MATH 99R PROBLEM SET 4

Due at 9am on Thursday, October 8.

In problems (1)–(4), let F be a nonarchimedean local field, write q for the cardinality of its residue field, and write $|\cdot|$ for its normalized absolute value. All integrals on F are taken with respect to the Lebesgue measure m.

- (1) Let $m \ge 1$ be an integer.
 - (a) Show that the group $\mathfrak{m}^m/\mathfrak{m}^{m+1}$ is isomorphic to \mathcal{O}/\mathfrak{m} .
 - (b) Show that $1 + \mathfrak{m}^m$ is an open subgroup of \mathcal{O}^{\times} .
 - (c) Show that $(1 + \mathfrak{m}^m)/(1 + \mathfrak{m}^{m+1})$ is isomorphic to \mathcal{O}/\mathfrak{m} , while $\mathcal{O}^{\times}/(1 + \mathfrak{m})$ is isomorphic to $(\mathcal{O}/\mathfrak{m})^{\times}$.
- (2) Show that $m(\mathcal{O}^{\times}) = 1 \frac{1}{q}$.
- (3) Choose a uniformizer π of F, and let $\chi : F^{\times} \to S^1$ be a continuous homomorphism that is *unramified*, i.e. $\chi(\mathcal{O}^{\times}) = 1$. For any complex number z with $\operatorname{Re} z > -1$, show that

$$\int_{\mathcal{O}} \mathrm{d}x \, \chi(x) |x|^z = \left(1 - \frac{1}{q}\right) \left(\frac{1}{1 - \chi(\pi)q^{-z-1}}\right).$$

- (4) Let f in O[t₁,...,t_n] be a polynomial in n variables. Prove that f = 0 has a solution in Oⁿ if and only if f ≡ 0 mod m^m has a solution in O/m^m for all m ≥ 1.
 (Hint: use O = lim_m O/m^m for one direction, and use the finitude of the O/m^m in the other direction.)
- (5) Let G be an abelian topological group. Prove that, if G is discrete, then \widehat{G} is compact. (If you follow Ramakrishnan–Valenza's proof, please give more detail than them!)
- (6) Let G_1 and G_2 be abelian topological groups. Prove that the Pontryagin dual $(G_1 \times G_2)^{\wedge}$ is naturally isomorphic to $\hat{G}_1 \times \hat{G}_2$ as topological groups.