MATH 99R PROBLEM SET 3

Due at 9am on Thursday, October 1.

- (1) Let F be a field, let $|\cdot|$ be a discretely valued norm on F, and let π in F be a uniformizer. Show that the map $\mathbb{Z} \times \mathcal{O}^{\times} \to F^{\times}$ given by $(n, x) \mapsto \pi^n x$ is an isomorphism of topological groups.
- (2) Let F be a field, and let $|\cdot|$ be a nonarchimedean norm on F. Consider two closed balls $B_c(a, r) = \{x \in F \mid |x a| \le r\}$ and $B_c(b, s) = \{x \in F \mid |x b| \le s\}$, where a and b lie in F, and $r \ge s$ lie in $\mathbb{R}_{\ge 0}$. If $B_c(a, r)$ and $B_c(b, s)$ intersect, prove that $B_c(a, r)$ contains $B_c(b, s)$.
- (3) Let F be a field, and let $|\cdot|$ be a nonarchimedean norm on F. Recall that also we denote the Gauss norm on the polynomial ring F[t] by $|\cdot|$.
 - (a) Show that, for all f in F[t], we have |f| = 0 if and only if f = 0.
 - (b) Show that, for all f and g in F[t], we have $|f + g| \le \max\{|f|, |g|\}$.
 - (c) Prove that, for all f and g in F[t], we have |fg| = |f||g|.
 - (d) Show that $|\cdot|$ extends uniquely to a nonarchimedean norm on the rational function field F(t).
- (4) Let κ be a field, and write $v : \kappa((t)) \to \mathbb{Z} \cup \{\infty\}$ for the map sending $f \mapsto \operatorname{ord}_{t=0} f$.
 - (a) Show that v is a valuation on $\kappa((t))$.
 - (b) Prove that $\kappa((t))$ is complete with respect to the norm induced by v.
 - (c) Prove that $\kappa((t))$ is locally compact if and only if κ is finite.
- (5) Let F be a local field of characteristic p > 0, and write q for the cardinality of its residue field. Prove that F is isomorphic to F_q((t)) as a topological field.
 (Hint: use π-adic expansions, along with a special choice of representatives from Hensel's lemma.)
- (6) Let F be field, let | · | be a discretely valued norm on F, and suppose F is complete with respect to | · |. Prove that | · | is the only discretely valued norm on F, up to isomorphism.
 (Hint: use weak approximation and Hensel's lemma to obtain a contradiction.)