MATH 99R PROBLEM SET 8

Due at 9am on Thursday, November 5.

Problem (1) was taken from Dinakar Ramakrishnan and Robert Valenza's *Fourier Analysis on Number Fields*, and Problems (4) and (6) were taken from Daniel Bump's *Automorphic Forms and Representations*.

Throughout, let F be a number field.

- (1) Let G be an abelian locally compact topological group, let m be a Haar measure on G, let H be a countable subgroup of G, and let K be a Borel subset of G such that K + H = G. If Y is a Borel subset of G such that m(Y) > m(K), then there exist distinct y_1 and y_2 in Y such that $y_1 y_2$ lies in H.
- (2) Set $K = \{(x_v)_v \in \mathbb{A}_F \mid ||x_v||_v \le 1 \text{ for all } v \in M_F\}$. Prove that $K + F = \mathbb{A}_F$. (Hint: emulate the case $F = \mathbb{Q}$ and use the product formula.)
- (3) Let v be a nontrivial nonarchimedean norm on F. Prove that \mathcal{O}_v is the closure of \mathcal{O}_F in F_v .
- (4) Let F_v be a nonarchimedean local field. Prove that every continuous group homomorphism F_v[×] → C[×] is of the form x → χ(x) ||x||_v^s, where χ : F_v[×] → S¹ is a continuous group homomorphism, and s is a complex number.
 (Hint: use Problem (1) from Problem Set 3.)
- (5) Describe all the continuous group homomorphisms $\mathbb{R}^{\times} \to \mathbb{C}^{\times}$ as well as $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$.
 - (Hint: note that $\mathbb{R}^{\times} = \{\pm 1\} \times \mathbb{R}_{>0}$ and $\mathbb{C}^{\times} = S^1 \times \mathbb{R}_{>0}$.)
- (6) Prove that every continuous group homomorphism A[×]_F/F[×] → C[×] is of the form x → χ(x)||x||^s, where χ : A[×]_F/F[×] → S¹ is a continuous group homomorphism, and s is a complex number. (Hint: use the compactness of A^{×,1}_F/F[×].)