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In our remaining time, we’ll discuss connections to the Galois theory of
extensions of number fields. We first introduce profinite groups.

Definition

Let G be a topological group. We say G is profinite if it is isomorphic to
lim←−i∈I Gi as a topological group, where {Gi}i∈I is a projective system of
finite discrete groups.

Proposition

Let G be a profinite group. Then G is compact and Hausdorff, and 1 has
a basis of neighborhoods consisting of normal subgroups.

Proof.

Let {Gi}i∈I be a projective system of finite discrete groups such that G is
isomorphic to lim←−i∈I Gi . Because the Gi are compact and Hausdorff, so is

their projective limit G . We see that the subsets G ∩
∏

i∈I Ni form a basis
of neighborhoods of 1, where the Ni = {1} for cofinitely many i and
Ni = Gi otherwise. But these G ∩

∏
i∈I Ni are evidently normal subgroups

of G , since each Ni is normal in Gi . 2 / 8



The previous Proposition abstractly characterizes profinite groups.

Proposition

Let G be a topological group. Then G is profinite if and only if it is
compact and Hausdorff, and 1 has a basis of neighborhoods consisting of
normal subgroups.

Proof.

Let {Mi}i∈I be a basis of neighborhoods of 1 consisting of normal
subgroups, and order I via declaring i ≥ j if and only if Mi ⊆ Mj . Then for
any i ≥ j in I , we get a quotient map G/Mi→G/Mj . Since G is compact
and the Mi are open, we see the G/Mi are finite discrete. We have a
natural continuous group homomorphism f : G→ lim←−i∈I G/Mi .

I claim f is injective with dense image. As f (G ) must be compact and
hence closed, this would imply surjectivity, and the compactness of G and
Hausdorffness of lim←−i∈I G/Mi would imply f is a homeomorphism. Now, if

g in G satisfies f (g) = 1, we see g lies in every neighborhood of 1, so 1
lies in {g} = {g}. Hence g = 1.
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Proposition

Let G be a topological group. Then G is profinite if and only if it is
compact and Hausdorff, and 1 has a basis of neighborhoods consisting of
normal subgroups.

Proof (continued).

For denseness, let U be a nonempty open subset of lim←−i∈I G/Mi of the

form (lim←−i∈I G/Mi ) ∩
∏

i∈I Ui , where the Ui are open subsets of G/Mi

such that Ui = G/Mi for all i outside a finite subset S ⊆ I . Form the
open normal subgroup N =

⋂
i∈S Mi , and choose j in I such that N ⊇ Mj .

For any (ui )i∈I in U, consider uj in G/Mj , and choose a representative ũ
of uj in G . Now for any i in S , the i-th component of f (ũ) equals the
image of uj in G/Mi , so it lies in Ui . Therefore f (ũ) lies in U, so
altogether we obtain denseness.
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We can form profinite groups from arbitrary topological groups as follows.

Definition

Let G be a topological group. Its profinite completion, denoted by Ĝ , is
the topological group lim←−i∈I G/Oi , where the Oi range over all open
normal finite index subgroups of G .

Examples

Suppose G is. . .

profinite. Then the previous proof shows that G
∼→ Ĝ .

Z with the discrete topology. Then we have Ẑ = lim←−m
Z/mZ, which

by the Chinese remainder theorem is isomorphic to

lim←−
m=p

e1
1 ···p

er
r

(Z/pe11 Z× · · · × Z/perr Z) =
∏
p

lim←−
e

Z/peZ =
∏
p

Zp.

One can show that Ẑ⊗Z Q ∼→A∞Q , where the latter is defined to be
AQ/R.
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Examples (continued)

Suppose G is. . .

R with the Euclidean topology. The only open subgroup of R is itself,
so its profinite completion is trivial.∏∞

i=1 F2 with the product topology. As this is profinite, it’s
isomorphic to its profinite completion. Note that open subgroups
must contain cofinitely many F2-factors, so there must be countably
many open subgroups.∏∞

i=1 F2 with the discrete topology. Now
∏∞

i=1 F2 is an
uncountable-dimensional F2-vector space, so it has uncountably many
finite index subgroups. With the discrete topology, they are all open!
One can show its profinite completion is not isomorphic to

∏∞
i=1 F2.

An important example comes from infinite Galois theory. Let E/F be a
(not necessarily finite) Galois extension. By extending automorphisms, we
see that Gal(E/F )

∼→ lim←−K
Gal(K/F ) as groups, where K ranges over

subextensions E ⊇ K ⊇ F such that K/F is finite Galois.
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We view the Gal(K/F ) as finite discrete groups, and we equip Gal(E/F )
with the resulting topological group structure. One can show then that
subextensions E ⊇ L ⊇ F correspond bijectively to closed subgroups of
Gal(K/F ), where L corresponds to Gal(E/L), and closed subgroups H of
Gal(K/F ) correspond to the fixed field EH .

Example

Take E = Fp and F = Fp. Then E =
⋃∞

m=1 Fpm , and Gal(Fpm/Fp) is
canonically isomorphic to Z/mZ via sending 1 to the p-th power Frobenius
map φ. Hence Gal(E/F ) is isomorphic to the topological group
lim←−m

Gal(Fpm/Fp) = lim←−m
Z/mZ = Ẑ.

To see the necessity of the closed condition in the Galois correspondence,
consider the proper subgroup Z ⊂ Ẑ = Gal(E/F ). It’s generated by φ, so
its fixed field equals Eφ = Fp = F . But this is also the fixed field of all of
Gal(E/F )! So in order to obtain a bijective Galois correspondence, we
must restrict to closed subgroups. For general subgroups H of Gal(E/F ),
its fixed field equals that of H.
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Let F be a field. The largest possible Galois extension of F would be a
separable closure F sep of F .

Definition

The absolute Galois group of F (with respect to F sep), denoted by ΓF , is
the topological group Gal(F sep/F ).

Thus studying separable extensions of F is equivalent to studying the
topological group ΓF .
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