MATH 99R PROBLEM SET 2

Due at 9am on Thursday, September 24.

Problems (4)–(6) were taken from Jürgen Neukirch's Algebraic Number Theory.

Throughout, let p be a prime number.

- (1) Let F be a field, and let $|\cdot|$ be a nonarchimedean norm on F.
 - (a) Let r > 0. Show that the closed ball $B_c(0, r) = \{x \in F \mid |x| \le r\}$ as well as the open ball $B_o(0, r) = \{x \in F \mid |x| < r\}$ are subgroups of F.
 - (b) Show that the closed unit ball $\mathcal{O} = B_c(0, 1)$ is a subring of F, and prove that its only maximal ideal is the open unit ball $\mathfrak{m} = B_o(0, 1)$.
- (2) Let F be a field, and let $|\cdot|$ be a nonarchimedean norm on F. Prove that, if x and y in F satisfy $|x| \neq |y|$, then $|x+y| = \max\{|x|, |y|\}$.
- (3) Let F be a field, let $|\cdot|$ be a discretely valued norm on F, and write v for the corresponding normalized valuation. Let π in F be a uniformizer. Show that $\pi^m \mathcal{O} = \{x \in F \mid v(x) \ge m\}$ for all non-negative integers m.
- (4) Prove that the only field automorphism of \mathbb{Q}_p is the identity map.
- (5) Compute the 5-adic expansions of $\frac{2}{3}$ and $-\frac{2}{3}$.
- (6) Let x be in \mathbb{Q}_p , and write $a_N p^N + a_{N+1} p^{N+1} + \cdots$ for its p-adic expansion. Prove that x lies in \mathbb{Q} if and only if its sequence of digits a_N, a_{N+1}, \cdots is eventually periodic.