MATH 99R PROBLEM SET 2

Due at 9 am on Thursday, September 24.

Problems (4)-(6) were taken from Jürgen Neukirch's Algebraic Number Theory.

Throughout, let p be a prime number.
(1) Let F be a field, and let $|\cdot|$ be a nonarchimedean norm on F.
(a) Let $r>0$. Show that the closed ball $B_{c}(0, r)=\{x \in F| | x \mid \leq r\}$ as well as the open ball $B_{o}(0, r)=$ $\{x \in F||x|<r\}$ are subgroups of F.
(b) Show that the closed unit ball $\mathcal{O}=B_{c}(0,1)$ is a subring of F, and prove that its only maximal ideal is the open unit ball $\mathfrak{m}=B_{o}(0,1)$.
(2) Let F be a field, and let $|\cdot|$ be a nonarchimedean norm on F. Prove that, if x and y in F satisfy $|x| \neq|y|$, then $|x+y|=\max \{|x|,|y|\}$.
(3) Let F be a field, let $|\cdot|$ be a discretely valued norm on F, and write v for the corresponding normalized valuation. Let π in F be a uniformizer. Show that $\pi^{m} \mathcal{O}=\{x \in F \mid v(x) \geq m\}$ for all non-negative integers m.
(4) Prove that the only field automorphism of \mathbb{Q}_{p} is the identity map.
(5) Compute the 5 -adic expansions of $\frac{2}{3}$ and $-\frac{2}{3}$.
(6) Let x be in \mathbb{Q}_{p}, and write $a_{N} p^{N}+a_{N+1} p^{N+1}+\cdots$ for its p-adic expansion. Prove that x lies in \mathbb{Q} if and only if its sequence of digits a_{N}, a_{N+1}, \cdots is eventually periodic.

