MATH 99R PROBLEM SET 1

Due at 9am on Thursday, September 17.

Problems (2) and (3) were taken from Sophie Morel's fall 2018 representation theory class.

- (1) Let G be a topological group, and let H be a subgroup. Prove that \overline{H} is also a subgroup. (If you follow Ramakrishnan–Valenza's proof, please give much more detail than them!)
- (2) Let $(G_i)_{i \in I}$ be a collection of topological groups.
 - (a) Show that $\prod_{i \in I} G_i$ equipped with the product topology is a topological group.
 - (b) Prove or give a counterexample: if all the G_i are locally compact, is the same true for $\prod_{i \in I} G_i$?
- (3) Let *I* be a partially ordered set, let $(X_i)_{i \in I}$ be a collection of sets, and let $(u_{ij} : X_i \to X_j)_{i \ge j \in I}$ be a collection of maps such that
 - for every *i* in *I*, we have $u_{ii} = id_{X_i}$,
 - for all $i \ge j \ge k$ in *I*, we have $u_{ik} = u_{ij} \circ u_{jk}$.

This is called a projective system indexed by I. Its (projective) limit is the set

$$\lim_{i \in I} X_i = \{(x_i)_{i \in I} \in \prod_{i \in I} X_i \mid \text{for all } i \ge j \in I, \text{ we have } u(x_i) = x_j \}.$$

- (a) If all the X_i are Hausdorff topological spaces and all the u_{ij} are continuous, show that $\varprojlim_{i \in I} X_i$ is a closed subset of $\prod_{i \in I} X_i$ with the product topology. We henceforth always give $\varprojlim_{i \in I} X_i$ the subspace topology.
- (b) If all the X_i are compact Hausdorff topological spaces and all the u_{ij} are continuous, show that $\varprojlim_{i \in I} X_i$ is also compact Hausdorff. (Hint: use Tychonoff's theorem.)
- (c) If all the X_i are groups (respectively rings) and all the u_{ij} are group homomorphisms (respectively ring homomorphisms), show that $\varprojlim_{i \in I} X_i$ is a subgroup (respectively a subring) of $\prod_{i \in I} X_i$.
- (d) If all the X_i are topological groups and all the u_{ij} are continuous group homomorphisms, show that $\lim_{k \to i} X_i$ is a topological group.
- (4) Let p be a prime number. Prove that, for all x and y in \mathbb{Q} , we have $|x+y|_p \le \max\{|x|_p, |y|_p\}$.