MATH 99R PROBLEM SET 7

Due at 9am on Thursday, October 29.

Problems (3)-(5) were taken from Dinakar Ramakrishnan and Robert Valenza's Fourier Analysis on Number Fields.

Throughout, let F be a number field.

- (1) Let G be a locally compact topological group, and let m be a left Haar measure on G. Prove that, for any nonempty open subset $U \subseteq G$, we have m(U) > 0.
- (2) Show that the usual topology on \mathbb{A}_F^{\times} is strictly finer than the subspace topology from identifying it as the unit group of \mathbb{A}_F .
- (3) Prove that the map $\mathbb{A}_F^{\times} \to \mathbb{A}_F^2$ given by $x \mapsto (x, x^{-1})$ is a homeomorphism onto its image.
- (4) Show that F^{\times} is discrete in \mathbb{A}_F^{\times} .
- (5) Let x be in F. Prove that $||x||_v = 1$ for all v in M_F if and only if x is a root of unity.