Some Integrals (feat. some theorems)

Siyan Daniel Li-Huerta

November 17, 2020

Definition

Let $f : \mathbb{C} \to \mathbb{C}$ be a function. We say f is of *exponential type* if $f(s) = ab^s$, where a lies in \mathbb{C}^{\times} and b lies in \mathbb{R} .

Proposition

Suppose v is archimedean and f_v is analytic. Then $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is entire.

Proof.

As f_{ν} is Schwartz, we see the integral over $\{x_{\nu} \in F_{\nu}^{\times} \mid ||x_{\nu}||_{\nu} > 1\}$ converges. Since $L_{\nu}(s, \chi_{\nu})$ vanishes nowhere, we only need to analyze poles resulting from the integral over $\{x_{\nu} \in F_{\nu}^{\times} \mid ||x_{\nu}||_{\nu} \leq 1\}$.

If $F_{\nu} = \mathbb{R}$, then $\chi_{\nu}(x) = (x/|x|)^{\varepsilon} ||x||_{\nu}^{\nu}$ for ε in $\{0,1\}$ and ν in $i\mathbb{R}$. Write $f_{\nu}(x) = \sum_{n=0}^{\infty} a(n)x^n$ for small enough x, where the a(n) lie in \mathbb{C} . Because $Z_{\nu}(s, \chi_{\nu}, f_{\nu})$ is linear in f_{ν} , it suffices to consider f_{ν} even or odd. We see the integral over $\{x \in \mathbb{R} \mid ||x||_{\nu} \leq 1\}$ vanishes when the parity of f_{ν} and ε aren't equal, by substituting x' = -x.

Suppose v is archimedean and f_v is analytic. Then $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is entire.

Proof (continued).

If f_{ν} is even, then a(n) = 0 for odd n. Our lemma implies that the integral over $\{x \in \mathbb{R} \mid ||x||_{\nu} \leq 1\}$ has at worst simple poles at $s = -\nu, -2 - \nu, \ldots$. When $\varepsilon = 0$, these are the poles of $L_{\nu}(s, \chi_{\nu}) = \pi^{-s-\nu} \Gamma((s+\nu)/2)$. We obtain analogous cancellation when f_{ν} and ε are odd.

If $F_{\nu} = \mathbb{C}$, then $\chi_{\nu}(z) = (z/|z|)^k ||z||_{\nu}^{\nu}$ for k in \mathbb{Z} and ν in $i\mathbb{R}$. Write $f_{\nu}(z) = \sum_{n,m=0}^{\infty} a(n,m) z^n \overline{z}^m$ for small enough z, where the a(n,m) lie in \mathbb{C} . Using polar coordinates $z = re^{2\pi i\theta}$ turns this integral into

$$4\pi \int_0^1 \mathrm{d}^{\times} r \, r^{2\nu+2s} \int_0^1 \mathrm{d}\theta \, f_{\nu}(re^{2\pi i\theta}) e^{2\pi k i\theta}.$$

Now $\int_0^1 \mathrm{d}\theta f_v(re^{2\pi i\theta})e^{2\pi kix} = \sum_{n,m=0}^\infty a(n,m)r^{n+m} \int_0^1 \mathrm{d}\theta e^{2\pi (n-m+k)i\theta}.$

Suppose v is archimedean and f_v is analytic. Then $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is entire.

Proof (continued).

This equals $\sum_{n=-k}^{\infty} a(n, n+k)r^{2n+k}$. Our lemma implies that the integral $\int_0^1 dr$ has at worst simple poles at $s = -\nu - |k|/2, -1 - \nu - |k|/2, \dots$. These are the poles of $L_{\nu}(s, \chi_{\nu}) = (2\pi)^{-s-\nu - |k|/2+1}\Gamma(s+\nu+|k|/2)$.

Proposition

Suppose v is nonarchimedean. Then $Z_v(s, \chi_v, f_v)$ is a \mathbb{C} -rational function in q_v^{-s} , and $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is entire.

Proof.

Homework problem.

Key Proposition

We can choose f_v such that $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is of exponential type.

Proof.

Suppose v is nonarchimedean. If χ_{v} is unramified, taking $f_{v} = \mathbf{1}_{\mathcal{O}_{v}}$ makes this ratio equal $\#(\mathcal{O}_{v}/\mathfrak{d}_{F_{v}/\mathbb{Q}_{p}})^{-1/2}$. If χ_{v} is ramified, taking $f_{v} = \mathbf{1}_{\mathcal{O}_{v}^{\times}}\chi_{v}^{-1}$ makes this ratio equal $\#(\mathcal{O}_{v}/\mathfrak{d}_{F_{v}/\mathbb{Q}_{p}})^{-1/2}$ again.

Suppose $F_v = \mathbb{R}$. If $\varepsilon = 0$, taking $f_v(x) = e^{-\pi x^2}$ yields

$$Z_{\nu}(s, \chi_{\nu}, f_{\nu}) = 2 \int_{0}^{\infty} \mathrm{d}x \, e^{-\pi x^{2}} x^{s+\nu-1} = \pi^{-(s+\nu)/2} \int_{0}^{\infty} \mathrm{d}x' \, e^{-x'} x'^{(s+\nu)/2-1}$$
$$= \pi^{-(s+\nu)/2} \Gamma((s+\nu)/2) = L_{\nu}(s, \chi_{\nu}),$$

where $x' = \pi x^2$. If $\varepsilon = 1$, taking $f_v(x) = xe^{-\pi x^2}$ yields

$$Z_{\nu}(s,\chi_{\nu},f_{\nu}) = 2\int_{0}^{\infty} \mathrm{d}x \, e^{-\pi x^{2}} x^{s+\nu} = \pi^{-(s+\nu+1)/2} \Gamma((s+\nu+1)/2) = L_{\nu}(s,\chi_{\nu})$$

Key Proposition

We can choose f_v such that $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is of exponential type.

Proof (continued).

Suppose $F_v = \mathbb{C}$. Using polar coordinates $z = re^{2\pi i\theta}$ and taking $f_v(z) = r^{|k|}e^{-2\pi ki\theta}e^{-2\pi r^2}$ gives us

$$Z_{\nu}(s, \chi_{\nu}, f_{\nu}) = 4\pi \int_{0}^{\infty} \mathrm{d}r \int_{0}^{1} \mathrm{d}\theta \, e^{-2\pi r^{2}} r^{2s+2\nu-1+|k|}$$

= $4\pi \int_{0}^{\infty} \mathrm{d}r \, e^{-2\pi r^{2}} r^{2s+2\nu-1+|k|}$
= $(2\pi)^{-s-\nu-|k|/2+1} \int_{0}^{\infty} \mathrm{d}r' \, e^{-r'} r'^{s+\nu+|k|/2-1}$
= $(2\pi)^{-s-\nu-|k|/2+1} \Gamma(s+\nu+|k|/2) = L_{\nu}(s, \chi_{\nu}),$

where $r' = 2\pi r^2$.

With this, we can now define ϵ -factors.

Set $\epsilon_v(s, \chi_v) = \gamma_v(s, \chi_v) L_v(s, \chi_v) / L_v(1 - s, \chi_v^{-1})$. Then $\epsilon_v(s, \chi_v)$ is of exponential type. Furthermore, for v not in S, we have $\epsilon_v(s, \chi_v) = 1$.

Proof.

Since
$$\gamma_{\nu}(s, \chi_{\nu}) = Z_{\nu}(1 - s, \chi_{\nu}^{-1}, \widehat{f_{\nu}})/Z_{\nu}(s, \chi_{\nu}, f_{\nu})$$
, we see that

$$\epsilon_{\nu}(s,\chi_{\nu})=\frac{Z_{\nu}(1-s,\chi_{\nu}^{-1},\widehat{f}_{\nu})}{L_{\nu}(1-s,\chi_{\nu}^{-1})}\cdot\frac{L_{\nu}(s,\chi_{\nu})}{Z_{\nu}(s,\chi_{\nu},f_{\nu})}.$$

The left factor is entire. By choosing f_v such that $Z_v(s, \chi_v, f_v)/L_v(s, \chi_v)$ is of exponential type, we see the right factor is also entire.

For nonarchimedean v, this is an entire \mathbb{C} -rational function of q_v^{-s} whose inverse is also entire. Hence it must be of exponential type. If v is unramified and $f_v = \mathbf{1}_{\mathcal{O}_v}$, previous calculations show that $\hat{f}_v = \mathbf{1}_{\mathcal{O}_v}$. If χ_v is unramified, then so is χ_v^{-1} . We already know $L_v(s, \chi_v) = Z(s, \chi_v, f_v)$ in this situation, and similarly for χ_v^{-1} and \hat{f}_v . Thus $\epsilon_v(s, \chi_v) = 1$ here.

Set $\epsilon_{\nu}(s, \chi_{\nu}) = \gamma_{\nu}(s, \chi_{\nu})L_{\nu}(s, \chi_{\nu})/L_{\nu}(1-s, \chi_{\nu}^{-1})$. Then $\epsilon_{\nu}(s, \chi_{\nu})$ is of exponential type. Furthermore, for ν not in S, we have $\epsilon_{\nu}(s, \chi_{\nu}) = 1$.

Proof (continued).

For archimedean v, it'll be a homework problem to explicitly compute $\epsilon_v(s, \chi_v)$, which will verify it is of exponential type.

Write $\epsilon(s, \chi) = \prod_{v \in S} \epsilon_v(s, \chi_v)$. Since the $\epsilon_v(s, \chi_v)$ are of exponential type, we see $\epsilon(s, \chi)$ is as well.

Theorem (Hecke, Tate)

Our $L(s, \chi)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $L(s, \chi) = \epsilon(s, \chi)L(1 - s, \chi^{-1})$.

Theorem (Hecke, Tate)

Our $L(s, \chi)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $L(s, \chi) = \epsilon(s, \chi)L(1 - s, \chi^{-1})$.

Proof (Tate).

We have $L(s,\chi) \prod_{v \in S} Z_v(s,\chi_v,f_v)/L_v(s,\chi_v) = Z(s,\chi,f)$. For v in S, we can choose f_v such that $Z_v(s,\chi_v,f_v)/L_v(s,\chi_v)$ is of exponential type. Hence $L(s,\chi)$ has meromorphic continuation to all s in \mathbb{C} , and it also has the same poles as $Z(s,\chi,f)$. Finally, we have

$$\begin{split} \mathcal{L}(s,\chi) &= Z(s,\chi,f) \prod_{\nu \in S} \mathcal{L}_{\nu}(s,\chi_{\nu}) / Z_{\nu}(s,\chi_{\nu},f_{\nu}) \\ &= Z(1-s,\chi_{\nu}^{-1},\widehat{f}) \prod_{\nu \in S} \epsilon_{\nu}(s,\chi_{\nu}) \mathcal{L}_{\nu}(1-s,\chi_{\nu}^{-1}) / Z_{\nu}(1-s,\chi_{\nu}^{-1},\widehat{f}_{\nu}) \\ &= \epsilon(s,\chi) \mathcal{L}(1-s,\chi^{-1}). \end{split}$$

Example (Class number formula)

Let $\chi = 1$. For nonarchimedean v, taking $f_v = \mathbf{1}_{\mathcal{O}_v}$ makes the local zeta integral $Z_v(s, \chi_v, f_v) = \#(\mathcal{O}_v/\mathfrak{d}_{F_v/\mathbb{Q}_p})^{-1/2} \mathcal{L}_v(s, \chi_v)$. For archimedean v, taking f_v as in the Key Proposition gives $Z_v(s, \chi_v, f_v) = \mathcal{L}_v(s, \chi_v)$. Therefore $Z(s, \chi, f) = |\mathcal{D}_{F/\mathbb{Q}}|^{-1/2} \zeta_F(s) \prod_{v \in M_{F,\infty}} \mathcal{L}_v(s, \chi_v)$.

Recall $Z(s, \chi, f)$ has a simple pole at s = 1 with residue $\widehat{f}(0)m(\mathbb{A}_{F}^{\times,1}/F^{\times})$. For nonarchimedean v, recall that $\widehat{f_{v}} = \#(\mathcal{O}_{v}/\mathfrak{d}_{F_{v}/\mathbb{Q}_{p}})^{-1/2}\mathbf{1}_{\mathfrak{d}_{F_{v}/\mathbb{Q}_{p}}^{-1}}$. For archimedean v, recall that f_{v} is self-dual. Therefore

$$\widehat{f}(0) = \prod_{v \in M_F} \widehat{f}_v(0) = |\mathcal{D}_{F/\mathbb{Q}}|^{-1/2}$$

In our situation, $L_{\nu}(1, \chi_{\nu}) = 1$ for archimedean ν . Altogether, we see that $\zeta_F(s)$ has a simple pole at s = 1 with residue

$$m(\mathbb{A}_F^{\times,1}/F^{\times})=\frac{2^{r_1}(2\pi)^{r_2}h_F\mathcal{R}_F}{|\mathcal{D}_F/\mathbb{Q}|^{1/2}w_F}.$$

10/10