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In our remaining time, we'll discuss connections to the Galois theory of
extensions of number fields. We first introduce profinite groups.

Definition

Let G be a topological group. We say G is profinite if it is isomorphic to
Iimiel G; as a topological group, where {G;};c; is a projective system of
é?nite discrete groups.

Proposition
Let G be a profinite group. Then G is compact and Hausdorff, and 1 has
a basis of neighborhoods consisting of normal subgroups.

Proof.

Let {G;}ic/ be a projective system of finite discrete groups such that G is
isomorphic to I(i_rgiel G;. Because the G; are compact and Hausdorff, so is

their projective limit G. We see that the subsets G N ]];., N; form a basis
of neighborhoods of 1, where the N; = {1} for cofinitely many i and

N; = G; otherwise. But these G N [];c, N; are evidently normal subgroups

of G, since each N; is normal in G;. 2D§




The previous Proposition abstractly characterizes profinite groups.
Proposition

Let G be a topological group. Then G is profinite if and only if it is
compact and Hausdorff, and 1 has a basis of neighborhoods consisting of
normal subgroups.

Proof.

Let {M;}ic; be a basis of neighborhoods of 1 consisting of normal
subgroups, and order / via declaring i > j if and only if M; C M;. Then for
any i > jin I, we get a quotient map G/M; — G/M;. Since G is compact
and the M; are open, we see the G/M; are finite discrete. We have a
natural continuous group homomorphism f : G—>Ii<_ml.el G/ M;.

| claim f is injective with dense image. As f(G) must be compact and
hence closed, this would imply surjectivity, and the compactness of G and
Hausdorffness of Imie/ G /M; would imply f is a homeomorphism. Now, if
g in G satisfies f(g) = 1, we see g lies in every neighborhood of 1, so 1
lies in {g} = {g}. Hence g = 1.
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Proposition

Let G be a topological group. Then G is profinite if and only if it is
compact and Hausdorff, and 1 has a basis of neighborhoods consisting of
normal subgroups.

Proof (continued).

For denseness, let U be a nonempty open subset of Liﬂ]ie/ G /M; of the
form (lim._, G/M;) N ]];c; Ui, where the Uj are open subsets of G/M;
such that U; = G/M,; for all i outside a finite subset S C /. Form the
open normal subgroup N = [");cs M;, and choose j in I such that N O M;.
For any (uj)ies in U, consider uj in G/M;, and choose a representative U
of uj in G. Now for any i in S, the i-th component of f(u) equals the
image of uj in G/M;, so it lies in U;. Therefore f(u) lies in U, so
altogether we obtain denseness. O




We can form profinite groups from arbitrary topological groups as follows.
Definition
Let G be a topological group. Its profinite completion, denoted by G, is

the topological group Qmiel G /0O, where the O; range over all open
normal finite index subgroups of G.

Examples
Suppose G is. ..
o profinite. Then the previous proof shows that G = G.

e Z with the discrete topology. Then we have Z = lim,_ Z,/mZ, which
by the Chinese remainder theorem is isomorphic to

im  (Z/PPZ x - xZ/pfZ) = [[imZ/p°Z = [ Zs.
p € P
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One can show that 7 ®7 Q%A(Iof, where the latter is defined to be
Ag/R.




Examples (continued)
Suppose G is. ..

@ R with the Euclidean topology. The only open subgroup of R is itself,
so its profinite completion is trivial.

o ]2, F2 with the product topology. As this is profinite, it's
isomorphic to its profinite completion. Note that open subgroups
must contain cofinitely many Fp-factors, so there must be countably
many open subgroups.

o []72; F2 with the discrete topology. Now []72; F> is an
uncountable-dimensional [Fp-vector space, so it has uncountably many
finite index subgroups. With the discrete topology, they are all open!
One can show its profinite completion is not isomorphic to [[72; Fo.

An important example comes from infinite Galois theory. Let E/F be a
(not necessarily finite) Galois extension. By extending automorphisms, we
see that Gal(E/F) = lim Gal(K/F) as groups, where K ranges over
subextensions E O K 2O F such that K/F is finite Galois.
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We view the Gal(K/F) as finite discrete groups, and we equip Gal(E/F)
with the resulting topological group structure. One can show then that
subextensions £ DO L D F correspond bijectively to closed subgroups of
Gal(K/F), where L corresponds to Gal(E/L), and closed subgroups H of
Gal(K/F) correspond to the fixed field EX.

Example

Take E =F, and F =F,. Then E = Joo_; Fpm, and Gal(Fpm /F) is
canonically isomorphic to Z/mZ via sending 1 to the p-th power Frobenius
map ¢. Hence Gal(E/F) is isomorphic to the topological group

lim Gal(Fpm /Fp) = lim Z/mZ = 7.

To see the necessity of the closed condition in the Galois correspondence,
consider the proper subgroup Z C 7= Gal(E/F). It's generated by ¢, so
its fixed field equals E? = F, = F. But this is also the fixed field of all of
Gal(E/F)! So in order to obtain a bijective Galois correspondence, we
must restrict to closed subgroups. For general subgroups H of Gal(E/F),
its fixed field equals that of H.




Let F be a field. The largest possible Galois extension of F would be a
separable closure F*¢P of F.

Definition
The absolute Galois group of F (with respect to F*¢P), denoted by f, is
the topological group Gal(F*P/F).

Thus studying separable extensions of F is equivalent to studying the
topological group Ifr.



