MATH 99R PROBLEM SET 11

Due at 9am on Thursday, December 3.

Throughout, let F be a number field.

- (1) Let v be a nontrivial nonarchimedean norm on F, let $\chi_v : F_v^{\times} \to S^1$ be a continuous homomorphism, and let f_v be in $\mathcal{S}(F_v)$.
 - (a) Prove that Z_v(s, χ_v, f_v) is a C-rational function in q_v^{-s}.
 (Hint: break the integral into a sum over {x_v ∈ F_v[×] | v(x_v) = k} for k in Z, and use the fact that f_v is locally constant and compactly supported.)
 - (b) Prove that $Z_v(s, \chi_v, f_v)/L(s, \chi_v)$ is entire.
- (2) Let v be an archimedean norm on F such that $F_v \cong \mathbb{R}$. Suppose $\chi_v(x) = (x/|x|)^{\varepsilon} ||x||_v^{\nu}$, where ε lies in $\{0, 1\}$ and ν lies in $i\mathbb{R}$.
 - (a) Compute $\epsilon_v(s, \chi_v)$ when $\varepsilon = 0$. (Hint: use the test function $f_v(x) = e^{-\pi x^2}$.)
 - (b) Let $f_v(x) = xe^{-\pi x^2}$. Show that $\widehat{f_v}(x) = ixe^{-\pi x^2}$.
 - (c) Compute $\epsilon_v(s, \chi_v)$ when $\varepsilon = 1$. (Hint: use the test function $f_v(x) = xe^{-\pi x^2}$.)
- (3) Let v be an archimedean norm on F such that $F_v \cong \mathbb{C}$. Suppose $\chi_v(z) = (z/|z|)^k ||z||_v^{\nu}$, where k lies in \mathbb{Z} and ν lies in $i\mathbb{R}$.
 - (a) Let $f_v(z) = r^{|k|} e^{-2\pi k i \theta} e^{-2\pi r^2}$, where $z = r e^{2\pi i \theta}$ denotes polar coordinates. Show that $\hat{f}_v(z) = (ir)^{|k|} e^{2\pi k i \theta} e^{-2\pi r^2}$.
 - (b) Compute $\epsilon_v(s, \chi_v)$. (Hint: use the test function $f_v(z) = r^{|k|} e^{-2\pi k i \theta} e^{-2\pi r^2}$.)