Some Integrals
 (feat. some theorems)

Siyan Daniel Li-Huerta

November 17, 2020

Definition

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function. We say f is of exponential type if $f(s)=a b^{s}$, where a lies in \mathbb{C}^{\times}and b lies in \mathbb{R}.

Proposition

Suppose v is archimedean and f_{v} is analytic. Then $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is entire.

Proof.

As f_{v} is Schwartz, we see the integral over $\left\{x_{v} \in F_{v} \times \mid\left\|x_{v}\right\|_{v}>1\right\}$ converges. Since $L_{v}\left(s, \chi_{v}\right)$ vanishes nowhere, we only need to analyze poles resulting from the integral over $\left\{x_{v} \in F_{v}^{\times} \mid\left\|x_{v}\right\|_{v} \leq 1\right\}$.

If $F_{v}=\mathbb{R}$, then $\chi_{v}(x)=(x /|x|)^{\varepsilon}\|x\|_{v}^{\nu}$ for ε in $\{0,1\}$ and ν in $i \mathbb{R}$. Write $f_{v}(x)=\sum_{n=0}^{\infty} a(n) x^{n}$ for small enough x, where the $a(n)$ lie in \mathbb{C}. Because $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ is linear in f_{v}, it suffices to consider f_{v} even or odd. We see the integral over $\left\{x \in \mathbb{R} \mid\|x\|_{v} \leq 1\right\}$ vanishes when the parity of f_{v} and ε aren't equal, by substituting $x^{\prime}=-x$.

Proposition

Suppose v is archimedean and f_{v} is analytic. Then $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is entire.

Proof (continued).
If f_{v} is even, then $a(n)=0$ for odd n. Our lemma implies that the integral over $\left\{x \in \mathbb{R} \mid\|x\|_{v} \leq 1\right\}$ has at worst simple poles at $s=-\nu,-2-\nu, \ldots$ When $\varepsilon=0$, these are the poles of $L_{v}\left(s, \chi_{v}\right)=\pi^{-s-\nu} \Gamma((s+\nu) / 2)$. We obtain analogous cancellation when f_{v} and ε are odd.

If $F_{v}=\mathbb{C}$, then $\chi_{v}(z)=(z /|z|)^{k}\|z\|_{v}^{\nu}$ for k in \mathbb{Z} and ν in $i \mathbb{R}$. Write $f_{v}(z)=\sum_{n, m=0}^{\infty} a(n, m) z^{n} \bar{z}^{m}$ for small enough z, where the $a(n, m)$ lie in \mathbb{C}. Using polar coordinates $z=r e^{2 \pi i \theta}$ turns this integral into

$$
4 \pi \int_{0}^{1} \mathrm{~d}^{\times} r r^{2 \nu+2 s} \int_{0}^{1} \mathrm{~d} \theta f_{v}\left(r e^{2 \pi i \theta}\right) e^{2 \pi k i \theta}
$$

Now $\int_{0}^{1} \mathrm{~d} \theta f_{v}\left(r e^{2 \pi i \theta}\right) e^{2 \pi k i x}=\sum_{n, m=0}^{\infty} a(n, m) r^{n+m} \int_{0}^{1} \mathrm{~d} \theta e^{2 \pi(n-m+k) i \theta}$.

Proposition

Suppose v is archimedean and f_{v} is analytic. Then $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is entire.

Proof (continued).
This equals $\sum_{n=-k}^{\infty} a(n, n+k) r^{2 n+k}$. Our lemma implies that the integral $\int_{0}^{1} \mathrm{~d} r$ has at worst simple poles at $s=-\nu-|k| / 2,-1-\nu-|k| / 2, \ldots$. These are the poles of $L_{v}\left(s, \chi_{v}\right)=(2 \pi)^{-s-\nu-|k| / 2+1} \Gamma(s+\nu+|k| / 2)$.

Proposition

Suppose v is nonarchimedean. Then $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ is a \mathbb{C}-rational function in q_{v}^{-s}, and $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is entire.

Proof.
Homework problem.

Key Proposition

We can choose f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is of exponential type.
Proof.
Suppose v is nonarchimedean. If χ_{v} is unramified, taking $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$ makes this ratio equal $\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}\right)^{-1 / 2}$. If χ_{v} is ramified, taking $f_{v}=\mathbf{1}_{\mathcal{O}_{v} \times} \chi_{v}^{-1}$ makes this ratio equal $\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v}} / \mathbb{Q}_{p}\right)^{-1 / 2}$ again.

Suppose $F_{v}=\mathbb{R}$. If $\varepsilon=0$, taking $f_{v}(x)=e^{-\pi x^{2}}$ yields

$$
\begin{aligned}
Z_{v}\left(s, \chi_{v}, f_{v}\right) & =2 \int_{0}^{\infty} \mathrm{d} x e^{-\pi x^{2}} x^{s+\nu-1}=\pi^{-(s+\nu) / 2} \int_{0}^{\infty} \mathrm{d} x^{\prime} e^{-x^{\prime}} x^{\prime(s+\nu) / 2-1} \\
& =\pi^{-(s+\nu) / 2} \Gamma((s+\nu) / 2)=L_{v}\left(s, \chi_{v}\right)
\end{aligned}
$$

where $x^{\prime}=\pi x^{2}$. If $\varepsilon=1$, taking $f_{v}(x)=x e^{-\pi x^{2}}$ yields
$Z_{v}\left(s, \chi_{v}, f_{v}\right)=2 \int_{0}^{\infty} \mathrm{d} x e^{-\pi x^{2}} x^{s+\nu}=\pi^{-(s+\nu+1) / 2} \Gamma((s+\nu+1) / 2)=L_{v}\left(s, \chi_{v}\right)$

Key Proposition

We can choose f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is of exponential type.
Proof (continued).
Suppose $F_{v}=\mathbb{C}$. Using polar coordinates $z=r e^{2 \pi i \theta}$ and taking $f_{v}(z)=r^{|k|} e^{-2 \pi k i \theta} e^{-2 \pi r^{2}}$ gives us

$$
\begin{aligned}
Z_{v}\left(s, \chi_{v}, f_{v}\right) & =4 \pi \int_{0}^{\infty} \mathrm{d} r \int_{0}^{1} \mathrm{~d} \theta e^{-2 \pi r^{2}} r^{2 s+2 \nu-1+|k|} \\
& =4 \pi \int_{0}^{\infty} \mathrm{d} r e^{-2 \pi r^{2}} r^{2 s+2 \nu-1+|k|} \\
& =(2 \pi)^{-s-\nu-|k| / 2+1} \int_{0}^{\infty} \mathrm{d} r^{\prime} e^{-r^{\prime}} r^{\prime s+\nu+|k| / 2-1} \\
& =(2 \pi)^{-s-\nu-|k| / 2+1} \Gamma(s+\nu+|k| / 2)=L_{v}\left(s, \chi_{v}\right)
\end{aligned}
$$

where $r^{\prime}=2 \pi r^{2}$.
With this, we can now define ϵ-factors.

Proposition

Set $\epsilon_{v}\left(s, \chi_{v}\right)=\gamma_{v}\left(s, \chi_{v}\right) L_{v}\left(s, \chi_{v}\right) / L_{v}\left(1-s, \chi_{v}^{-1}\right)$. Then $\epsilon_{v}\left(s, \chi_{v}\right)$ is of exponential type. Furthermore, for v not in S, we have $\epsilon_{v}\left(s, \chi_{v}\right)=1$.

Proof.
Since $\gamma_{v}\left(s, \chi_{v}\right)=Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right) / Z_{v}\left(s, \chi_{v}, f_{v}\right)$, we see that

$$
\epsilon_{v}\left(s, \chi_{v}\right)=\frac{Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)}{L_{v}\left(1-s, \chi_{v}^{-1}\right)} \cdot \frac{L_{v}\left(s, \chi_{v}\right)}{Z_{v}\left(s, \chi_{v}, f_{v}\right)}
$$

The left factor is entire. By choosing f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is of exponential type, we see the right factor is also entire.

For nonarchimedean v, this is an entire \mathbb{C}-rational function of q_{v}^{-s} whose inverse is also entire. Hence it must be of exponential type. If v is unramified and $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$, previous calculations show that $\widehat{f}_{v}=\mathbf{1}_{\mathcal{O}_{v}}$. If χ_{v} is unramified, then so is χ_{v}^{-1}. We already know $L_{v}\left(s, \chi_{v}\right)=Z\left(s, \chi_{v}, f_{v}\right)$ in this situation, and similarly for χ_{v}^{-1} and \widehat{f}_{v}. Thus $\epsilon_{v}\left(s, \chi_{v}\right)=1$ here.

Proposition

Set $\epsilon_{v}\left(s, \chi_{v}\right)=\gamma_{v}\left(s, \chi_{v}\right) L_{v}\left(s, \chi_{v}\right) / L_{v}\left(1-s, \chi_{v}^{-1}\right)$. Then $\epsilon_{v}\left(s, \chi_{v}\right)$ is of exponential type. Furthermore, for v not in S, we have $\epsilon_{v}\left(s, \chi_{v}\right)=1$.

Proof (continued).
For archimedean v, it'll be a homework problem to explicitly compute $\epsilon_{v}\left(s, \chi_{v}\right)$, which will verify it is of exponential type.

Write $\epsilon(s, \chi)=\prod_{v \in S} \epsilon_{v}\left(s, \chi_{v}\right)$. Since the $\epsilon_{v}\left(s, \chi_{v}\right)$ are of exponential type, we see $\epsilon(s, \chi)$ is as well.

Theorem (Hecke, Tate)
Our $L(s, \chi)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $L(s, \chi)=\epsilon(s, \chi) L\left(1-s, \chi^{-1}\right)$.

Theorem (Hecke, Tate)
Our $L(s, \chi)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $L(s, \chi)=\epsilon(s, \chi) L\left(1-s, \chi^{-1}\right)$.

Proof (Tate).

We have $L(s, \chi) \prod_{v \in S} Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)=Z(s, \chi, f)$. For v in S, we can choose f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right) / L_{v}\left(s, \chi_{v}\right)$ is of exponential type. Hence $L(s, \chi)$ has meromorphic continuation to all s in \mathbb{C}, and it also has the same poles as $Z(s, \chi, f)$. Finally, we have

$$
\begin{aligned}
L(s, \chi) & =Z(s, \chi, f) \prod_{v \in S} L_{v}\left(s, \chi_{v}\right) / Z_{v}\left(s, \chi_{v}, f_{v}\right) \\
& =Z\left(1-s, \chi_{v}^{-1}, \widehat{f}\right) \prod_{v \in S} \epsilon_{v}\left(s, \chi_{v}\right) L_{v}\left(1-s, \chi_{v}^{-1}\right) / Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right) \\
& =\epsilon(s, \chi) L\left(1-s, \chi^{-1}\right)
\end{aligned}
$$

Example (Class number formula)

Let $\chi=1$. For nonarchimedean v, taking $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$ makes the local zeta integral $Z_{v}\left(s, \chi_{v}, f_{v}\right)=\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v}} / \mathbb{Q}_{p}\right)^{-1 / 2} L_{v}\left(s, \chi_{v}\right)$. For archimedean v, taking f_{v} as in the Key Proposition gives $Z_{v}\left(s, \chi_{v}, f_{v}\right)=L_{v}\left(s, \chi_{v}\right)$. Therefore $Z(s, \chi, f)=\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{-1 / 2} \zeta_{F}(s) \prod_{v \in M_{F, \infty}} L_{v}\left(s, \chi_{v}\right)$.
Recall $Z(s, \chi, f)$ has a simple pole at $s=1$ with residue $\widehat{f}(0) m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)$. For nonarchimedean v, recall that $\widehat{f}_{v}=\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}\right)^{-1 / 2} \mathbf{1}_{\mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}}$. For archimedean v, recall that f_{v} is self-dual. Therefore

$$
\widehat{f}(0)=\prod_{v \in M_{F}} \widehat{f}_{v}(0)=\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{-1 / 2}
$$

In our situation, $L_{v}\left(1, \chi_{v}\right)=1$ for archimedean v. Altogether, we see that $\zeta_{F}(s)$ has a simple pole at $s=1$ with residue

$$
m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{F} \mathcal{R}_{F}}{\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2} w_{F}}
$$

