MATH 99R PROBLEM SET 6

Due at 9am on Thursday, October 22.

Write m for the Lebesgue measure on \mathbb{R}^{n}. The goal of this problem set is to prove the following theorem using Poisson summation:

Theorem (Minkowski convex body). Let C be a convex compact subset of \mathbb{R}^{n} such that $C=-C$. If $m(C)>2^{n}$, then C contains an element of \mathbb{Z}^{n} other than the origin.
(1) First, we need to prove Poisson summation for \mathbb{R}^{n}. Let f be in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
(a) Prove that $F(x)=\sum_{k \in \mathbb{Z}^{n}} f(x+k)$ converges uniformly on compact subsets of \mathbb{R}^{n} and defines a continuous function $F:\left(S^{1}\right)^{n} \rightarrow \mathbb{C}$.
(b) Prove that $\sum_{k \in \mathbb{Z}^{n}} f(k)=\sum_{k \in \mathbb{Z}^{n}} \widehat{f}(k)$.
(2) Next, we need to introduce the convolution product. Let G be a locally compact topological group, and let m be a left Haar measure on G. For any f_{1} and f_{2} in $C_{c}(G)$, write $f_{1} * f_{2}$ for the function $G \rightarrow \mathbb{C}$ given by

$$
g \mapsto \int_{G} \mathrm{~d} x f(x) g\left(x^{-1} g\right)
$$

This is the convolution product.
(a) Prove that $f_{1} * f_{2}$ is continuous.
(Hint: use a fact from September 8's lecture.)
(b) Prove that $\operatorname{supp}\left(f_{1} * f_{2}\right)$ lies in $\left(\operatorname{supp} f_{1}\right)\left(\operatorname{supp} f_{2}\right)$. Deduce that $f_{1} * f_{2}$ lies in $C_{c}(G)$.
(c) Suppose that G is finite. Upon identifying $C_{c}(G)$ with the group ring $\mathbb{C}[G]$, show that the convolution product corresponds to the usual multiplication law on $\mathbb{C}[G]$.
(d) Suppose that G is abelian. Prove that $\left(f_{1} * f_{2}\right)^{\wedge}=\widehat{f_{1}} \cdot \widehat{f_{2}}$.
(e) Suppose that $G=\mathbb{R}^{n}$, and say that f_{2} is smooth. Prove that $f_{1} * f_{2}$ is smooth, and that $\frac{\partial\left(f_{1} * f_{2}\right)}{\partial x_{i}}=$ $f_{1} *\left(\frac{\partial f_{2}}{\partial x_{i}}\right)$ for all integers $1 \leq i \leq n$.
(3) We now gather some preliminary observations.
(a) Suppose that for all ϵ in $(0,1)$, the set $(1+\epsilon) C$ contains an element of \mathbb{Z}^{n} other than the origin. Explain how to deduce the Theorem from this.
(b) Let f be in $C_{c}\left(\mathbb{R}^{n}\right)$, and suppose that f is smooth. Show that f is in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
(c) Write $K=\frac{1}{2} C$. Show that $m(K)>1$.

Because K is convex and compact, one can show that there exists a smooth function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $h(x)=h(-x)$ for all x in \mathbb{R}^{n}, we have $\mathbf{1}_{(1-\epsilon) K} \leq h \leq \mathbf{1}_{(1+\epsilon) K}$, and $\int_{\mathbb{R}^{n}} \mathrm{~d} x h(x)=m(K)$. Let's take this for granted.
(4) Finally, we wrap up the proof.
(a) Show that h is real-valued.
(b) Set $f=h * h$. Show that f as well as \widehat{f} are real-valued and non-negative.
(c) Show that supp f lies in $(1+\epsilon) C$, and we have $f \leq m(K)$. Deduce that f and hence \widehat{f} lie in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
(d) Apply Problem (1).(b) to f to show that $\#\left((1+\epsilon) C \cap \mathbb{Z}^{n}\right)>1$, and conclude the proof of the Theorem.

