MATH 99R PROBLEM SET 9

Due at 9am on Thursday, November 12.

Throughout, let F be a number field.

- (1) Let G be an abelian locally compact topological group, let m be a Haar measure on G, let H be a countable closed subgroup of G, and let D be a Borel subset of G. If D has compact closure, nonempty interior, and maps bijectively to G/H, then the pushforward of m via D → G/H yields a Haar measure on G/H.
- (2) Show that D = {(x_v)_v ∈ A_Q | ||x_v||_v ≤ 1 for v ≠ ∞ and 0 ≤ x_∞ < 1} is a fundamental domain for A_Q/Q. Conclude directly that m(A_Q/Q) = 1.
- (3) For any positive integer m, consider the subgroup C_m = {(x_v)_v ∈ A_Q | x_v ∈ mZ_v for v ≠ ∞ and v_∞ = 0}.
 (a) Prove that the natural map A_Q → lim_m A_Q/C_m is an isomorphism of topological groups. Conclude that this yields an isomorphism A_Q/Q → lim_m A_Q/(Q + C_m) of topological groups.
 - (b) Show that the inclusion $\mathbb{R} \to \mathbb{A}_{\mathbb{Q}}$ induces a well-defined map $\mathbb{R}/m\mathbb{Z} \to \mathbb{A}_{\mathbb{Q}}/(\mathbb{Q} + C_m)$.
 - (c) Prove that R/mZ → A_Q/(Q + C_m) is an isomorphism of topological groups. (Hint: for surjectivity, use strong approximation.)
 - (d) Conclude that $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$ is isomorphic to $\lim_{m \to \infty} \mathbb{R}/m\mathbb{Z}$ as topological groups.
- (4) Prove that the Dedekind zeta function ζ_F(s) = Π_p(1 Nm(p)^{-s})⁻¹ converges for Re s > 1.
 (Hint: show that (1 p^{-rσ})⁻¹ ≤ (1 p^{-σ})^{-r} for positive integers r and real σ > 0. Then bootstrap from the case of the Riemann zeta function.)