MATH 99R PROBLEM SET 4

Due at 9am on Thursday, October 8.

In problems (1)-(4), let F be a nonarchimedean local field, write q for the cardinality of its residue field, and write $|\cdot|$ for its normalized absolute value. All integrals on F are taken with respect to the Lebesgue measure m.
(1) Let $m \geq 1$ be an integer.
(a) Show that the group $\mathfrak{m}^{m} / \mathfrak{m}^{m+1}$ is isomorphic to $\mathcal{O} / \mathfrak{m}$.
(b) Show that $1+\mathfrak{m}^{m}$ is an open subgroup of \mathcal{O}^{\times}.
(c) Show that $\left(1+\mathfrak{m}^{m}\right) /\left(1+\mathfrak{m}^{m+1}\right)$ is isomorphic to $\mathcal{O} / \mathfrak{m}$, while $\mathcal{O}^{\times} /(1+\mathfrak{m})$ is isomorphic to $(\mathcal{O} / \mathfrak{m})^{\times}$.
(2) Show that $m\left(\mathcal{O}^{\times}\right)=1-\frac{1}{q}$.
(3) Choose a uniformizer π of F, and let $\chi: F^{\times} \rightarrow S^{1}$ be a continuous homomorphism that is unramified, i.e. $\chi\left(\mathcal{O}^{\times}\right)=1$. For any complex number z with $\operatorname{Re} z>-1$, show that

$$
\int_{\mathcal{O}} \mathrm{d} x \chi(x)|x|^{z}=\left(1-\frac{1}{q}\right)\left(\frac{1}{1-\chi(\pi) q^{-z-1}}\right) .
$$

(4) Let f in $\mathcal{O}\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial in n variables. Prove that $f=0$ has a solution in \mathcal{O}^{n} if and only if $f \equiv 0 \bmod \mathfrak{m}^{m}$ has a solution in $\mathcal{O} / \mathfrak{m}^{m}$ for all $m \geq 1$.
(Hint: use $\mathcal{O}=\lim _{\varlimsup_{m}} \mathcal{O} / \mathfrak{m}^{m}$ for one direction, and use the finitude of the $\mathcal{O} / \mathfrak{m}^{m}$ in the other direction.)
(5) Let G be an abelian topological group. Prove that, if G is discrete, then \widehat{G} is compact. (If you follow Ramakrishnan-Valenza's proof, please give more detail than them!)
(6) Let G_{1} and G_{2} be abelian topological groups. Prove that the Pontryagin dual $\left(G_{1} \times G_{2}\right)^{\wedge}$ is naturally isomorphic to $\widehat{G}_{1} \times \widehat{G}_{2}$ as topological groups.

