

Basically, this says that ergodic measures are really characterized by their values on the σ-algebra of
φ-invariant Borel subsets. This determination will use the fact that they’re only valued in {0, 1} on such
subsets anyways.

Proof. Let be i in {0, 1}, and fix f in C(K) ⊆ L2(µi). Von Neumann’s mean ergodic theorem implies that

1

n

n−1∑
k=0

f ◦ φk →
ˆ
K

dµi f

in L2(µi). A result from last quarter shows that there exists a Borel subset Bi satisfying µi(B) = 1 and a
subsequence nk →∞ such that

1

nk

nk−1∑
k=0

f ◦ φk(x)→
ˆ
K

dµi f (?)

16



MATH 313 — Functional Analysis Siyan Daniel Li

for all x in Bi, that is, we have a subsequence that converges almost everywhere. We can choose nk
independently of i by taking it for i = 0 and then refining it to satisfy the same condition for i = 2.
Letting Ai :=

⋂
n∈Z φ

n(Bi), we see that µi(Ai) = 1 and Ai is φ-invariant. By hypothesis, we see that
µ1−i(Ai) = µi(Ai). Equation (?) indicates that

ˆ
K

dµ0 f =

ˆ
K

dµ1 f,

and letting f vary shows that µ0 = µ1.

Let us now finish the proof of Theorem 7.8.

7.13 Lemma. If µ in M (φ) is ergodic, then it is extremal.

Proof. By Krein–Milman, we can write µ as the scaled linear combination

µ = λµ0 + (1− λ)µ1

of two extremal µ0 and µ1, where λ lies in [0, 1]. Suppose that λ actually lies in (0, 1). Lemma 7.10 shows
that the µ0 and µ1 are ergodic. For any φ-invariant Borel subset B, if we have µ(B) = 0, the above relation
shows that µ0(B) = µ1(B) = 0. Similarly, if µ(B) = 1, then µ0(B) = µ1(B) = 1, so Lemma 7.12
implies that µ0 = µ1.

Next time, we’ll go through the von Neumann mean ergodic theorem, as well as what ergodicity actually
means.

8 January 22, 2018

I seem to have brought the notes I wanted to throw away and thrown away the ones I meant to bring. Oh
well—we’ll muddle through, as usual. Today, we’ll complete the proof of Theorem 7.8 by proving von
Neumann’s mean ergodic theorem. We’ll actually start with the abstract ergodic theorem, also due to von
Neumann:

8.1 Theorem (Abstract ergodic theorem). Let H be a Hilbert space, and let U : H −→H be a bijective
unitary (i.e. preserves the inner product) operator. Write HU for the closed subspace {x ∈ H : Ux = x},
and write π : H −→HU for the orthogonal projection map onto HU . Then for any x in H , we have

1

n

n−1∑
k=0

Ukx→ π(x) (?)

in the strong topology.

Von Neumann used the spectral theorem, but we haven’t seen that yet, so we’ll use a sneaky argument
due to Riesz instead. When we prove the spectral theorem, we’ll return to von Neumann’s proof.

Proof. Because we’re very smart6, we’ll guess exactly what HU equals. Let G := {Uy − y : y ∈ H}. Our
first observation is that G and HU are orthogonal, since for all x in HU , we have

〈x, Uy − y〉 = 〈x, Uy〉 − 〈x, y〉 = 〈U−1x, y〉 − 〈x, y〉 = 〈x, y〉 − 〈x, y〉 = 0.

6Smart?
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Our second observation is that the sum

1

n

n−1∑
k=0

Uk(Uy − y) =
1

n
(Uny − y)→ 0

telescopes, and the limit goes to zero because U has operator norm 1. As (?) is linear and immediately holds
for x in HU , we see that (?) holds for HU +G. Furthermore, as the operator

1

n

n−1∑
k=0

Uk

is uniformly bounded by 1, taking the limit yields a linear operator, so (?) actually holds for HU +G.
Therefore it suffices to show that HU +G = H . For any z in H , write it as w + z for some w in G and

x in G⊥. It’ll be enough to show that x lies in HU . We know that 〈x, Ux− x〉 = 0, so we obtain

‖x− Ux‖2 = 〈x− Ux, x− Ux〉 = 〈x, x〉+ 〈Ux,Ux〉 − 〈x, Ux〉 − 〈Ux, x〉
= 2(〈x, x〉 − 〈x, Ux〉) = 2〈x, x− Ux〉 = 0

as desired.

The above proof is very nice, but it sheds absolutely no light as to why the abstract ergodic theorem
is true. On your next homework, there’ll be a quantitative version of this, which I stole from Terry Tao’s
blog. Hopefully this makes the theorem clearer. You could just read off the answer from Terry Tao’s blog,
but. . . try not to do that. Additionally, the proof by von Neumann is entirely clear, modulo the mystery of
the spectral theorem.

This was for real Hilbert spaces—it also works for complex Hilbert spaces, where the use of symmetry
should be replaced by the polarization identity. That’s a general recipe for going between real and complex
Hilbert spaces, and this trick only doesn’t work if there’s something truly strange going on.

Let’s return to the proof of von Neumann’s mean ergodic theorem. Let H be L2(K,µ), and let U be
the operator given by Uf := f ◦ φ. The unitariness of U follows from the φ-invariance of µ. We have the
following immediate corollary of the abstract ergodic theorem.

8.2 Corollary. For any function f in L2(K,µ), we have

1

n

n−1∑
k=0

f ◦ φk → π(f),

where π denotes orthogonal projection onto {g ∈ L2(K,µ) : g ◦ φ = g}.

We remind ourselves that are equalities of elements in L2 are taken almost everywhere. Note that the
result of Corollary 8.2 only differs from von Neumann’s mean ergodicity theorem by replacing π(f) with
µ(f). For this last step, we use the following tricky lemma regarding ergodicity.

8.3 Lemma. Let µ be ergodic, let f be in L2(K,µ), and suppose that f ◦ φ = f almost everywhere. Then
f is constant almost everywhere.

Proof. Let Ã denote the set {x ∈ K : f(φ(x)) 6= f(x)}. By assumption, we have µ(Ã) = 0. Now let
A :=

⋃
n∈Z φ

n(Ã), which also has measure zero and is φ-invariant. Next, form c :=
´
Kdµ f , and take the

sets

B+ := {x ∈ K rA : f(x) > c},
B0 := {x ∈ K rA : f(x) = c},
B− := {x ∈ K rA : f(x) < c}.
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These sets are invariant by the invariance of A and f , so ergodicity implies that their measures lie in {0, 1}.
As K is a disjoint union of A, B+, B0, and B−, exactly one of these subsets has measure one, and it can
only be B0.

Proof of von Neumann’s mean ergodicity theorem. By Corollary 8.2, the desired sequence of averages con-
verges to π(f). By Lemma 8.3, we see that π(f) = c.

8.4 Theorem. The following are equivalent:

(1) µ is ergodic,

(2) µ is extremal in M (φ),

(3) For all f in L2(K,µ), we have 1
n

∑n−1
k=0 f ◦ φk →

´
Kdµ f in L2(K,µ).

(4) For all f in L1(K,µ), we have 1
n

∑n−1
k=0 f ◦ φk →

´
Kdµ f in L1(K,µ).

Proof. The equivalence of (1) and (2) is precisely Theorem 7.8, and (1) =⇒ (3) is precisely the mean
ergodic theorem. For (3) =⇒ (1), let B be a φ-invariant Borel subset. Consider the characteristic function
f = 1B , and note that 1

n

∑k−1
n=0 f ◦ φk = f by the invariance of B. Therefore 1B constantly equals´

Kdµ f = µ(B), and 1B only takes values in {0, 1}, so µ(B) lies in this range as well. Finally, the
equivalence between (1) and (4) will be left for your homework because it’s not functional analysis enough
for lecture—it’s too much of a callback to last quarter.

8.5 Example. Return to the setting of Examples 7.5. I claim that the Lebesgue measure µ is ergodic for φa
when a is irrational. To see this, it suffices to show that µ satisfies condition (3) in Theorem 8.4, and in turn
it suffices to use trigonometric sums for f . By linearity, this further reduces to powers of the exponential,
which was then shown as a homework problem from last quarter.

9 January 24, 2018

I didn’t quite get to everything I wanted to cover about ergodic theory last time, but that’s okay—we’ll move
on. What I want to talk about next is spectral theory. This will take us a while. Our goal is to prove the
analog of Jordan decomposition, except in the setting of infinite-dimensional vector spaces. I’ll begin with
two concepts that don’t seem to have anything to do with spectral theory: dual and compact operators.

9.1 Definition. Let X and Y be normed vector spaces, and let f : X −→Y be a bounded linear map. Its
dual f∗ : Y ∗−→X∗ is the linear operator defined by f∗(y∗) := y∗ ◦ f .

Let’s begin by thinking about what the norm of f∗ would be.

9.2 Lemma. The norm of the dual equals

‖f∗‖L (Y ∗,X∗) = ‖f‖L (X,Y ).

Proof. We have

‖f∗‖ = sup
‖y∗‖≤1

‖f∗(y∗)‖ = sup
‖y∗‖≤1

sup
‖x‖≤1

‖(f∗(y∗))(x)‖ = sup
‖y∗‖≤1

sup
‖x‖≤1

y∗(f(x))

= sup
‖x‖≤1

sup
‖y∗‖≤1

y∗(f(x)) = sup
‖x‖≤1

‖f(x)‖ = ‖f‖.

by Theorem 2.4.
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There are all sorts of relationships between f and f∗ that one can prove; Bühler–Salamon has a whole
chapter on this entitled Fredholm theory, which is really precisely the study of relating these duals to the
original operator. Let’s continue discussing some immediate relationships.

9.3 Lemma. Let f : X −→Y and g : Y −→Z be two bounded linear maps between normed vector spaces.

(1) (g ◦ f)∗ = g∗ ◦ f∗,

(2) JY ◦ f = f∗∗ ◦ JX .

In other words, taking duals is a contravariant functor, and J is a natural transformation from the identity
functor to the double-dual.

9.4 Example. My favorite concrete example of where duals appear in nature comes from ergodic theory. As
usual, let (K, d) be a compact metric space, and let φ : K −→K be a homeomorphism. Then φ induces an
operator T : C(K)−→C(K) via Tf := f ◦ φ, and under our identification of M (K) with C(K)∗ from
Example 2.10, the dual T ∗ : M (K)−→M (K) corresponds to the map sending µ 7→ φ∗µ, where φ]µ is
the measure on K with value (φ]µ)(B) := µ(φ−1(B)).

9.5 Example. There’s also the finite-dimensional case: for any m-by-n matrix A, write LA : Rn−→Rm for
the corresponding linear operator. Then (LA)∗ equals LAt .

9.6 Example. Let H be a Hilbert space, and let T : H −→H be a bounded linear operator on H . The
identification of H with H∗ given by the inner product 〈·, ·〉 also identifies T ∗ : H −→H with the operator
characterized by

〈x, Ty〉 = 〈T ∗x, y〉

for all x and y in H . In this situation, we call T ∗ the adjoint of T .

9.7 Theorem. Let f lie in L (X,Y ). Then

(1) im(f)⊥ = ker(f∗),

(2) im(f∗)⊥ = ker(f),

(3) im(f) is dense in Y if and only if f∗ is injective,

(4) im(f∗) is weak-∗ dense in X∗ if and only if f is injective.

Proof. I claim that these all immediately follow from unwrapping the definitions.

(1) We have

y∗ ∈ im(f)⊥ ⇐⇒ ∀x ∈ X, y∗(f(x)) = 0 ⇐⇒ ∀x, (f∗(y∗))(x) = 0 ⇐⇒ y∗ ∈ ker f∗.

(2) By Hahn–Banach, we have

x ∈ im(f∗)⊥ ⇐⇒ ∀y∗ ∈ Y ∗, (f∗(y∗))(x) = 0 ⇐⇒ ∀y∗ ∈ Y ∗, y∗(f((x)) = 0 ⇐⇒ x ∈ ker(f).

(3) By (1), we have

im(f) is dense in Y ⇐⇒ im(f)⊥ = 0 ⇐⇒ ker(f∗) = 0 ⇐⇒ f∗ is injective.

(4) The proof is the same as that of (3), except we use the weak-∗ topology and part (2) instead.
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There are some more properties about dual operators that I’ve included on the homework, but let’s stop
here for now. At this point, we turn to compact operators.

9.8 Lemma. Let f lie in L (X,Y ). Then the following are equivalent:

(1) if {xn}n in X is bounded, then {f(xn)}n in Y has a convergent subsequence,

(2) if S is a bounded subset of X , then f(S) in Y is compact,

(3) f(B1) in Y is compact.

Someone offers a proof, but Charlie is too sleepy, so we’ll take it on faith.

9.9 Definition. Let f lie in L (X,Y ).

(1) We say that f is compact if it satisfies the equivalent conditions of Lemma 9.8.

(2) We say that f is finite rank if dim im f is finite.

(3) We say that f is completely continuous if, for every weakly convergent sequence xn ⇀ x inX , we have
f(xn)→ f(x) in Y strongly.

Lemma 9.8 implies the following statement.

9.10 Lemma. Any finite rank operator is compact.

We also have the following lemma.

9.11 Lemma. The space K (X,Y ) of compact operators is a closed subset of L (X,Y ).

Proof. Use Lemma 9.8 and a diagonalization argument.

9.12 Remark. Morally, the space of compact operators is the closure of the space F (X,Y ) of finite rank
operators. However, this is not true in general. What do we have instead?

9.13 Lemma. The set F (X,Y ) is dense in K (X,Y ) if and only if, for any compact subset K of Y and
positive number ε, there exists an f in F (X,Y ) satisfying

sup
y∈K

inf
x∈X
‖y − f(x)‖ < ε.

9.14 Remark. The hypotheses of Lemma 9.13 are certainly true when Y is separable and X is infinite-
dimensional, since we can take a finite ε-dense subset of Y and then build the desired f using (the higher-
dimensional version of) Hahn–Banach.

We’ll finish discussing Lemma 9.13 next time.

10 January 26, 2018

I mumbled a bit last time about compact operators—let’s summarize what I was trying to do. We defined
the notions of compact, completely continuous, and finite rank operators. We discussed the idea that finite
rank operators should approximate compact ones in Lemma 9.13. Now, let’s turn to completely continuous
operators. Let X and Y be Banach spaces, and let f : X −→Y be a bounded linear operator.

10.1 Lemma. If f is compact, then it is also completely continuous.
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Proof. Suppose that xn → x weakly in X . By applying the uniform boundedness principle to the operators
xn on the Banach space X∗ and using the fact that JX is an isometry, we see that the xn are bounded. Since
f is compact, we can replace {xn}n with a subsequence such that there exists y in Y satisfying f(xn)→ y
strongly. It is enough to prove that f(x) = y. If we had y 6= f(x), Hahn–Banach would give us a y∗ in Y ∗

satisfying y∗(y − f(x)) = 1. We have

(y∗ ◦ f)(xn) = y∗(f(xn))→ y∗(y),

but weak convergence would indicate that

(y∗ ◦ f)(xn)→ (y∗ ◦ f)(x) = y∗(f(x)),

violating y∗(y − f(x)) = 1.

In the presence of reflexivity, the converse of Lemma 10.1 also holds:

10.2 Lemma. If X is reflexive, then f being completely continuous implies that f is compact.

Proof. We use condition (1) of Lemma 9.8: Let xn be a sequence in BX
1 . Eberlain–S̆mulian implies that we

may replace xn with a subsequence such that that xn → x weakly for some x in BX
1 . Complete continuity

then implies that f(xn)→ f(x) strongly, as desired.

The following theorem of Schauder is another one of those theorems with an abstract nonsense proof.

10.3 Theorem (Schauder). The operator f∗ is compact if and only if f is compact.

Proof. Suppose that f is compact, and write K for the subset f(B
X
1 ) of Y . Then K is a compact metric

space, as it’s equipped with the norm metric from Y . Given a sequence y∗k in BY ∗

1 , we shall show that
f∗(y∗k) has a convergent subsequence in X∗. Observe that the restrictions y∗k

∣∣
K

satisfy

• |y∗k(f(x))| ≤ ‖f‖ for all x in BX
1 ,

• |y∗k(f(x1))− y∗k(f(x2))| ≤ ‖f(x1)− f(x2)‖ for all x1 and x2 in BX
1 .

That is, the y∗k
∣∣
K

are uniformly bounded and Lipschitz. Thus Arzelà–Ascoli implies that we can pass to a
subsequence of y∗k

∣∣
K

that converges to some g in C(K). Now g ◦ f is linear on K and also obeys the above
bounded and Lipschitz conditions, so, via linearity, we can extend g ◦ f to a bounded linear functional x∗

on all of X that satisfies the analogous conditions. We see that y∗k ◦ f → x∗.
Conversely, suppose that f∗ is compact. By the above argument, we see that f∗∗ is compact. Next,

consider the commutative diagram

X
f
//

JX
��

Y

JY
��

X∗∗
f∗∗
// Y ∗∗.

For any bounded sequence xn inX , the isometry of JX implies that JX(xn) is bounded. Thus f∗∗(JX(xn)) =
JY (f(xn)) converges after passing to some subsequence, so in particular it is Cauchy. The isometry of JY
implies that f(xn) is Cauchy, and hence it converges by the completeness of Y .

Speaking of abstract facts, let’s prove another one!
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10.4 Lemma. We have im(f) = ker(f∗)⊥.

Proof. We immediately obtain im(f) ⊆ ker(f∗)⊥ from the adjointness of f∗ and f with respect to the
evaluation map. Therefore ker(f∗)⊥ also contains im(f), as the former is closed. For the converse, suppose
that there exists an element y in ker(f∗)⊥r im f . Hahn–Banach gives us a linear functional y∗ in (im(f))⊥

satisfying y∗(y) = 1. We see that y∗ lies in ker(f∗)⊥, yet y lies in ker(f∗), so y∗ has no right being nonzero
on y.

Let’s now state the Fredholm alternative and see how far I get.

10.5 Theorem (Fredholm). LetX be a Banach space, and suppose that f : X −→X is a compact operator.

(1) ker(id−f) is finite-dimesional,

(2) im(id−f) = ker(id−f∗)⊥,

(3) ker(id−f) = 0 if and only if im(id−f) = X ,

(4) dim ker(id−f) = dim ker(id−f∗).

Part (3) of Theorem 10.5 is like the rank–nullity theorem. Why do we care about the Fredholm alterna-
tive? Because it allows us to solve eigenvalue equations.

10.6 Remark. The kernel ker(id−f) is nontrivial if and only if f(x) = x has a nonzero solution. Therefore
part (1) of Theorem 10.5 says that any eigenvalue of a compact operator appears with finite multiplicity.
We’ll discuss and come to appreciate the other parts later, but for now let’s just notice that (1) is like the
spectral theorem.

We won’t get to finish all the parts today, but let’s at least tackle part (1).

Proof of (1). Let Y be the kernel of id−f . Then Y is a closed subspace of X , and the equation f(x) = x

shows that it lies in im(f). Thus BY
1 is a closed subset of the set f(B

X
1 ), and the latter is compact by the

compactness of f . So BY
1 is compact, and Corollary 3.3 implies that Y is finite-dimensional.

So we’ve found an actual use for the funhouse fact of Corollary 3.3.

11 January 29, 2018

Recall that we were in the middle of proving the Fredholm alternative, though we really only proved a tiny
piece.

Proof of Theorem 10.5. Recall that we did part (1) last time.

(2) By Lemma 10.4, we have im(id−f) = ker(id−f∗)⊥. Therefore it suffices to prove that im(id−f) is
a closed subset of X . Suppose we have a sequence xn − f(xn) that converges to u in X . Our idea will
be to modify xn by an element of ker(id−f). Let dn be the distance from xn to ker(id−f). Part (1)
indicates that ker(id−f) is finite-dimensional, so this distance dn is actually achieved by some yn in
ker(id−f).

I claim that dn is bounded, for if it weren’t, we could replace it with a subsequence such that dn →∞.
Let

zn =
xn − yn
‖xn − yn‖

.
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Then we have

(id−f)zn = d−1n (id−f)xn → 0 · u = 0.

By compactness, replace zn with a subsequence such that f(zn) → z for some z in X . Therefore
zn → z and z − f(z) = 0 by the above, indicating that z lies in ker(id−f). But then we get

1 = d−1n · d(xn, ker(id−f)) = d(d−1n xn, ker(id−f)) = d(zn, ker(id−f)) ≤ ‖zn − z‖ → 0,

which is a contradiction.

Now that we know that xn − yn is bounded, the compactness of T allows us to replace xn − yn with a
subsequence such that xn − yn → v for some v in X . Then

xn − f(xn) = (xn − yn)− f(xn − yn) =⇒ u = v + u− T (v + u)

by taking n→∞, which shows that im(id−f) is indeed closed.

(3) Suppose that ker(id−f) is trivial, and for a contradiction suppose that Y := im(id−f) is not all of
X . Part (2) indicates that Y is closed and hence Banach. Furthermore, note that f(Y ) ⊆ Y , so the
restriction of f to Y is a compact operator on Y . The injectivity of id−f indicates that (id−f)(Y )
does not equal Y , so we can iteratively form a strictly descending chain Yn := (id−f)nX of Banach
spaces. The Riesz lemma allows us to choose yn in Yn satisfying ‖yn‖ = 1 and d(yn, Yn+1) ≥ 1

2 . If
n > m, then the equation

f(yn)− f(ym) = (ym − f(ym))− (yn − f(yn)) + yn − ym

shows that ‖f(yn)− f(ym)‖ ≥ 1
2 . Therefore f(yn) has no Cauchy subsequence, and the completeness

of X shows that f cannot be compact.

Conversely, suppose that im(id−f) = X . Then ker(id−f∗) = im(id−f)⊥ = 0, which implies that
im(id−f∗) = X∗ by the above. Finally, we have ker(id−f) = im(id−f∗)⊥ = 0, as desired.

(4) We want to show that the dimensions d := dim ker(id−f) and d∗ := ker(id−f∗) are equal. For a
contradiction, suppose that d < d∗. If we were doing more Fredholm theory, this proof would seem
more natural, but as is it seems rather strange. Of course, Schauder’s theorem implies that d∗ is finite, via
applying part (1). By using algebraic bases, we can obtain a bounded linear map P : X −→ ker(id−f)
that is a projector. Part (2) indicates that im(id−f) = ker(id−f∗)⊥ has codimension d∗ in X , so we
may pick a subspace Z of X of dimension d∗ that trivially intersects im(id−f). Because d < d∗, we
may choose a linear map Λ : ker(id−f)−→Z that is injective but not surjective. Consider the compact
operator

S := f + Λ ◦ P,

which is compact because Λ ◦ P has finite rank. I claim that ker(id−S) = 0. To see this, for any x in
ker(id−S), we have

0 = x− S(x) = (x− f(x))︸ ︷︷ ︸
∈im(id−f)

−Λ(P (x))︸ ︷︷ ︸
∈Z

.

But im(id−f) and Z have trivial intersection, so x − f(x) = 0 and Λ(P (x)) = 0. The first equation
indicates that x lies in ker(id−f), and the second equation further indicates that x = 0.
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From here, part (3) implies that im(id−S) = X . The non-surjectivity of Λ allows us to find y in Z not
lying in its image, but it’s not possible to have

y = x− S(x) = (x− f(x)) + Λ(P (x)).

Therefore d ≥ d∗. Conversely, this inequality already shows that

dim ker(id−f∗∗) ≤ dim ker(id−f∗) ≤ dim ker(id−f),

but we have ker(id−f) ⊆ ker(id−f∗∗) automatically. Therefore all the inequalities collapse to equal-
ities.

I wanted to prove the (real) spectral theorem today, but Fredholm alternatives just take too long. We’ll
do the real spectral theory first, even though we’ll need to use and prove complex spectral theory later
for applications to ergodic theory, because we’ll use the real theory for that. Write L (X) for the space
L (X,X) of bounded linear maps X −→X .

11.1 Definition. Let f be in L (X).

• The resolvent set of f is ρ(f) := {λ ∈ R : f − λ id is a bijection}.

• The spectrum of f is σ(f) := Rr ρ(f).

• The eigenvalues of f is ev(f) := {λ ∈ R : ker(f − λ id) is nontrivial}.

Thus the eigenvalues are a subset of the spectrum, but this containment can be strict.

12 January 31, 2018

Let’s begin with an example of the new notions we introduced at the end of last time.

12.1 Example. Let X be `2, and let T : X −→X be the operator sending (x1, x2, · · · ) 7→ (0, x1, x2, . . . ).
Then T is not surjective, which shows that 0 lies in ρ(T ). However, T is injective, so 0 does not lie in ev(T ).

12.2 Lemma. The resolvent set σ(T ) lies in [−‖T‖, ‖T‖], and it is closed.

Proof. Suppose that |λ| > ‖T‖. We want to show that T − λ id is a bijection. Consider the equation

(T − λ id)x = y ⇐⇒ x = λ−1(Tx− y).

for any y in X . Because ‖λ−1T‖ < 1, the right-hand side yields a map that is a contradiction in X . Thus
the Banach fixed-point theorem indicates that there is a unique solution x in X . Thus T − λ id is bijective.

To show that σ(T ) is closed, we shall show that its complement ρ(T ) is open. Fix a λ0 in ρ(T ), and try
to solve the above equation again. By rewriting it as

(T − λ0 id)x+ (λ0 − λ)x = y ⇐⇒ x = (T − λ0 id)−1((λ− λ0)x+ y),

we note that the right-hand side is a contraction if ‖λ− λ0‖‖(T − λ0 id)−1‖ < 1. Therefore ρ(T ) contains
an open neighborhood of λ0, as desired.

Let us now turn to the spectral theorem.

12.3 Theorem. LetX be an infinite-dimensional Banach space, and let T : X −→X be a compact operator.
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(1) 0 lies in σ(T ),

(2) σ(T ) r {0} = ev(T ) r {0},

(3) if σ(T ) r {0} is infinite, then σ(T ) r {0} consists of a countable set of numbers converging to zero.

Proof.

(1) If 0 lies in ρ(T ), then T is bijective. Thus the identity map id = T ◦ T−1 is compact (as the inverse and
composition of compact operators remains compact), so BX

1 is compact. Corollary 3.3 then concludes
that X is finite-dimensional.

(2) If λ is nonzero and does not lie in ev(T ), then ker(T − λ id) is trivial. Therefore ker(−λ−1T + id) is
trivial, so the Fredholm alternative implies that im(−λ−1T + id) is all of X . Therefore im(T − λ id) is
also all of X , which altogether shows that T − λ id is a bijection. Hence λ lies in ρ(T ).

(3) By Lemma 12.2, it suffices to show that 0 is the only accumulation point of σ(T ) is 0. Let λn be a
sequence in σ(T ) of distinct elements that converges to some λ in σ(T ). By skipping ahead in the
sequence and using distinctness, we may assume that all the λn are nonzero. By part (2), we may find
xn in X satisfying ‖xn‖ and Txn = λnxn.

I claim that {x1, . . . , xn} is linearly independent. To see this, we can induct on n and use the fact that the
xi are eigenvectors for T with distinct eigenvalues. At this point, the proof will follow a strategy similar
to our proof of the Fredholm alternative. Let Xn be the span of {x1, . . . , xn}. Then X1 ( X2 ( · · · is
a strictly ascending chain of finite-dimensional subspaces of X , so we may choose yn in Xn satisfying
‖yn‖ = 1 and d(yn, Xn−1) ≥ 1

2 by the Riesz lemma. Observe that (T − λn id) sends Xn to Xn−1,
because this operator acts by scaling on {x1, . . . , xn−1} and annihilates xn. For n > m, we have

∥∥∥∥Tynλn − Tym
λm

∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
(T − λn)yn

λn︸ ︷︷ ︸
∈Xn−1

+
(T − λm)ym

λm︸ ︷︷ ︸
∈Xm−1

−ym + yn

∥∥∥∥∥∥∥∥∥ ≥
1

2
.

Therefore Tyn/λn has no Cauchy subsequence. As T is compact, the yn/λn are unbounded. Since
‖yn‖ = 1, we have lim infn→∞ |λn| = 0, and because λn → λ, we see that λ = 0.

The following example will form all the examples of compact operators that we have at the moment.

12.4 Example. If λn is any sequence of real numbers that converges to zero, we can define an operator
T : `2−→ `2 by sending (x1, x2, . . . ) 7→ (λ1x1, . . . , λ2x2, . . . ). I claim that T is compact and that ev(T ) =
{λn}n. Now T is compact because it is the limit of its finite-rank truncations, and its resolvent set clearly
contains {λn}n. As ev(T ) clearly contains {λn}n, we see that everything becomes equal to what they
should be.

When we solve the wave equation later, we’ll obtain another collection of examples. Next, let’s discuss
self-adjoint operators.

12.5 Lemma. Let H be a Hilbert space, and let T : H −→H be a self-adjoint operator. Form the numbers

M− := inf
‖x‖=1

〈Tx, x〉 and M+ := sup
‖x‖=1

〈Tx, x〉.

Then {M−,M+} lies in σ(T ), which in turn lies in [M−,M+]. Furthermore, we have ‖T‖ = max{M+,−M−}.
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The proof will resemble our proof of Lemma 12.2, except we’ll be using variational methods, for which
the Riesz representation theorem will replace our use of the Banach fixed point theorem.

Start of the proof of Lemma 12.5. Suppose that λ is greater than M+, and define

β(x, y) := λ〈x, y〉 − 〈Tx, y〉 = 〈(λ− T )x, y〉.

for all x and Y in H . Then β is a perfectly good bilinear form on H , and we have

(λ−M+)‖x‖2 ≤ β(x, x) ≤ (λ−M−)‖x‖2,

which follows for the definitions of M± via renormalizing x to satisfy ‖x‖ = 1. Therefore the linear
functionals induced by β are continuous. For any x in H , Riesz representation yields a unique y in H
satisfying β(x, ·) = 〈y, ·〉. This exhibits the bijectivity of T − λ id.

The λ < M− case is entirely analogous, and we’ll finish the entire proof of Lemma 12.5 next time.

13 February 2, 2018

Let’s continue with the spectral theorem for compact operators—we’ll then move to general operators.

Continuation of the proof of Lemma 12.5. Next, we want to show that the endpoints {M−,M+} lie in
σ(T ). First, define

α(x, y) := 〈(M+ − T )x, y〉.

We see that α(x, x) is always non-negative by the definition of M+, and we have

α(x, y) ≤ α(x, x)1/2α(y, y)1/2

by Cauchy–Schwartz. But this simply becomes

〈(M+ − T )x, y〉 ≤ 〈(M+ − T )x, x〉1/2 〈(M+ − T )y, y〉1/2︸ ︷︷ ︸
≤C‖y‖

,

and taking the supremum over y satisfying ‖y‖ = 1 implies that

‖(M+ − T )x‖ ≤ C〈(M+ − T )x, x〉1/2.

Now choose a sequence xn with norm 1 satisfying 〈xn, Txn〉 →M+ = 〈xn,M+xn〉. Then

‖(M+ − T )xn‖ ≤ C〈(M+ − T )xn, xn〉1/2 → 0,

which implies that if (M+ − T )−1 existed, it could not possibly be bounded. Therefore M+ − T cannot
exist, by the open mapping theorem. As before, the same argument works for M− too.

Our next step will be in proving that ‖T‖ ≤ max{M+,−M−}, for which we need the self-adjointness
of T . We have

〈x+ y, T (x+ y)〉 = 〈x, Tx〉+ 2〈x, Ty〉+ 〈y, Ty〉,
〈x− y, T (x− y)〉 = 〈x, Tx〉 − 2〈x, Ty〉+ 〈y, Ty〉,

=⇒ 4〈x, Ty〉 = 〈x+ y, T (x+ y)〉 − 〈x− y, T (x− y)〉 ≤M+‖x+ y‖2 −M−‖x− y‖2

≤ max{M+,−M−}(‖x+ y‖2 + ‖x− y‖2).
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The parallelogram rule then implies that

2〈x, Ty〉 ≤ max{M+,−M−}(‖x‖2 + ‖y‖2).

Replacing x with εx, replacing y with ε−1y, and optimizing ε implies that

〈x, Ty〉 ≤ max{M+,−M−}‖x‖‖y‖,

and setting x = Ty yields the desired inequality.

With Lemma 12.5 in hand, we can proceed to the spectral theorem for self-adjoint compact operators on
Hilbert spaces.

13.1 Theorem. Let H be a Hilbert space, and let T : H −→H be a compact self-adjoint operator. Then
there exist {xn}n in H and {λn}n in R such that

(1) {λn}n = σ(T ) r {0},

(2) Txn = λnxn, and the xn are orthonormal,

(3) H = span{xn}n + kerT .

Proof.

Step 1. If λ 6= λ′ are both in σ(T ), then ker(T − λ id) is orthogonal to ker(T − λ′ id), which I hope you
remember how to prove from linear algebra class.

Step 2. Because T is compact, Theorem 12.3 implies that σ(T ) r {0} = ev(T ) r {0} = {λn}n for some
{λn}n. Furthermore, using Fredholm as in the proof of Theorem 12.3, we see that ker(T − λ id) is
finite-dimensional for λ in σ(T ) r {0}. We can choose orthonormal {xn}n in X satisfying

span{xn}n = Y := span
⋃

λ∈σ(T )r{0}

ker(T − λ id).

To prove (3), it’s enough to show that Y ⊥ equals kerT . Observe that T (Y ) equals Y , so self-
adjointness implies that T (Y ⊥) lies in Y ⊥. That is,

T (Y ⊥) = {Tx : 〈x, y〉 = 0 for all y ∈ Y } = {Tx : 〈x, Ty〉 = 0 for all y ∈ Y }
= {Tx : 〈Tx, y〉 = 0 for all y ∈ Y } ⊆ {x : 〈x, y〉 = 0 for all y ∈ Y } = Y ⊥.

Therefore T |Y ⊥ is a compact operator on the Hilbert space Y ⊥, and by construction T |Y ⊥ has no
nonzero eigenvalues. By Lemma 12.5, we conclude that T |Y ⊥ = 0.

Let’s now discuss spectral theory in the situation where we omit compactness hypotheses. We’ll start
for a couple of minutes, but then we’ll have to wait a week to pick it back up, as you’ll have an exam as well
as a substitute lecture (which will not be on spectral theory) next week.

For the spectral theorem of general self-adjoint operators, we shall need to develop the functional calcu-
lus. You may recall from undergraduate ODEs class that matrix exponentials can be defined both in terms
of a solution to a differential equation as well as a Taylor series. We’ll adapt the latter strategy to applying
functions to operators. The motivating idea is to use polynomial functions to approximate arbitrary operators
using compact ones.

28



MATH 313 — Functional Analysis Siyan Daniel Li

13.2 Definition. Let p(λ) = a0 + · · ·+ anλ
n be a one-variable polynomial with real coefficients, let H be

a Hilbert space, and let T : H −→H be a bounded linear operator. We define

p(T ) := a0 id + · · ·+ anT
n,

where powers are given by composition. We see that p(T ) remains bounded linear.

For compact T , recall that σ(T ) is a compact subset of [M−,M+].

13.3 Theorem. If pn(λ) are polynomials that converge to a continuous function f : C(σ(T ))−→R, then
the pn(T ) converge in the operator norm. Denoting P for the subspace of polynomial functions in C(σ(T )),
the map P −→L (H) given by p 7→ p(T ) has a unique continuous extension C(σ(T ))−→L (H).

We’ll come back to this in a week.

14 February 12, 2018

I haven’t even started grading the midterms—last week was too crazy. Where were we? We were trying to
talk about the spectral theory of self-adjoint operators, and we were trying develop the functional calculus.
But why do we even need this? Recall that Theorem 13.1 gives us a spectral theorem for compact self-
adjoint operators T on a Hilbert space H , part (3) of which implies that there exists a orthonormal set {en}n
of H and real numbers {λn}n such that Ten = λnen and H = span{en}n + kerT . This implies that T is
a (generally infinite) sum

T =
∞∑
n=1

λnEn,

whereEn denotes orthogonal projection x 7→ 〈x, en〉en onto the line generated by en. In the case of general,
possibly non-compact T , we shall need to replace the above sum with an integral, and that’s the reason for
introducing the functional calculus.

Returning to the functional calculus itself, suppose that H is finite-dimensional, and let

p(λ) = c0 + · · ·+ cnλ
n

be a polynomial in λ with entries in R. One can form the polynomial

p(T ) = c0 + · · ·+ cnT
n

as usual, but one would like more than this: we want to form f(T ) for arbitrary continuous functions
f : R−→R. First, observe that if T is of the form

λ1
. . .

λm

 ,

then p(T ) is of the form 
p(λ1)

. . .
p(λm)

 .

Therefore, one way to form f(T ) for f in C(R) is by
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• taking polynomials pn such that pn → f uniformly on σ(T ) = {λ1, . . . , λm},

• forming the limit f(T ) := limn→∞ pn(T ).

Note that this works well in the finite-dimensional case, because every self-adjoint operator is diagonaliz-
able, i.e. conjugate to T of the above form.

14.1 Example. Furthermore, suppose that the eigenvalues of T are distinct, and order them via λ1 < · · · <
λm. To compute the orthogonal projection Ek, just choose f in C(R) such that

f(λj =

{
1 if j = k,

0 otherwise.

Then we see that Ek = f(T ).

For general Hilbert spaces, we won’t be able to obtain Ek in this manner since the spectrum might not
be discrete—we might not be able to choose an f that picks out exactly λk. This is where the measure
theory comes in to patch our problems. Here, if we take f in C(R) that approximates 1E sufficiently well
for measurable E ⊆ R, then f(T ) will approximate the integral of projections over the spectrum elements
lying in E.

With all this motivation in hand, let’s actually develop the functional calculus. We remind ourselves
that throughout this discussion, H is a Hilbert space, and T, S : H −→H are self-adjoint operators on H .
Recall the basic result Lemma 12.5, which allows us to further deduce the following useful fact:

14.2 Lemma. We have ‖Tn‖ = ‖T‖n.

Proof. For all x in H , Lemma 12.5 implies that

‖Tx‖2 = 〈Tx, Tx〉 = 〈x, T 2x〉 ≤ ‖T 2‖‖x‖2,

and taking square roots implies that ‖T‖2 ≤ ‖T 2‖. General principles imply that ‖T 2‖ ≤ ‖T‖2 (because
T 2 = T ◦ T ), which yields the result for n = 2. Iteratively applying this yields ‖T‖2

m

= ‖T 2m‖, and
applying the general principle ‖T ◦ S‖ ≤ ‖T‖‖S‖ once more gives the general case.

I might’ve not needed Lemma 14.2 just yet, but oh well.

14.3 Lemma. We have dist(σ(T ), σ(S)) ≤ ‖T − S‖.

Here, dist denotes the Hausdorff metric:

dist(K,G) := max

{
max
k∈K

min
g∈G
|k − g|,max

g∈G
min
k∈K
|g − k|

}
for any compact subsets K and G of R. It turns out that dist yields a metric on

{K ⊆ R : K compact},

and this set is a complete metric space under the Hausdorff metric. Thus the content of Lemma 14.3 is that
norm-convergent self-adjoint operators have Hausdorff-convergent spectra.

Proof. Suppose that d := dist(σ(T ), σ(S)) > ‖T − S‖. Without loss of generality, choose µ in σ(T ) such
that |µ− λ| ≥ d for all λ in σ(S). Therefore (λ− d, λ+ d) lies in the resolvent set ρ(S) of S. In particular,
this implies that S − λ id is invertible, and we have ‖(S − λ id)−1‖ ≤ 1

d .
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We’ll use a fixed-point argument similar to those of last time, but mixed up a little for variety. Write

T − λ id = (S − λ id) + (T − S) = (S − λ id)︸ ︷︷ ︸
invertible

(id + (S − λ id)−1(T − S)︸ ︷︷ ︸
norm<1

).

Therefore we can construct the inverse of T − λ id via

(T − λ id)−1 =

 ∞∑
n=0

(
(S − λ id)−1(T − S)

)n (S − λ id)−1,

which contradicts the fact that µ lies in σ(T ).

The next lemma is secretly the main theorem, though I will cheat a little in its proof. We’ll discuss the
cheat afterwards, and then you’ll patch it up on your homework.

14.4 Lemma. Let p by a polynomial with real entries.

(1) σ(p(T )) is equal to p(σ(T )),

(2) ‖p(T )‖ = maxλ∈σ(T ) |p(λ)|.

Proof. Let’s begin by proving that (1) =⇒ (2). Lemma 12.5 indicates that

‖T‖ = max
λ∈σ(T )

|λ|,

and then (1) gives us

‖p(T )‖ = max
λ∈σ(p(T ))

|λ| = max
λ∈p(σ(T ))

|λ| = max
µ∈σ(T )

|p(µ)|.

It doesn’t seem that I’ve cheated yet. Turning to (1), let ν := p(µ), where µ is some element of σ(T ). We
want to see that ν is in σ(p(T )). Factorize

p(λ)− ν = (λ− µ)q(λ) =⇒ p(T )− ν id = (T − µ id)q(T ),

which works because p(λ)− ν = 0. Because T − µ id is not a bijection, we see that p(T )− ν id could not
possibly be a bijection, where we use the fact that T − µ id commutes with q(T ). This shows that p(σ(T ))
lies in σ(p(T )).

Conversely, suppose that ν is not of the form p(µ) for any µ in σ(T ). Then the factorization of the
polynomial p(λ) − ν into linear factors contains no roots in σ(T ), and the same argument shows that
p(T )− ν id is indeed a bijection.

The illegal step in the above theorem in showing that σ(p(T )) is contained in p(σ(T )), because we can’t
generally factor every real polynomial into linear factors. You’ll work on a workaround for this in your
homework, and we’ll finish the spectral theorem next time.

15 February 14, 2018

Recall the setup of last time, where H is a Hilbert space, and T and S are self-adjoint (i.e. symmetric)
bounded operators on H . Let’s begin today with a corollary of Lemma 14.4.
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15.1 Lemma. Let f be a continuous function on σ(T ), let ε be positive, and suppose that

max
σ(T )
|f − p| ≤ ε and max

σ(T )
|f − q| ≤ ε

for some polynomials p and q. Then ‖p(T )− q(T )‖ ≤ 2ε, and dist(σ(p(T )), σ(q(T ))) ≤ 2ε.

Proof. This follows immediately from parts (2) and (1) of Lemma 14.4, via the triangle inequality.

Lemma 15.1 indicates that the following definition is well-defined, i.e. independent of choices.

15.2 Definition. Let f be in C(σ(T )). Then f(T ) := limn→∞ pn(T ), where {pn}n is any sequence of
polynomials that converges to f uniformly on σ(T ).

Write S (H) for the set of symmetric bounded linear operators on H . Our existing work allows us to
deduce the following theorem, which we call the functional calculus.

15.3 Theorem. The map f 7→ f(T ) is an isometric isomorphism

C(σ(T ))
∼−→ spanR{Tn : n ≥ 0} ⊆ S (H)

that commutes with addition and composition of functions. Furthermore, we have ‖f(T )‖ = maxσ(T ) |f |
and σ(f(T )) = f(σ(T )).

Proof. Surjectivity follows from Stone–Weierstrass, and well-definedness follows from Lemma 15.1. The
other properties follow from Lemma 15.1 and Lemma 14.4.

We have the following application of the functional calculus.

15.4 Definition. We say that T is non-negative if 〈Tx, x〉 ≥ 0 for all x in H .

15.5 Theorem. The operator T is non-negative if and only if σ(T ) lies in [0,∞).

Proof. For one direction, suppose that T is non-negative. Then

σ(T ) ⊆

[
inf
‖x‖=1

〈Tx, x〉, sup
‖x‖=1

〈Tx, x〉

]

by Lemma 12.5, and this lies in [0,∞) by our assumption. In the other direction, suppose that σ(T ) lies in
[0,∞). The functional calculus allows us to take a square root S =

√
T of T , so

〈Tx, x〉 = 〈S2x, x〉 = 〈Sx, Sx〉 ≥ 0,

as desired.7

Now that we have the functional calculus, let’s turn to the spectral decomposition.

15.6 Example. Consider the case when H = Rn is finite-dimensional, and let T be of the form
λ1

. . .
λn

 .

7Alternatively, we can use the result from Lemma 12.5 that inf‖x‖=1〈Tx, x〉 lies in σ(T ) to deduce that 〈Tx, x〉 is always
non-negative, which circumvents the use of functional calculus.
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If we let e1, . . . , en denote the standard basis, we see that

T =

n∑
k=1

weight︷︸︸︷
λk e∗k ⊗ ek︸ ︷︷ ︸

projection

.

We can view this sum as the integral of some measure on the space of projections. In this spirit, we can also
treat f(T ) for any continuous function f : σ(T )−→R similarly. Namely, we can write f(T ) as

f(λ1)
. . .

f(λn)

 =

ˆ
σ(T )

d

 n∑
k=1

(ek ⊗ e∗k)δλk

 f,

where now the measure that we’re integrating over is somehow projection-valued.

This motivates the following definition. We use B to denote the Borel σ-algebra.

15.7 Definition. Let K be a compact subset of R. A projection-valued measure on K is a map E :

B(K)−→S (H) such that

(1) E(∅) = 0 and E(K) = id,

(2) if A and B are disjoint elements of B(K), then E(A ∪B) = E(A) + E(B),

(3) for all A and B in B(K), we have E(A ∩B) = E(A)E(B).

By taking A = B, we see that condition (3) is what makes E valued in projections.

15.8 Exercise. This definition of projection-valued measures is enough to ensure that
´
KdE f is a well-

defined element of S (H) for any f in C(K).

Exercise 15.8 uses the idea that finite additivity is enough to integrate continuous functions on compact
subsets. When it’s all said and done, this is all really just a fancy version of Riesz representation.

15.9 Definition. Let x and y be in H . We write `x,y : C(σ(T ))−→R for the function defined by

`x,y(f) := 〈f(T )x, y〉.

The continuity of the bracket and the functional calculus indicate that `x,y is bounded, and it’s imme-
diately seen to be linear, so Riesz representation for C(σ(T )) indicates that there exists a measure mx,y on
σ(T ) such that

〈f(T )x, y〉 =

ˆ
σ(T )

dmx,y f

for all f in C(σ(T )). This yields a function m : H2−→M (σ(T )) via sending (x, y) 7→ mx,y.

15.10 Lemma. Our function m : H2−→M (σ(T ))

(1) is bilinear,

(2) is symmetric,

(3) satisfies ‖mx,y‖ ≤ ‖x‖‖y‖, where ‖mx,y‖ is the total variation norm of mx,y, for all x and y in H ,
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(4) satisfies mx,x ≥ 0 for all x in H .

Some of this should be immediate.

Proof. We obtain (1) and (2) via the uniqueness of mx,y as given by the Riesz representation theorem. That
is, because the defining property 〈f(T )x, y〉 =

´
σ(T )dmx,y f ofm is bilinear and symmetric,m itself retains

these properties. The Riesz representation theorem also shows that ‖mx,y‖ = ‖`x,y‖, and

|`x,y(f)| = |〈f(T )x, y〉| ≤ ‖f(T )‖‖x‖‖y‖ = max
σ(T )
|f | · ‖x‖‖y‖,

and this maximum is the sup norm. Thus ‖`x,y‖ ≤ ‖x‖‖y‖, which gives part (3). Finally, for non-negative f ,
the functional calculus shows us that f(T ) is non-negative. Therefore in this case we have

´
σ(T )dmx,x f =

〈f(T )x, x〉 ≥ 0, so mx,x ≥ 0.

I always judge how much time I have left in class from the song that plays at the bell tower, but there
seems to be variation in when it ends. I should make some sort of arrangement with the carillonneur or
something.

15.11 Lemma. If b : H2−→R is a bilinear symmetric function that satisfies |b(x, y)| ≤ K‖x‖‖y‖ for
some positive K and for all x and y in H , then there exists a bounded symmetric operator B : H −→H
satisfying b(x, y) = 〈Bx, y〉 and ‖B‖ ≤ K.

Proof. The Riesz representation theorem shows that, for all x in H , there exists a unique Bx in H such that
b(x, y) = 〈Bx, y〉 for all y in H . The desired properties of B follow from the corresponding properties of
b, where we use the uniqueness of Riesz representation once again.

15.12 Example. For any Borel subset A of σ(T ), Lemma 15.10 indicates that the function bA(x, y) :=
mx,y(A) satisfies the conditions of Lemma 15.11, so there exists an operator E(A) in S (H) such that

〈E(A)x, y〉 = mx,y(A).

We shall prove next time that the assignment A 7→ E(A) is indeed a projection-valued measure, and
we’ll also show that it satisfies the integration property f(T ) =

´
σ(T )dE f as in Example 15.6.

16 February 16, 2018

Recall the setup of Example 15.12. We shall prove that the assignment A 7→ E(A) from Example 15.12 is
indeed a projection-valued measure.

16.1 Theorem. The following holds:

(1) E(∅) = 0,

(2) E(σ(T )) = id,

(3) if A and B are disjoint Borel subsets of σ(T ), then E(A ∪B) = E(A) + E(B),

(4) for all Borel subsets A and B of σ(T ), we have E(A)E(B) = E(A ∩B).
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16.2 Remark. Morally, the operator E(A) should be 1A(T ), even though the right-hand side is undefined
since 1A is usually not continuous. If it were well-defined, however, and satisfied the functional calculus,
then Theorem 16.1 would follow immediately.

Maybe we could try to just define 1A(T ) as a limit of f(T ) for continuous f on σ(T ), but then you have
to do work to show that the limit exists and is well-defined. Bühler–Salamon takes this approach, though it
requires the axiom of choice. Our approach offers an alternative.

Proof. I claim that parts (1) through (3) are easy. We won’t do all of them, but here’s the proof of (2) as a
sample: for any x and y in H , we have

〈E(σ(T ))x, y〉 = mx,y(σ(T )) =

ˆ
σ(T )

dmx,y 1 = 〈1(T )x, y〉 = 〈x, y〉.

The uniqueness of these conditions shows then that E(σ(T )) = id.
The interesting part is proving (4). For this, let us recall a measure-theoretic result from last quarter—

namely, if µ is a Borel measure and A is a Borel subset, then

µ(A) = sup{µ(F ) : F ⊆ A is closed} = inf{µ(G) : G ⊇ A is open}.

The Borel σ-algebra is the smallest σ-algebra containing the open subsets, and the above result is one of the
few places where one uses this minimality property of the Borel σ-algebra.

Next, we say that a sequence of functions {fn}n in C(R) approximates 1A if for all closed F inside A
and open G containing A, we have 1F ≤ fn ≤ 1G for sufficiently large n. For any such sequence, we have

µ(A) = lim
n→∞

ˆ
dµ fn.

Furthermore, one can readily construct such sequences. In our situation, applying this to mx,y implies that

〈E(A)x, y〉 = mx,y(A) = lim
n→∞

ˆ
dmx,y fn = lim

n→∞
〈fn(T )x, y〉.

This says that fn(T )x weakly converges to E(A)x. It’d be nice to convert this weak convergence into
strong convergence. Recall that Mazur’s theorem shows that, for any fixed x, we can choose some convex
combination of these fn(T )x that converges strongly to E(A)x. The linearity of f 7→ f(T ) (as well as the
fact that the approximation property is stable under convex combinations) shows that we can replace {fn}n
with some convex combinations that make fn(T )x→ E(A)x strongly.

Performing the same actions for a Borel subset B and y in H yields gn(T )y 7→ E(B)y strongly in a
similar manner. Observe that fngn approximates 1A∩B . Symmetry and the functional calculus imply that

〈fn(T )x, gn(T )y〉 = 〈gn(T )fn(T )x, y〉 = 〈(fngn)(T )x, y〉,

and taking n→∞ shows that

〈E(A)E(B)x, y〉 = 〈E(A)x,E(B)y〉 = 〈E(A ∩B)x, y〉,

where we once symmetry once again. As this holds for all x and y in H , we obtain the desired result.

Theorem 16.1 is a nice result, but a priori we’ve not sure whether it’s good for anything. Let’s change
that by computing some corollaries.

16.3 Corollary. The following holds:
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(1) for all Borel subsets A, we have E(A)2 = E(A),

(2) we have ‖E(A)‖ ∈ {0, 1},

(3) if A and B are disjoint Borel subsets of σ(T ), then im(E(A)) ⊥ im(E(B)),

(4) for all Borel subsets A and B of σ(T ), we have E(A)E(B) = E(B)E(A).

Proof. I claim that these are all easy consequences of part (4) of Theorem 16.1.

(1) This follows by taking A = B.

(2) Part (1) implies that ‖E(A)‖ = ‖E(A)2‖ ≤ ‖E(A)‖2. Therefore either ‖E(A)‖ = 0 and hence
E(A) = 0, or ‖E(A)‖ ≥ 1. In the latter case, we know that E(A) is a nonzero projection operator, so
it has a fixed point and hence attains ‖E(A)‖ = 1.

(3) We have 〈E(A)x,E(B)y〉 = 〈E(B)E(A)x, y〉 = 〈E(B ∩A)x, y〉 = 〈E(∅)x, y〉 = 0.

(4) This follows from part (4) of Theorem 16.1 by noting that A ∩B = B ∩A.

We summarize our spectral theory as follows.

16.4 Theorem. Let H be a Hilbert space, and let T : H −→H be a bounded symmetric operator on H .
Then there exists a projection-valued measure E on σ(T ) such that, for all f in C(σ(T )), we have

f(T ) =

ˆ
σ(T )

dE f,

where our integral converges in the operator norm.

Proof. If g is a simple function on σ(T ), say of the form

g =

n∑
k=1

ak1Ak

for some real numbers a1, . . . , ak and disjoint Borel subsets A1, . . . , Ak, recall that the integral

ˆ
σ(T )

dE g :=

n∑
k=1

akE(Ak).

Corollary 16.3 indicates that ∥∥∥∥∥
ˆ
σ(T )

dE g

∥∥∥∥∥ ≤ max
k
|ak|.

Therefore if g are g̃ are two simple approximations of f , then we get∥∥∥∥∥
ˆ
σ(T )

dE g −
ˆ
σ(T )

dE g̃

∥∥∥∥∥ =

∥∥∥∥∥
ˆ
σ(T )

dE (g − g̃)

∥∥∥∥∥ ≤ ‖g − g̃‖.
Thus our integrals converge, and the limiting processes on both sides precisely yield the desired equality.

It’s fun and all to use things like Borel subsets, Riesz representation, and Mazur’s theorem to prove
Theorem 16.4, but why is this even meaningful? Why should our suite of results on spectral theory matter?
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16.5 Example. We’d like to at least recover the usual spectral theory for finite-dimensional Hilbert spaces
H = Rd. By rescaling, let’s assume that σ(T ) lies in [0, 1). For any positive integer n, we have the
decomposition

[0, 1) =
2n−1⋃
k=0

[k2−n, (k + 1)2−n)

of the interval into 2n pieces. Applying E to both sides and using Corollary 16.3 shows that

id =
2n−1∑
k=0

E
(

[k2−n, (k + 1)2−n)
)
.

The finite-dimensionality of H indicates that at most d of these mutually orthonormal projections in the
above sum are nonzero, so taking n→∞ shows that there are m ≤ d points λ1, . . . , λm in [0, 1) such that

E =
m∑
k=1

E({λk})δλk .

In other words, E is supported at the finitely many points λ1, . . . , λm, and these points form the spectrum
of T in the traditional linear algebraic sense. The point λk is weighted by the factor E({λk}).

The following example shows that in general, E need not be a countably additive sort of “measure.”

16.6 Example. Let H = `2, and let T be given by sending

(x1, x2, x3 . . . , ) 7→
(
x1
1
,
x2
2
,
x3
3
, . . .

)
.

Let Pk : H −→H denote projection onto the k-th coordinate. Then unrolling the definitions shows that

E =
∞∑
k=1

Pkδ1/k,

where we take this sum in the topology on L (H) generated by the maps T 7→ Tx for every x in H , even
though this sum does not converge in the operator norm.

Next time, I’ll prove the Sobolev inequalities so that we can make more examples of compact operators.

17 February 19, 2018

Today I want to start about something new, in the sense that it’s orthogonal to what we’ve been discussing.
I’ll return to material from last quarter and prove the Sobolev inequalities, which will not only provide
interesting examples of compact operators but also are probably more important than most things we’ve
done in class. We’ll also discuss the isoperimetric inequality.

Let’s start with a very simple idea. Suppose we have a function u in C∞c (Rd), and write e1, . . . , ed for
the standard basis of Rd. Then the fundamental theorem of calculus tells us we can recover u from its partial
derivatives via integrating on rays, because it vanishes at infinity:

u(x) = −
ˆ ∞
0

dt (Diu)(x+ tei)
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for any integer 1 ≤ i ≤ d, where Di denotes the partial derivative with respect to the ei-coordinate.
Given that we can recover compactly supported smooth functions u from their derivatives Diu, one

might hope that we can relate the Lp-norms of u and Diu. Namely, we hope that there exists a constant
Cd,p,q such that, for all u in C∞c (Rd), we have

‖u‖Lq ≤ Cd,q,p‖Du‖Lp

independently of the u chosen, where D denotes the gradient. Assuming that such a statement holds, let’s
see what would happen if we just dilated u by a positive r. Writing ur(x) := u(rx), we have

‖ur‖Lq =

[ˆ
Rd

dx |ur(x)|q
]1/q

=

[ˆ
Rd

dx |u(rx)|q
]1/q

=

[
r−d
ˆ
Rd

dy |u(y)|q
]1/q

= r−d/q‖u‖Lq

by the change-of-variables integral rule and the substitution y = rx. The chain rule indicates that (Dur)(x) =
r(Du)(rx), and applying the above calculation to this again yields

‖Dur‖Lp = r1−d/p‖Du‖Lp .

Therefore if our desired inequality is to hold, we must have

r−d/q‖u‖Lq = ‖ur‖ ≤ Cd,q,p‖Dur‖Lp = Cd,q,pr
1−d/p‖Du‖Lp .

Then we must have 1 − d/p = −d/q. The Sobolev inequality says that, when we also impose that p ≥ 1
and q ≥ 1 (which is reasonable, in order to obtain honest Lp-norms), this is all we need.

17.1 Theorem (Sobolev). Let p and q lie in [1,∞), and suppose that 1/q = 1/p− 1/d. Then there exists a
positive constant Cd,q,p such that

‖u‖Lq ≤ Cd,q,p‖Du‖Lp

for all u in C∞c (Rd).

We’ll take a meandering path to prove the Sobolev inequality, because we want to cover other things on
the way. Write p∗ for pd/(d − p), and note that in the situation of the Sobolev inequality, we have q = p∗.
Consider the special case where p = 1 and thus q = d/(d−1), which we call the simple Sobolev inequality.

17.2 Exercise. Prove that the simple Sobolev inequality implies the full version, by applying this case to an
appropriate power of u and using Hölder’s inequality.

We won’t prove this special case today—rather, we’ll just show its equivalence to another statement.
Recall the isoperimetric inequality, which is the following statement.

17.3 Theorem. There exists a positive Cd such that, for any compact subset K of Rd, we have

vol(K)(d−1)/d ≤ Cd · per(K),

where one has to make sense of volumes and perimeters first.

You’ve probably heard of the isoperimetric inequality in the context of proving that spheres have the
most volume for a given surface area. We can obtain that sort of result from the above statement finding an
optimal constant Cd.

Making sense of volumes and perimeters is more straightforward when K is a smooth submanifold of
Rd, but in general one has to be careful. The isoperimetric inequality was first proved in this context. We’ve
actually cheated a bit by going to perimeters—we should be going to the area of the boundary instead, but
then we also have to figure out what those words mean.
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17.4 Definition. For us, the volume will just be the Lebesgue measure, and the perimeter will be

per(K) := inf
ε>0

inf

{ˆ
dx |Du| : u ∈ C∞c (Rd), u = 1 on K, u = 0 on Rd r (K +Bε)

}
for any compact subset K of Rd, where Bε is the open ball of radius ε at the origin.

For those in the know, note that this is the (d − 1)-th dimensional Hausdorff measure of K, which
is infinite if the boundary of K doesn’t have Hausdorff dimension d − 1. To motivate this definition of
perimeter, suppose that we’re in the case when K has smooth boundary, and define

uε(x) := max
{

0, 1, 1− 1
εd(x,K)

}
for any positive ε. Note that this uε lies in the subset of test functions considered in the definition of per(K).

17.5 Exercise. One can check that
´

dx |Duε| → per(K) as ε→ 0.

I’m gonna cheat even more in our proofs.

17.6 Theorem. The simple Sobolev inequality is equivalent to the isoperimetric inequality.

Proof. Suppose that the simple Sobolev inequality holds. For any u in C∞c (Rd) such that u = 1 on K, we
have

Cd

ˆ
dx |Du| ≥

[ˆ
dxud/(d−1)

](d−1)/d
≥ vol(K)(d−1)/d.

Taking the infimum over all u in the definition of perimeter yields

Cdper(K) ≥ vol(K)(d−1)/d,

as desired. The converse shall use two simple but important ideas from geometric measure theory: the layer
cake representation and the coarea formula. Layer cake is the observation that

ˆ
dx |u|d/(d−1) =

ˆ ∞
0

dt vol{|u|d/(d−1) ≥ t},

which is a basic result in geometric measure theory as well as a real analysis exercise for students every-
where. This is essentially an infinitesimal version of the Lebesgue integral. Rewrite this as
ˆ ∞
0

dt vol{|u|d/(d−1) ≥ t} =

ˆ ∞
0

dt vol{|u| ≥ t(d−1)/d} =
d

d− 1

ˆ ∞
0

ds vol{|u| ≥ s}s1/(d−1),

where we have taken s = t(d−1)/d. Next, the coarea formula says that
ˆ

dx |Du| =
ˆ ∞
0

dt per{|u| ≥ t}.

It is instructive to see what this means for the function u(x) = max{1 − |x− 1|, 0} when d = 1. The
isoperimetric inequality gives

ˆ ∞
0

dtper{|u| ≥ t} ≥ C−1d
ˆ ∞
0

dt vol{|u| ≥ t}(d−1)/d.
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Next, write H(t) := vol{|u| ≥ t}. Our goal is to prove that

f(T ) :=

(ˆ T

0
dtH(t)(d−1)/d

)d/(d−1)
≥ g(T ) :=

d

d− 1

ˆ T

0
dtH(t)t1/(d−1)

for all non-negative T , after which we’ll be done, because it’d imply that
ˆ ∞
0

dt vol{|u| ≥ t}(d−1)/d ≥
(

d

d− 1

ˆ ∞
0

ds vol{|u| ≥ s}s1/(d−1)
)(d−1)/d

=

(ˆ
dx |u|d/(d−1)

)(d−1)/d

by first taking T →∞ and then applying layer cake. The statement f(0) ≥ g(0) is immediate, and we shall
prove that f ′(T ) ≥ g′(T ) for all non-negative T . Showing this amounts to proving that

d

d− 1

(ˆ T

0
dtH(t)(d−1)/d

)1/(d−1)

H(T )(d−1)/d ≥ d

d− 1
H(T )T 1/(d−1)

by the fundamental theorem of calculus, which reduces to showing that
ˆ T

0
dtH(t)(d−1)/d ≥ H(T )(d−1)/dT.

But this follows from the fact that H(T ) is a non-decreasing function, concluding the proof.

Note that the proof of Theorem 17.6 shows that one can use the same constant Cd in both the Sobolev
and isoperimetric inequalities. Next time, I won’t just prove that two things are equivalent—I’ll actually
prove the isoperimetric inequality.

18 February 21, 2018

We’re talking about the Sobolev inequalities, right? Recall from Theorem 17.6 (along with Exercise 17.2)
that they’re equivalent to the isoperimetric inequality. Also recall that we plan to take a scenic route to
proving the Sobolev inequalities, though we shall also describe a simpler proof given in Brezis.

Proof of simple Sobolev. Recall from last time that we’ve already remarked that

u(x) = −
ˆ ∞
0

dt (Diu)(x+ tei),

and taking the triangle inequality yields

|u(x)| ≤
ˆ ∞
0

dt |Diu|(x+ tei) ≤
ˆ ∞
0

dt |Du|(x+ tei) ≤
ˆ
R

dyi |Du|(x+ yi),

where yi runs over Rei. Taking the product over integers 1 ≤ i ≤ d gives us

|u(x)|d/(d−1) ≤
d∏
i=1

(ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
.

Now, write x1, . . . , xd for the coordinates of x. Note that the y1-factor in the above bound does not change
as we vary x1, so we can pull it out when integrating with respect to x1:

ˆ
R

dx1 |u(x)|d/(d−1) ≤
(ˆ

R
dy1 |Du|(x+ y1)

)1/(d−1) ˆ
R

dx1

d∏
i=2

(ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
.
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Applying Hölder’s inequality to the (d− 1)-fold product shows this is bounded above by(ˆ
R

dy1 |Du|(x+ y1)

)1/(d−1) d∏
i=2

(ˆ
R

dx1

ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
.

Using the same reasoning to pull out the y2-factor when integrating over x2, we obtain
ˆ
R

dx2

ˆ
R

dx1 |u(x)|d/(d−1) ≤
(ˆ

R
dx1

ˆ
R

dy2 |Du|(x+ y2)

)1/(d−1) ˆ
R

dx2

[(ˆ
R

dy1 |Du|(x+ y1)

)1/(d−1)

·
d∏
i=3

(ˆ
R

dx1

ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
]

≤
(ˆ

R
dx1

ˆ
R

dy2 |Du|(x+ y2)

)1/(d−1)(ˆ
R

dx2

ˆ
R

dy1 |Du|(x+ y1)

)1/(d−1)

·
d∏
i=3

(ˆ
R

dx2

ˆ
R

dx1

ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
.

By collapsing the integrals over xj and yj together for j in {1, 2}, we see that this equals(ˆ
R

dx2

ˆ
R

dx1 |Du|(x)

)2/(d−1) d∏
i=3

(ˆ
R

dx2

ˆ
R

dx1

ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
.

Iteratively repeating this process shows that
ˆ
R

dxk · · ·
ˆ
R

dx1 |u(x)|d/(d−1) ≤
(ˆ

R
dxk · · ·

ˆ
R

dx1 |Du|(x)

)k/(d−1)
·

d∏
i=k+1

(ˆ
R

dxk · · ·
ˆ
R

dx1

ˆ
R

dyi |Du|(x+ yi)

)1/(d−1)
,

and taking k = d yields the desired result.

The above proof is pretty quick, and it even tells you that you can take the constantCd = 1 independently
of the dimension d (though we remark that this is a very non-ideal constant—one can do much better).
However, what I dislike about this proof is that it tells me nothing about the structure of our functions u.

Let’s now work towards an alternative proof.

Another proof of simple Sobolev. In our first step, we could’ve actually used the fact that

u(x) =

ˆ ∞
0

dt ν · (Du)(x− tν)

for any unit vector ν in Rd. Therefore we can integrate over all such ν to obtain

u(x) =
1

|∂B1|

ˆ
∂B1

dν

ˆ ∞
0

dt ν · (Du)(x− tν).

This expression basically amounts to an integral over polar coordinates. Setting y = tν and changing back
to rectangular coordinates then gives us

u(x) =
1

|∂B1|

ˆ
Rd

dy
y

|y|d
· (Du)(x− y),

41



MATH 313 — Functional Analysis Siyan Daniel Li

where this integral converges at infinity because u is compactly supported and near zero because y/|y|d is
an L1-function in any bounded region. Taking absolute values yields

|u(x)| ≤ 1

|∂B1|

ˆ
Rd

dy |x− y|1−d|Du|(y),

where we made the change of variables y 7→ x − y. Now Theorem 2.4, Example 2.9, and the density of
compactly supported smooth functions in Lp indicates that

‖u‖Ld/(d−1) = sup
v∈C∞c (Rd)
‖v‖

Ld
≤1

ˆ
dxuv.

Combining this with our previous inequality yields

‖u‖Ld/(d−1) ≤
1

|∂B1|
sup

v∈C∞c (Rd)
‖v‖

Ld
≤1

ˆ
Rd

dx

ˆ
Rd

dy v(x)|x− y|1−d|Du|(y).

This leads us to the Hardy–Littlewood–Sobolev inequality.

18.1 Theorem (Hardy–Littlewood–Sobolev). If p and q are greater than 1, λ lies in (0, d), and 1
p + λ

d + 1
q =

2, then there exists a positive Cd,λ,p,q such that, for all f and g in C∞c (Rd), we have
ˆ
Rd

dx

ˆ
Rd

dy f(x)|x− y|−λg(y) ≤ Cd,p,q,λ‖f‖Lp‖g‖Lq .

18.2 Exercise. Show that Hardy–Littlewood–Sobolev implies simple Sobolev.8

I claim that Hardy–Littlewood–Sobolev is a more fundamental statement than just Sobolev, even though
its statement is way more complex. The Hardy–Littlewood–Sobolev inequality relates the Lp- and Lq-norms
of what’s essentially the convolution of two functions with their original norms, and it just happens that our
very singular process of taking derivatives (which yields the Sobolev inequality) fits the bill.

The proof of Hardy–Littlewood–Sobolev requires the Vitali covering lemma, which y’all unfortunately
covered last quarter. I’m teaching measure theory next quarter, and I really wanted to give the proof!

18.3 Lemma (Vitali). If B is a collection of balls, and supB(x,r)∈B r <∞, then there exist a subcollection
B′ ⊆ B consisting of disjoint balls such that⋃

B∈B
B ⊆

⋃
B(x,r)∈B′

B(x, 5r).

We’ll use this to give some bounds on the Hardy–Littlewood maximal function, which you should also
remember from last quarter.

18.4 Definition. Let u be a function in C∞c (Rd). Then its Hardy–Littlewood maximal function is

(Mu)(x) := sup
B(y,r)3x

1

|B(y, r)|

ˆ
B(y,r)

dz |u|(z).

ThereforeMu expresses how large the locally averaged values of u can be. Now recall some bounds.
8Plug in λ = d− 1, f = v, and g = Du.
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18.5 Proposition. The following bounds hold:

• for all positive λ, we have |{Mu > λ}| ≤ Cd‖u‖L1/λ for some Cd depending only on d,

• ‖Mu‖L∞ ≤ ‖u‖L∞ , which is trivial,

• for any 1 < p ≤ ∞, we have ‖Mu‖Lp ≤ Cd,p‖u‖Lp , where Cd,p only depends on d and p.

We call the last point the interpolated strong Lp bound, as. . . that’s exactly what it is.

Proof. It suffices to show this for non-negative u. Our first goal is to prove that

|{Mu > λ}| ≤ Cd
‖u · 1{u≥λ/2}‖L1

λ
,

which would imply our first bullet point. Begin by covering {Mu > λ} with balls B(x, r) satisfying
1

|B(x,r)|
´
B(x,r)dxu ≥ λ. Note that for such a ball B(x, r), we have

1

|B(x, r)|

ˆ
B(x,r)

dxu · 1{u≥λ/2} ≥ λ/2,

because taking the same integral with 1{u≤λ/2} yields a number that is at most λ/2. Choose the B′ corre-
sponding to this covering B as in the Vitali covering lemma, which satisfies

|{Mu > λ}| ≤

∣∣∣∣∣∣
⋃
B∈B

B

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃

B(x,r)∈B′
B(x, 5r)

∣∣∣∣∣∣ ≤ 5d

∣∣∣∣∣∣
⋃

B′∈B′
B′

∣∣∣∣∣∣.
From here, we get

‖u · 1{u≥λ/2}‖L1 =

ˆ
Rd

dxu · 1{u≥λ/2} ≥
∑
B′∈B′

ˆ
B′

dxu · 1{u≥λ/2} ≥
∑
B′∈B′

|B′|λ/2

≥ (λ/2)

∣∣∣∣∣∣
⋃

B′∈B′
B′

∣∣∣∣∣∣ ≥ (λ/2)5−d|{Mu > λ}|.

Setting Cd = 2 ·5d yields the desired result. Skipping over the second bullet point (which is immediate) and
heading to the third one, we have

ˆ
Rd

dx (Mu)p ≤ 2p
∑
n∈Z
|{2n <Mu ≤ 2n+1}|2np ≤ 2p

∑
n∈Z
|{2n <Mu}|2np.

We can then apply our intermediary result to bound the above by

2pCd
∑
n∈Z
‖u · 1{u≥2n−1}‖L12n(p−1) ∼ ‖u‖Lp ,

where we use the fact that p > 1 to ensure that p− 1 > 0, and we collapse the overlapping (p− 1)-th power
terms together to form the necessary p-th power terms.

We’ll talk next time more about applying Proposition 18.5 to the proof of Hardy–Littlewood–Sobolev.
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19 February 23, 2018

Recall that while we proved the Sobolev inequality last time, we also wanted to use the Hardy–Littlewood–
Sobolev inequality to give another proof. Of course, we had better actually prove the Hardy–Littlewood–
Sobolev inequality first.

Proof of Hardy–Littlewood–Sobolev. This inequality is basically saying that if you convolve with a certain
kernel, you can bound the result by theLq-norm of something that’s roughly the Hölder conjugate. It suffices
to prove the inequality for non-negative f . Let’s set up some notation: define the function

h(y) :=

ˆ
dx f(x)|x− y|−λ,

and take r such that 1
r + 1

q = 1. It suffices to show that ‖h‖Lr ≤ C‖f‖Lp for some positive constant C
independent of f , as we can then use Example 2.9 to obtain the final inequality. We’ll use a number of
ingredients to prove our desired result:

1. Layer cake for |x− y|−λ: the layer cake here ends up showing that

h(y) =

ˆ ∞
0

dr rd−λ−1

[
1

|B(y, r)|

ˆ
B(y,r)

dx f(x)

]
,

which you can also show for any radially symmetric kernel in place of |x− y|−λ.

2. Let’s (immediately) bound our average from ingredient 1: we definitionally have

1

|B(y, r)|

ˆ
B(y,r)

dx f(x) ≤Mf(y)

for any positive r.

3. Now let’s use a less trivial bound: applying Hölder’s inequality to f · 1 yields

1

|B|

ˆ
B
f ≤ 1

|B|

(ˆ
B

1p/(p−1)
)(p−1)/p(ˆ

B
fp
)1/p

≤ |B|−1/p‖f‖Lp = Dr−d/p‖f‖Lp ,

where D is some constant independent of f (coming from the formula for the volume of balls), and B is
any ball of radius r.

This is a pretty classic trick in analysis: the bound in ingredient 3 decays very fast but is singular near 0, so
near 0 we use the bound in ingredient 2. For any positive r∗ (which serves as a cut-off between these two
regimes), using ingredient 1 then nets us

h(y) ≤
ˆ r∗

0
dr rd−λ−1Mf(y) +D

ˆ ∞
r∗

dr rd−λ−1r−d/p‖f‖Lp

=
1

d− λ
rd−λ∗ Mf(y) +

D

d− λ− d/p
r
d−λ−d/p
∗ ‖f‖Lp ,

provided that d− λ− 1 > −1 and d− λ− 1− d/p < −1. The fact that λ lies in (0, d) guarantees the first
inequality, and

1

p
+
λ

d
+

1

q
= 2 =⇒ d

p
+ λ+

d

q
= 2d =⇒ 0 >

d

q
− d = d− λ− d

p
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guarantees the second inequality, so this calculation is valid. Setting rd/p∗ = ‖f‖Lp/Mf(y) lets us combine
the two above terms, and we obtain

h(y) ≤
(

1

d− λ
+

D

d− λ− d/p

)
‖f‖(p/d)(d−λ)Lp Mf(y)1−(p/d)(d−λ).

Let’s try to clean up the exponents a bit:

1− p

d
(d− λ) = 1− p+

λp

d
= 1− p+

(
2p− 1− p

q

)
= p− p

q
= p · q − 1

q
=
p

r
,

where we used the fact that 1 + pλ/d+ p/q = 2p. Plugging this into our bound yields

h(y) ≤
(

1

d− λ
+

D

d− λ− d/p

)
‖f‖1−p/rLp Mf(y)p/r

=⇒
ˆ

dy h(y)r ≤
(

1

d− λ
+

D

d− λ− d/p

) ˆ
dy ‖f‖r−pLp Mf(y)p

=

(
1

d− λ
+

D

d− λ− d/p

)
‖f‖r−pLp

ˆ
dyMf(y)p

≤
(

1

d− λ
+

D

d− λ− d/p

)
Cpd,p‖f‖

r−p
Lp ‖f‖

p
Lp

by the third bullet point of Proposition 18.5, so taking

C =

(
1

d− λ
+

D

d− λ− d/p

)1/r

C
p/r
d,p

gives the desired result, concluding the proof of the Hardy–Littlewood–Sobolev inequality.

Let’s take a step back and see what we did. To prove our goal, we used our layer cake formulation to
break our function down into two bounds, and we chose the way we broke it down (as well as our exponents)
exactly to piece them together the right way. We’re relating different Lp-norms, so it makes sense to try
using Hölder’s inequality. Altogether, this makes for a “natural” proof of the Sobolev inequality, which you
could’ve come up with just by sitting down and trying it, say, if you were stuck on a desert island.

Next time, we’ll use the Sobolev inequality to give examples of compact operators as well as finally
answer our question of vibrating drums of arbitrary shape, as we have long promised.

20 February 26, 2018

I want to show today that the inverse Laplacian is compact. For this, I will need to introduce Sobolev spaces.

20.1 Definition. Let U be a bounded open subset of Rd. For any positive integer k and real 1 ≤ p <∞, we
write W k,p(U) for the completion of C∞(U) with respect to the norm

‖u‖Wk,p(U) :=
∑
|α|≤k

‖Dαu‖Lp(U),

where α runs over multi-indices of size |α| at most k, and Dα denotes the corresponding partial derivative.
Write W k,p

0 (U) for the completion of C∞c (U) with respect to the same norm formula, where we view
C∞c (U) ⊆ C∞(U) and hence W k,p

0 (U) ⊆ W k,p(U) via extension-by-zero. These are the Sobolev spaces.
We also write Hk(U) for W k,2(U), and we write Hk

0 (U) for W k,2
0 (U).
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You’ve seen the d = 1 and U = (0, 1) version of these spaces already on your homework. Note that we
have H0(U) = L2(U) in particular. We think of W k,p

0 (U) as the elements of W k,p(U) that are zero on ∂U .

20.2 Remark. I’m cheating a bit here—one usually first defines Sobolev spaces using weak derivatives, and
then it’s a theorem of Friedrichs that this definition matches the one we have given above. Because I don’t
want to discuss the measure-theoretic details of Friedrichs’s theorem, I’ll just define Sobolev spaces in terms
of the result of Friedrichs’s theorem.

Let’s finally use the Sobolev inequalities to give examples of compact operators.

20.3 Theorem (Rellich). If 1 ≤ p < d and 1 ≤ q < p∗, then W 1,p
0 (U) ⊆ Lq(U), and the inclusion map is

compact.

Proof. For any u in C∞c (U), extension by zero allows us to interpret it as a function in C∞c (Rd). The
Sobolev inequality then yields

‖u‖Lp∗ (U) = ‖u‖Lp∗ (Rd) ≤ ‖Du‖Lp(Rd) = ‖Du‖Lp(U),

where we have taken the constant in the Sobolev inequality to be 1. Because U is bounded and q < p∗, we
have ‖u‖Lq(U) ≤ |U |

1/q−1/p∗‖u‖Lp∗ (U) by Hölder’s inequality, and combining this with the above shows
that our inclusion of interest is bounded.

To prove that our inclusion of interest is also compact, we first want to smooth out u. Let ε be a positive
number, and consider the function

uε := u ∗ ρε,

where ρε(x) := ε−dρ(ε−1x) for some non-negative bump function ρ in C∞c (B1) with integral 1. Our goal is
to show that ‖uε‖Lq , ‖D(uε)‖L∞ , and ‖uε − u‖Lq are bounded by some nice combination of ε and ‖u‖W 1,p .
Given any h in Rd, write (τhu)(x) := u(x+ h) for the translation of u by h. We have

(τhu− u)(x) = u(x+ h)− u(x) =

ˆ 1

0
dt h · (Du)(x+ th)

=⇒ ‖τhu− u‖L1 ≤
ˆ
Rd

dx

ˆ
[0,1]

dt |h · (Du)(x+ th)| ≤ |h|
ˆ
[0,1]

dt

ˆ
Rd

dx |Du|(x+ th) = |h|‖Du‖L1

by our favorite representation of u in terms of Du. Recall that the definition of convolution gives us

uε(x) = (u ∗ ρε)(x) =

ˆ
Rd

dh ρε(h)(τhu)(x) =⇒ ‖uε − u‖L1 =

ˆ
Rd

dx

∣∣∣∣ˆ
Rd

dh ρε(h)(τhu)(x)− u(x)

∣∣∣∣
=

ˆ
Rd

dx

∣∣∣∣ˆ
Rd

dh ρε(h)
[
(τhu)(x)− u(x)

]∣∣∣∣ ≤ ˆ
Rd

dh ρε(h)

ˆ
Rd

dx
∣∣(τhu)(x)− u(x)

∣∣ ≤ |ε|‖Du‖L1 ,

because ρε has integral 1 and is supported on Bε. By the Sobolev inequality, the interaction between Lp-
norms and convolution, and the fact that ρε has integral 1, we have

‖uε − u‖Lp∗ ≤ ‖D(uε − u)‖Lp ≤ ‖Du ∗ ρε‖Lp + ‖Du‖Lp ≤ (‖ρε‖L1 + 1)‖Du‖Lp = 2‖Du‖Lp .

Our goal is to have control over the Lq-norm, and because 1 ≤ q < p∗, we can interpolate our bounds for 1
and p∗ to obtain one for q. Apparently you didn’t do interpolation of Lp-spaces last quarter, so you’ll want
to learn about that and then do the following exercise.

20.4 Exercise. Show that there exist some positive C and θ that depend only on d, p, and q such that

‖uε − u‖Lq ≤ Cε
θ‖Du‖Lp .
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Furthermore, we have

|uε(x)| =
∣∣∣∣ˆ

Rd
dh ρε(h)u(x+ h)

∣∣∣∣ =⇒ ‖uε‖L∞ ≤ ‖ρε‖L∞‖u‖L1 ≤ ‖ρ‖L∞ε
−d‖u‖W 1,p

by the definition of ρε in terms of ρ. We also have

(D(uε))(x) = D

ˆ
Rd

dh ρε(h)u(x+ h) = D

ˆ
Rd

dh ρε(h− x)u(h) = −
ˆ
Rd

dh (Dρε)(h− x)u(h)

by making the change of variables h 7→ h− x and applying integration by parts. Taking the L∞-norm and
decomposing ρε in terms of ε and ρ therefore yields

‖D(uε)‖L∞ ≤ ‖Dρε‖L∞‖u‖L1 ≤ ‖Dρ‖L∞ε
−1−d‖u‖W 1,p .

With all these ingredients in hand, let {un}n be a sequence in W 1,p
0 (U) with norm at most 1. By fixing ε

and applying our bounds

‖uε‖L∞ ≤ ‖ρ‖L∞ε
−d‖u‖W 1,p and ‖D(uε)‖L∞ ≤ ‖Dρ‖L∞ε

−1−d‖u‖W 1,p

to the sequence {un}n, we see that the mollified {uεn}n is pointwise pre-compact and equicontinuous,
respectively. Therefore we may apply Arzelà–Ascoli to {uεn}n, so we can replace {un}n with a subsequence
{ũn}n such that ũεn converges uniformly in C(U). By taking ε = 1/m and letting m vary over all positive
integers and diagonalizing, we can further refine {un}n such that the mollified functions un ∗ρ1/m converge
uniformly as n→∞.

I claim that {un}n is Cauchy in the Lq-norm. To see this, use the triangle inequality to take

‖un − uk‖Lq ≤ ‖un − un ∗ ρ1/m‖Lq + ‖uk − uk ∗ ρ1/m‖Lq + ‖un ∗ ρ1/m − uk ∗ ρ1/m‖Lq
≤ Cm−θ(‖Dun‖Lp + ‖Duk‖Lp) + ‖un ∗ ρ1/m − uk ∗ ρ1/m‖Lq
≤ 2Cm−θ + ‖un ∗ ρ1/m − uk ∗ ρ1/m‖Lq ,

because the W 1,p-norms of the un are bounded by 1. In order to ensure that our result is less than some
positive δ, choosem sufficiently large such that 2Cm−θ < 1

2δ, and the uniform convergence of {un∗ρ1/m}n
allows us to see that the other term is less than 1

2δ for large n and k. This concludes the proof thatW 1,p
0 (U) ⊆

Lq(U) is a compact linear map.

The main point of the proof of Rellich’s theorem (and power of the Sobolev inequalities) is that, if you
have control over the W 1,p-norm, then you can have control of ε-mollifications of functions (up to a certain
power of ε).

Next, let’s cover the Poincaré inequality.

20.5 Theorem (Poincaré). There exists a positive number CU such that, for all u in C∞c (U),

‖u‖L2(U) ≤ CU‖Du‖L2(U).

Proof. Let’s just prove it in the d ≥ 3 case. Here, we have

2d > 2d− 4 =⇒ 2∗ =
2d

d− 2
> 2,

where the d ≥ 3 hypothesis allows us to preserve order when dividing by d − 2. Therefore the Hölder and
Sobolev inequalities yield

‖u‖L2(U) ≤ |U |
1/2−1/2∗‖u‖L2∗ (U) ≤ |U |

1/2−1/2∗‖Du‖L2 ,

so we can take CU = |U |1/2−1/2
∗
.
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21 February 28, 2018

Recall that we discussed the Sobolev spaces W k,p and Hk last time, as well as the Rellich’s theorem and
the Poincaré inequality. We can now discuss eigenvalues of the Laplacian and thus finally return to our
motivating question from the beginning of the course.

What is the Laplacian? Let U be an open bounded subset of Rd.

21.1 Definition. The Laplacian is the linear operator ∆ : C∞c (U)−→C∞c (U) given by

∆u :=
d∑
i=1

∂2i u,

where ∂i denotes the partial derivative with respect to the i-th coordinate.

It turns out that we can’t interpret the Laplacian as a continuous operator onC∞c (U) in any sense, but we
will be able to show that the inverse Laplacian is continuous and even compact when considered on H0

0 (U).
For this, we first turn to the variational formulation of the Laplacian.

For any f in C∞c (U), we want to find u in C∞c (U) that solves

−∆u = f, (1)

which amounts to finding an inverse image for f under the Laplacian, by taking negations. This is a point-
wise equality, so by using approximations to the identity at points in U , we see that it’s equivalent to solving

d∑
i=1

ˆ
U

(∂iϕ)(∂iu) =
d∑
i=1

ˆ
U
−ϕ∂2i u =

ˆ
U
−ϕ∆u =

ˆ
U
ϕf (2)

for all ϕ in C∞c (U), where we have used integration by parts. We want to use a Hilbert space structure to
solve our problem, so we reformulate this as

〈∂iϕ, ∂iu〉0 = 〈ϕ, f〉0, (3)

where we define our brackets as follows.

21.2 Definition. For any f and g in H0
0 (U) (respectively H1

0 (U)), we write

〈f, g〉0 :=

ˆ
U
fg (respectively 〈f, g〉1 :=

d∑
i=1

ˆ
U

(∂if)(∂ig))

Note that 〈·, ·〉0 is precisely the inner product on H0
0 (U) ⊆ H0(U) = L2(U).

21.3 Remark. And as for 〈·, ·〉1, recall that for any f in C∞c (U), we have

‖f‖H1(U) = ‖f‖L2(U) +
d∑
i=1

‖∂if‖L2(U).

Now note that 〈f, f〉1 =
∑d

i=1 ‖∂if‖
2
L2(U) = ‖Df‖2L2(U), and by the Poincaré inequality, we have

‖f‖L2(U) ≤ CU‖Df‖L2(U)

for some positive CU depending only on U . One can use this to show that the norm induced by 〈·, ·〉1 is
equivalent toH1-norm on C∞c (U), which allows us to equipH1

0 (U) with a Hilbert space structure by taking
the completion with respect to the norm induced by 〈·, ·〉1.
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Our new norm 〈·, ·〉1 allows us to rewrite (3) as

〈ϕ, u〉1 = 〈ϕ, f〉0. (4)

We can finally invert the Laplacian. From now on, assume that ∂U has measure zero.9

21.4 Theorem. There exists a bounded linear operatorA : H0
0 (U)−→H1

0 (U) such that 〈f,Ag〉1 = 〈f, g〉0
for all f in H1

0 (U) and g in H0
0 (U).

Proof. Fix g in H0
0 (U) = L2(U), where the values on ∂U don’t matter because ∂U has measure zero.

The map f 7→ 〈f, g〉0 is a bounded linear functional on the Hilbert space H1
0 (U), so Riesz representation

indicates that there exists a unique Ag in H1
0 (U) such that 〈f, g〉0 = 〈f,Ag〉1 for all f in H1

0 (U). We see
that ‖Ag‖H1

0 (U) ≤ ‖g‖H0
0 (U), and uniqueness forces A to be linear. Thus A is also bounded, as desired.

21.5 Remark. The equivalence of Equation (1) and Equation (4) implies that u = Af , so A is the (negation
of) the inverse Laplacian, in the sense that A(−∆)u = u. To prove that A is also a right inverse of −∆, we
need regularity theory, which we’ll return to if we have time at the end. For now, we will indeed refer to A
as (−∆)−1 and call it the inverse Laplacian.

To prove more about A, we want to know more about our Sobolev spaces. And what do we know about
these Sobolev spaces? Well, a good amount, actually!

21.6 Proposition.

• The inverse Laplacian (−∆)−1 : H0
0 (U)

A−→H1
0 (U) ↪−→ H0

0 (U) is a compact bounded operator,

• The inverse Laplacian is symmetric.

Proof. Let’s just prove it for d ≥ 3. Here, Rellich’s theorem tells us that the inclusion H1
0 (U) ⊆ L2(U) =

H0
0 (U) is a compact map. Therefore the compositionH0

0 (U)−→H1
0 (U)−→H0

0 (U) is compact via Lemma
9.8, because the first map is bounded by Theorem 21.4. As for symmetry, note that

〈f,Ag〉1 = 〈f, g〉0 = 〈g, f〉0 = 〈g,Af〉1 = 〈Af, g〉1

for all f and g in H1
0 (U). So the inverse Laplacian is symmetric on H1

0 (U). As H1
0 (U) is dense in H0

0 (U),
we obtain the same result in all of H0

0 (U).

Now that we know that the inverse Laplacian is a compact symmetric operator, we can apply our wealth
of spectral theory to it. First off, what is its kernel? We have

f ∈ ker(−∆)−1 ⇐⇒ 〈g, (−∆)−1f〉0 = 0 for all g ∈ H0
0 (U) ⇐⇒ 〈g, (−∆)−1f〉1 = 0 for all g ∈ H1

0 (U)

by using the density of H1
0 (U) in H0

0 (U) as well as the Poincaré inequality to see that the 〈·, ·〉1 and 〈·, ·〉0
norms are compatible. Equation (4) then indicates that this is equivalent to saying

〈g, f〉0 = 0 for all g ∈ H1
0 (U) ⇐⇒ 〈g, f〉0 = 0 for all g ∈ H0

0 (U) ⇐⇒ f = 0

by another density argument. In other words, ker(−∆)−1 is trivial, and it’s essentially due to the Poincaré
inequality.

From here, applying the spectral theorem yields an orthonormal basis {ϕk}k ofH1
0 (U) and non-increasing

positive sequence {λk}k in R such that λk → 0 and (−∆)−1ϕk = λkϕk. We haven’t yet proven that A is a
right inverse to −∆, but if we had, we could then deduce that −∆ϕk = λ−1k ϕk, so {ϕk}k would form the

9This was not originally assumed, but it seems necessary to make these arguments work, and certainly this is not true for all U .
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spectrum for our drum on U . Of course, we want more properties about our ϕk, like smoothness (which is
the topic of regularity theory) and the distribution of λk, but this spectrum result is great already.

Well, let’s begin asking these additional questions. For instance, how are the λk distributed? The answer
is something called the Weyl law. For any positive T , write

N(T ) := #{k : λ−1k ≤ T}.

21.7 Theorem (Weyl). We have

lim
T→∞

N(T )

T d/2
= (2π)−d · |BRd

1 | · |U |.

The Weyl law is the consequence of the following two lemmas.

21.8 Lemma. Let R be a positive number. Then the Weyl law holds true for U = (0, R)d.

Sketch of the proof. In this case, we have an explicit eigenbasis for ∆ in terms of sines and cosines, was
given in the first lecture and can be obtained from Fourier analysis. Therefore we can explicitly demonstrate
the Weyl law in this case.

21.9 Exercise. Explicitly do the computation necessary to prove Lemma 21.8.

Our next lemma is a variational reformulation of N(T ).

21.10 Lemma. Returning to the setting of general U , we have

N(T ) = sup{dimV : V ⊆ H0
0 (U) a subspace such that ‖(−∆)−1u‖0 ≥ T

−1‖u‖0 for all u ∈ V }.

Sketch of the proof. This follows from the Courant–Friedrichs formula—for more information on this for-
mula, see any of your course texts.

Proof of the Weyl law. If U contains two disjoint open subsets U1 and U2 such that U r (U1 ∪ U2) has
measure zero, then Lemma 21.10 indicates that NU1(T ) + NU2(T ) ≤ NU (T ). Furthermore, we also have
H1

0 (U1) ⊕ H1
0 (U2) ⊆ H1

0 (U) via extension by zero. Therefore, by sandwiching U between progressively
finer cubes and using Lemma 21.8, the general case follows.

22 March 2, 2018

Today, we move on to the discussion of the regularity of the spectrum {ϕk}k of (−∆)−1. This spectrum lies
in H1

0 (U), but instead of having limits of functions, we want to obtain honest-to-goodness functions that we
can evaluate at points. This is the subject of regularity theory, which is an incredibly deep topic.

22.1 Theorem. Let U be an open bounded subset of Rd whose boundary is smooth. If u in H1
0 (U) is an

eigenvector for the negative Laplacian −∆u = λu, then u is actually in C∞(U).

While we could prove Theorem 22.1 in its entirety if we used all our remaining class periods, we’ll only
prove parts of it because I want to cover other topics.

22.2 Theorem. Let u lie in H1(B2), let f lie in Hk(B2), and suppose that −∆u = f . Then the restriction
of u to B1 actually lies in Hk+2(B1).
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In other words, we can boost the regularity of values of the inverse Laplacian by going into a smaller
sub-ball. There’s actually a more sophisticated approach for general U in place ofB2, but that requires some
more technical definitions, so I won’t do it.

The idea of the proof is that, for all u in C∞c (Rd), we have

‖D2u‖2L2 =

d∑
i,j=1

ˆ
Rd

(DiDju) · (DiDju).

We can use integration by parts twice in order to move the Di to one factor and the Dj to the other, and the
two signs from these integrations by parts cancel. This then yields

d∑
i,j=1

ˆ
Rd

(DiDiu) · (DjDju) =

ˆ
Rd

(∆u)2 = ‖∆u‖2L2 .

From here, we can apply the Sobolev inequalities to conclude.

22.3 Remark. Everything here works for more general operators

Lu :=
d∑

i,j=1

Di · aij ·Dju,

where (aij)ij is a (d× d)-symmetric matrix with entries in smooth functions on Rd such that there exists a
Λ ≥ 1 satisfying

Λ−1 id ≤ (aij)ij ≤ Λ id,

where the inequalities mean that the difference is positive definite. In this context, Lu = f becomes
equivalent to saying

d∑
i,j=1

〈Diu, a
ijDjϕ〉 = 〈f, ϕ〉

for all ϕ in C∞c (U). And by gluing these local situations together, one can show that this discussion actually
all works for operators of this form on arbitrary Riemannian manifolds. This is elliptic regularity.

Of course, we can’t literally port these ideas over, since u is not differentiable, so we don’t have objects
like Du or Diu. We rectify this problem by first introducing some finite difference derivatives.

22.4 Definition. Let g lie in L2(B2), and let h be a number satisfying 0 < |h| < 1. We define the function
Dh
i g in L2(B2−|h|) via

(Dh
i g)(x) :=

g(x+ hei)− g(x)

h
.

22.5 Remark. Observe that summation by parts (which is the discretized version of integration by parts!)
implies that

〈Dh
i g, k〉L2(B1) = −〈g,D−hi k〉L2(B1+hei)

for all k inC∞c (B1). This precisely analogous to integration by parts, except no actual derivatives are needed
because we’re just taking difference quotients.
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Remark 22.5 allows us to obtain Lemma 22.7 below, but let’s first prove an easier lemma.

22.6 Lemma. Let g lie in H1(B2). Then ‖Dh
i g‖L2(B1)

≤ ‖Dig‖L2(B2)
.

Proof. We’ve seen how to prove this before—we have

(Dh
i g)(x) =

g(x+ hei)− g(x)

h
= h−1

ˆ 1

0
dt h(Dig)(x+ th).

Integrating over B1 and using Jensen’s inequality yields the desired result.

A much more interesting result than Lemma 22.6 is the following partial converse, for which we shall
actually need to use some of the functional analysis we learned.

22.7 Lemma. If g lies in L2(B2) and there exists a positive α such that ‖Dh
i g‖L2(B1)

≤ α for all integers
1 ≤ i ≤ d and numbers 0 < |h| < 1, then g lies in H1(B1), and ‖Dig‖L2(B1)

≤ α.

Proof. By separable Banach–Alaoglu, we can find a sequence hk → 0 and some g̃i in H1(B1) such that
Dhk
i g → g̃i weakly in L2(B1), because the reflexivity of L2(B1) allows us to convert weak-∗ convergence

into weak convergence. We now want to show that g̃i is the i-th derivative of g. Recall from Remark 22.5
that

〈g,D−hki ϕ〉L2(B1+hkei) = −〈Dhk
i g, ϕ〉L2(B1)

for all ϕ in C∞c (B1). The left-hand side equals 〈g, τhkeiD−hkϕ〉L2(B1), and taking k → ∞ shows that this
converges to the equation

〈g,Diϕ〉L2(B1) = −〈g̃i, ϕ〉L2(B1),

because the hk → 0 and theDhk
i g → g̃i. Next, we mollify. Let ε be positive, and let ηε be the corresponding

standard mollifier (which we used in the proof of Rellich’s theorem, under the name ρε). Then

−〈Di(g ∗ ηε), ϕ〉L2(B1) = 〈g ∗ ηε, Diϕ〉L2(B1) = −〈g̃i ∗ ηε, ϕ〉L2(B1),

via integration by parts, and since both g ∗ ηε and g̃i ∗ ηε are smooth, we see that

g̃i ∗ ηε = Di(g ∗ ηε) = (Dig) ∗ ηε.

The fact that the g and g̃i are L2 implies that their mollified versions converge to the originals strongly in
L2(B1), concluding the proof.

I now have ten minutes to prove elliptic regularity. . . let’s do this.

Proof of Theorem 22.2. The idea shall be to prove a uniform bound on ‖Dh
i Dju‖

2

L2(B1)
, for which we

want to choose the right test function. We choose ψ in C∞c (B2) such that ψ = 1 on B1, and we form
ϕ := D−hj ψ2Dh

j u. Because we multiplied by ψ twice in the middle, this ϕ actually lies in H1
0 (B2). Now

recall that we have

〈Diu,Diϕ〉 = 〈f, ϕ〉
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for all ϕ in C∞c (B2) and hence H1
0 (B2) by density. Plugging in our chosen ϕ to the left-hand side yields

〈Diu,DiD
−h
j ψ2Dh

j u〉 = 〈Diu,D
−h
j Diψ

2Dh
j u〉 = −〈Dh

jDiu,Diψ
2Dh

j u〉

= −〈Dh
jDiu, ψ

2Dh
jDiu〉 − 〈Dh

jDiu, 2ψ(Diψ)Dh
j u〉

≤ −
ˆ
ψ2|Dh

jDiu|
2 −
ˆ

(Dh
jDiu)2ψ(Diψ)Dh

j u.

Cauchy’s inequality shows that this is bounded by

−1

2

ˆ
ψ2|Dh

jDiu|
2

+ Cψ

ˆ
|Dh

j u|
2
,

where Cψ is a positive constant depending on ψ. We obtain a similar bound on the right-hand side in terms
of Dψ

´
|Dh

j u|
2 and f2, as desired, where Dψ is another positive constant depending on ψ.

23 February 5, 2018

The note-taker missed class today and thanks Hao Billy Lee for letting him consult his notes.
We’ll conclude the course with a discussion of ordinary differential equations with values in a Banach

space! We begin by stating the following theorem, whose statement might be confusing, before explaining
the objects involved.

23.1 Theorem. Let X be a Banach space, let f : X −→X be a Lipschitz function, and let x be a point in
X . Then there exists a unique continuous map y : [0,∞)−→X such that

y(t) = x+

ˆ t

0
ds f(y(s))

for all t in [0,∞).

When does Theorem 23.1 makes sense?

(1) For any Banach space X and continuous function u : [0, T ]−→X , the Riemann integral
´ T
0 ds u(s)

makes sense, where one emulates the usual construction of Riemann integration to define it.

(2) In a similar manner, one can construct derivatives of continuous functions u : [0, T ]−→X (if they
exist), and Theorem 23.1 is equivalent to saying that

y′(t) = f(y(t)) and y(0) = x

for all t in [0,∞).

Proof of Theorem 23.1. Let K be the Lipschitz constant of f , and let Y be the space C([0, 1], X) equipped
with the norm ‖y‖Y := sup0≤t≤1 e

−αt‖y(t)‖X , where α := 2K. We define a map I : Y −→Y via

(Iy)(t) := y(0) +

ˆ t

0
ds f(y(s)).

For any y and ỹ in Y satisfying y(0) = ỹ(0), we have

‖(Iỹ − Iy)(t)‖X =

∥∥∥∥∥
ˆ t

0
ds f(ỹ(s))− f(y(s))

∥∥∥∥∥
X

≤
ˆ t

0
ds ‖f(ỹ(s))− f(y(s))‖X ≤ K

ˆ t

0
ds |ỹ(s)− y(s)|

≤ K
ˆ t

0
ds eαs‖ỹ − y‖Y =

K

α
(eαt − 1)‖ỹ − y‖Y ≤

1

2
eαt‖ỹ − y‖Y .
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Therefore ‖Iỹ − Iy‖Y ≤
1
2‖ỹ − y‖Y , so I is a contraction mapping on the subspace of Y consisting of y

satisfying y(0) = x. The contraction mapping theorem implies that I has a unique fixed point y on this
subspace, and y satisfies the desired properties. By dilating our interval and passing to [0, T ] for T → ∞,
we obtain the desired result.

We would like to apply Theorem 23.1 to the heat equation

∂tv = ∆v

by taking f = ∆, but there are a few problems with this: ∆ isn’t defined on our entire function space X of
interest, and it’s also not bounded. We shall introduce the formalism of Yosida approximation to deal with
both of these problems.

Let H be a Hilbert space, let D(A) be a (linear) subspace of H , let A : D(A)−→H be a linear map,
and let x lie in D(A). Our goal is to find a y : [0,∞)−→D(A) that solves

y′(t) +Ay(t) = 0 and y(0) = x

for all t in [0,∞)

23.2 Example. In our heat equation setup, take H = L2(Rd), D(A) = H2(Rd) ⊂ L2(Rd), and A = −∆.

The idea behind Yosida approximation is to build a bounded approximation to A, which we can then
apply Theorem 23.1 to.

23.3 Definition. We say that the map A is maximal monotone if 〈Ax, x〉H ≥ 0 for all x in D(A) and
im(id +A) = H .

23.4 Example. It is known that our heat equation setup has A being maximal monotone.

The following lemma is crucial for our discussion of maximal monotonicity.

23.5 Lemma. Suppose A is maximal monotone. Then

(1) D(A) is dense in H ,

(2) A is a closed map,

(3) for all positive λ, the map id +λA : D(A)−→H is a bijection, and ‖id +λA‖ ≤ 1.

Proof.

(1) Let x lie in H , and choose y in D(A) such that x = y +Ay. If x ⊥ D(A), then we have

0 = 〈x, y〉 = 〈y +Ay, y〉 = ‖y‖2 + 〈Ay, y〉 ≥ ‖y‖2.

Therefore y and hence x is equal to zero.

(2) Let λ be positive. I claim that if id +λA is surjective, then it is in fact a bijection such that ‖(id +λA)−1‖ ≤
1. To see this, suppose that x := y + λAy = z + λAz for some y and z in D(A). Then

0 = 〈(y − z) + λA(y − z), y − z〉 = ‖y − z‖2 + λ〈A(y − z), y − z〉 ≥ ‖y − z‖2,

so y = z. In addition, we have

‖y‖ · ‖x‖ ≥ 〈y, x〉 = 〈y, y +Ay〉 = ‖y‖2 + λ〈Ay, y〉 ≥ ‖y‖2
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by the Cauchy–Schwartz inequality. When y 6= 0, this indicates that ‖x‖ ≥ ‖y‖, so we see that
‖(id +λA)−1‖ ≤ 1.

Our hypotheses show that we can apply this for λ = 1. Given xn in D(A) such that Axn converges to
y, we can choose the xn such that xn converges to some x. It suffices to show that x lies in D(A), and
that Ax = y. Because xn +Axn → x+ y, applying the continuous operator (id +A)−1 yields

xn = (id +A)−1(xn +Axn)→ (id +A)−1(x+ y) = x ∈ D(A).

Applying id +A to both sides yields x+ y = x+Ax and hence y = Ax, as desired.

(3) By our above claim, it remains to prove that id +λA is surjective. We know this for λ = 1, and we want
to prove it for all λ > 0 by “inducting” in both directions. Namely, suppose that it’s true for λ, and let
µ lie in (λ/2, 2λ). We want to show that it’s true for µ.

We do this via the contraction mapping theorem. We need to solve

(id +µA)x = y

for all y in H . Multiplying by λ/µ shows that this is the same as

λ

µ
x+ λAx =

λ

µ
y ⇐⇒ x+ λAx =

(
1− λ

µ

)
x+

λ

µ
y ⇐⇒ x = (id +λA)−1

[(
1− λ

µ

)
x+

λ

µ
y

]
.

By hypothesis, we have ‖(id +λA)−1‖ ≤ 1, and since |1− λ/µ| < 1, this equation yields a contraction
mapping. This finishes our proof!

With Lemma 23.5 in hand, we can make the following definitions.

23.6 Definition. Suppose A is maximal monotone, and let λ be positive. We write

Jλ := (id +λA)−1 and Aλ :=
1

λ
(id−Jλ).

23.7 Remark. The operators Jλ approximate id as λ→ 0, and they also map H to the domain D(A). Now
the Aλ have bounded norm by Lemma 23.5.(3), and because we morally have

Jα = (id +λA)−1 ≈ id−λA+ λ2A− · · · =⇒ Aλ =
1

λ
(id−Jλ) ≈ A− λA2 + λ2A3 − · · · ,

we see that Aλ is supposed to approximate A as λ→ 0. This is the idea behind Yosida approximation—we
hope to solve our ODE for the Aλ and then take the limit to solve it for A.

We explicate Remark 23.7 via the following preparatory lemma.

23.8 Lemma. Suppose that A is maximal monotone, let λ be positive, and let x be in D(A). Then

(1) Aλx = AJλx = JλAx,

(2) ‖Aλx‖ ≤ ‖Ax‖,

(3) limλ→0 Jλx = x,

(4) limλ→0Aλx = Ax,

(5) 〈Aλx, x〉 ≥ 0,
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(6) ‖Aλ‖ ≤ λ−1‖x‖.

23.9 Remark. As Lemma 23.5.(1) indicates that D(A) is dense in H , continuity indicates that most of these
are true for all x in H .

Proof. These are all really consequences of (1), which is straightforward from the definitions:

(1) Suppose that Jλx = y, so that x = y + λAy. Then Ax = Ay + λA ·Ay, so JαAx = Ay = AJλx. We
also have Aλx = (x− y)/λ = Ay, as desired.

(2) Part (1) indicates that ‖Aλx‖ = ‖JλAx‖ ≤ ‖Jλ‖‖Ax‖ ≤ ‖Ax‖, because Lemma 23.5.(3) indicates
that ‖Jα‖ ≤ 1.

(3) Part (2) shows that, as we take λ→ 0,

‖x− Jλx‖ = ‖(id−Jα)x‖ = ‖λAλx‖ ≤ λ‖Ax‖ → 0.

(4) Part (1) and part (3) yield limλ→0 ‖Aλx‖ = limλ→0 ‖JλAx‖ = ‖Ax‖.

(5) Part (1) indicates that

〈Aλx, x〉 = 〈Aλx, x− Jλx〉+ 〈Aλx, Jλx〉 = λ‖Aλx‖2 + 〈AJλx, Jλx〉 ≥ λ‖Aλx‖2 ≥ 0.

(6) Our calculation from part (5) shows that ‖Aλx‖2 ≤ λ−1〈Aλx, x〉, which in turn is less than λ−1‖Aλx‖‖x‖
by Cauchy–Schwartz. Dividing by ‖Aλ‖ yields the desired result.

We can now move to the main result of Hille–Yosida.

23.10 Theorem (Hille–Yosida). . Suppose A is maximal monotone, and let x lie in D(A). Then there exists
a unique y in C([0,∞), D(A)) such that

y(t) = x−
ˆ t

0
dsA(y(t))

for all t in [0,∞). Moreover, y satisfies ‖y(t)‖ ≤ ‖x‖ and ‖A(y(t))‖ ≤ ‖Ax‖.

Proof. Uniqueness follows from the integral version of the following computation idea:

d

dt

(
1

2
‖ỹ − y‖2

)
=

〈
d

dt
(ỹ − y), ỹ − y

〉
= 〈−A(ỹ − y), ỹ − y〉 ≤ 0.

On the other hand, existence will require lots of work. We’ll chunk it up into many steps:

(1) Let λ be positive. We can readily solve

yλ(t) = x−
ˆ t

0
dsAλyλ(s)

via Theorem 23.1, because Lemma 23.5.(6) indicates that Aλ is bounded. In fact, the linearity of Aλ
implies that this yλ lies in C∞([0,∞), H), and we have

dn+1yλ
dtn+1

= −Aλ
dnyλ
dtn

for all non-negative integers n.
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(2) We shall prove that ‖yλ(t)‖ ≤ ‖x‖ and ‖Aλyλ(t)‖ ≤ ‖Aλx‖. Our initial conditions for yλ imply that

‖yλ(0)‖ = ‖x‖ and ‖y′λ(0)‖ = ‖Aλx‖ ≤ ‖Ax‖.

From here, the analog of our uniqueness computation and Lemma 23.5.(5) yield

d

dt

(
1

2
‖yλ‖2

)
= 〈−Aλyλ, yλ〉 ≤ 0 and

d

dt

(
1

2
‖Aλyλ‖2

)
=

1

2

d

dt

∥∥∥∥dyλ
dt

∥∥∥∥2 = 〈−Aλy′λ, y′λ〉 ≤ 0,

so our initial conditions imply the desired result.

(3) We want to piece these yλ together and show that limλ→0 yλ(t) converges for all t in [0,∞), which is
hard. Our goal will be to prove that yλ is Cauchy for λ→ 0. As before, we begin by taking

d

dt

(
‖yλ − yµ‖2

)
= −〈Aλyλ −Aµyµ, yλ − yµ〉.

Next, observe that id = λAλ + Jλ, so Lemma 23.5.(1) indicates that

−〈Aλyλ −Aµyµ, yλ − yµ〉 = −〈Aλyλ −Aµyµ, λAλyλ − µAµyµ〉 − 〈A(Jλyλ − Jµyµ), Jλyλ − Jµyµ〉.

Combining Lemma 23.5.(4) and Lemma 23.5.(5) shows that

〈A(Jλyλ − Jµyµ), Jλyλ − Jµyµ〉 ≥ 0,

so our derivative is bounded above by

−〈Aλyλ −Aµyµ, λAλyλ − µAµyµ〉 = −(λ‖Aλyλ‖2 − λ〈Aµyµ, Aλyλ〉 − µ〈Aλyλ, Aµyµ〉+ µ‖Aµyµ‖2)
≤ −λ‖Aλyλ‖2 − µ‖Aµyµ‖2 + (λ+ µ)‖Aµyµ‖‖Aλyλ‖
= µ‖Aλyλ‖2 + λ‖Aµyµ‖2

− (λ+ µ)
[
(‖Aλyλ‖ − ‖Aµyµ‖)2 + ‖Aλyλ‖‖Aµyµ‖

]
by Cauchy–Schwartz. Step (2) and Lemma 23.5.(2) indicate that this is bounded above by

max{λ, µ}‖Ax‖2.

We integrate this estimate on our derivative to obtain the bound

‖yλ(t)− yµ(t)‖2 ≤ max{λ, µ}‖Ax‖2t,

because ‖yλ(0)− yµ(0)‖2 = 0. Finally, taking square roots shows that the yλ converge uniformly on
compact subsets [0, T ] of [0,∞), so they converge to some y in C([0,∞), H).

(4) Suppose first that x lies in D(A2) := A−1(D(A)). Then z(t) := limλ→0Aλyλ(t) exists for all non-
negative t, by arguing as in step (3). This time, we use ‖A2x‖ instead of ‖Ax‖ for our bounds. Recall
from step (1) that Aλyλ = −dyλ

dt .

(5) We shall prove that, for x in D(A2), the theorem is true. Note that our existing results say that yλ → y
on every compact interval, and hence its negative derivative is given by −dyλ

dt = Aλyλ → z. Therefore
the fundamental theorem of calculus indicates that

y(t) = x−
ˆ t

0
ds z(s),
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so it suffices to prove that z = Ay. As Lemma 23.5.(1) gives Aλyλ = AJλyλ, and A is closed, it
suffices to show that Jλyλ(s)→ y(s) and then apply A. But we have

‖Jλyλ(s)− y(s)‖ ≤ ‖Jλ(yλ(s)− y(s))‖+ ‖Jλy(s)− y(s)‖ → 0

as λ→ 0, because yλ(s) converges to y(s), Jλ is continuous, and we have Lemma 23.5.(3).

(6) To finally pass to x in D(A), we prove that D(A2) is dense in D(A) under the graph norm

‖a‖D(A) := ‖a‖+ ‖Aa‖.

To see this, set xλ := Jλx, which is readily seen to lie in D(A2). Lemma 23.5 gives us the desired
convergence xλ → x in the graph norm.

24 February 7, 2018

The note-taker missed class today and thanks Hao Billy Lee for letting him consult his notes.

24.1 Remark. In the setting of the Hille–Yosida theorem,

(1) Our result is equivalent to solving y′(t) +Ay(t) = 0 and y(0) = x for all non-negative t.

(2) Our strategy for proving this was via taking the Yosida approximations

Aλ =
1

λ

(
id−(id +λA)−1

)
,

which had norms bounded by 1/λ and hence were amenable to standard ODE tactics. We then checked
that the limit limλ→0 yλ of their solutions yielded a solution for the ODE with A.

(3) One can give an alternative proof of this fact by taking

y(t) = lim
n→∞

(
id +

t

n
A

)−n
x

for the desired solution. This is called the backwards Euler method.

Let’s now apply the Hille–Yosida theorem to a specific differential equation! Let (aij)ij be a (d × d)-
matrix with entries in C∞-functions on Rd such that there exists a Λ ≥ 1 satisfying

Λ−1‖x‖2 ≤
d∑

i,j=1

xia
ijxj ≤ Λ‖x‖2

for all x = (x1, . . . , xd) in Rd. In other words, (aij)ij is precisely the kind of matrix considered in Remark
22.3.

24.2 Example. As in our case of interest for elliptic regularity, we could take (aij)ij = id.

Consider the wave equation 
D2
t u− Lu = 0 on Rd × [0,∞),

u = g on Rd × {0},
Dtu = h on Rd × {0},
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where Lu :=
∑d

i,j=1Di · aij ·Dju, Our goal is to solve for u, given that g and h are fixed.
We begin by rewriting the wave equation as a first-order system in t. Setting v := Diu yields

Dtu− v = 0 and Dtv − Lu = 0

on Rd × [0,∞). By considering the pair (u, v), we can rewrite this as

Dt(u, v) +A(u, v) = 0,

where A(u, v) := −(v, Lu). If we focus on a bounded open subset U whose boundary has measure zero
(instead of all of Rd for our space), then our solutions (u, v) of interest, as functions of space, lie in H :=
H1

0 (U)× L2(U). And because the operator A requires derivatives, we see that we must set

D(A) := (H2(U) ∩H1
0 (U))×H1(U).

24.3 Proposition. The operator A is maximal monotone.

Therefore we can indeed solve the wave equation.
Finally, let us turn to the semigroup variant of Hille–Yosida. Suppose that A is maximal monotone, let x

lie inD(A), and let t be non-negative. If we set St(x) := y(t), where y is given by our existing Hille–Yosida
theorem for x, we see that

(1) for all t, the operator St : D(A)−→D(A) is linear, and we have ‖St‖ ≤ 1,

(2) S0 = id and Ss+t = SsSt for all non-negative s and t,

(3) for all x in D(A), the map t 7→ St(x) is continuous.

Property (1) tells us that St is a bounded operator, and Lemma 23.5.(1) indicates that D(A) is dense in H ,
so we may uniquely form the continuous linear extension St : H −→H . This allows us to boost property
(3) to all x in H .

24.4 Definition. Let {St}t≥0 be a collection of linear operators onH . If properties (1)–(3) hold for {St}t≥0,
we say it is a contraction semigroup.

The above discussion shows that our first variant of Hille–Yosida provides a contraction semigroup for
any maximal monotone A. Our second variant of Hille–Yosida gives a converse to this process.

24.5 Theorem (Hille–Yosida, revisited). Let {St}t≥0 be a contraction semigroup. Then it comes from the
maximal monotone operator defined via

Ax := lim
h→0

x− Shx
h

,

where D(A) is the subspace of H for which the above limit exists.

Proof. We first check that 〈Ax, x〉 ≥ 0 for all x in D(A). To see this, we observe that〈
x− Sh
h

, x

〉
= h−1

(
‖x‖2 − 〈Shx, x〉

)
≥ h−1

(
‖x‖2 − ‖Shx‖ · ‖x‖

)
≥ h−1

(
‖x‖2 − ‖x‖2

)
= 0

by Cauchy–Schwartz and property (1). Next, set Rλx :=
´∞
0 dt e−λtStx for any positive λ. Then property

(1) yields ‖Rλ‖ ≤ 1
λ , and I claim that

(λ id +A)Rλ = id and Rλ(λ id +A) = id .
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Then setting λ = 1 would show that im(id +A) = H . To verify the claim, we shall compute ARλ. We have

Rλx− ShRλx
h

=
1

h

ˆ ∞
0

dt (e−λtStx− She−λtStx) =
1

h

ˆ ∞
0

dt e−λtStx−
1

h

ˆ ∞
0

dt e−λtSt+hx

=
1

h

ˆ ∞
0

dt e−λtStx−
eλh

h

ˆ ∞
h

dt e−λtStx

=
1

h

ˆ h

0
dt e−λtStx−

1− eλh

h

ˆ ∞
h

dt e−λtStx

by properties (2) and (3). Taking h → 0 yields ARλx = x − λRλx, which yields (λ id +A)Rλ = id. We
can prove Rλ(λ id +A) = id in precisely the same manner. Finally, applying the fundamental theorem of
calculus tells us that A indeed recovers the contraction semigroup {St}t≥0.
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