MATH 99R PROBLEM SET 5

Due at 9am on Thursday, October 15.

Problem (1).(c) was taken from Dinakar Ramakrishnan and Robert Valenza's Fourier Analysis on Number Fields.

- (1) Let G be a topological group, and let m be a left Haar measure on G.
 - (a) Let g be in G. Show that $E \mapsto m(Eg)$ yields a left Haar measure on G.
 - (b) Show that $E \mapsto m(E^{-1})$ yields a right Haar measure on G.
 - (c) Assume G is abelian and locally compact. Prove that $m(E) = m(E^{-1})$ for all Borel subsets $E \subseteq G$. (Hint: use Haar's theorem and part (b).)
- (2) Prove the only continuous group homomorphisms $\mathbb{R} \to \mathbb{R}$ are given by multiplication by *a* for some *a* in \mathbb{R} .
- (3) Let G_1 and G_2 be finite groups. Prove that the map $\mathbb{C}[G_1] \otimes_{\mathbb{C}} \mathbb{C}[G_2] \to \mathbb{C}[G_1 \times G_2]$ given by $f_1(g_1) \otimes f_2(g_2) \mapsto f_1(g_1) f_2(g_2)$ is an isomorphism of (not necessarily commutative) \mathbb{C} -algebras.
- (4) Let G be a finite abelian group with the discrete topology, and let m be $(\#G)^{-1/2}$ times the counting measure on G.
 - (a) Show that \widehat{G} is a finite abelian group with the discrete topology.
 - (b) Prove the Plancherel theorem for G, and show that \widehat{m} is $(\#\widehat{G})^{-1/2}$ times the counting measure on \widehat{G} .
 - (c) Show Pontryagin duality for G.
 - (d) Prove the Fourier inversion formula for G.

(Hint: use the classification of finite abelian groups to reduce each part to the case $G = \mathbb{Z}/n\mathbb{Z}$.)

(5) Let p be a prime number, and let ψ : Q_p/Z_p → S¹ be a nontrivial continuous homomorphism. Prove that the map ψ. : Z_p → Q_p/Z_p given by a ↦ (x ↦ ψ(ax)) is a well-defined isomorphism of topological groups. (Hint: emulate our computation of the Pontryagin dual for local fields.)