Global Zeta Integrals

Siyan Daniel Li-Huerta

November 12, 2020

We'll use the following consequence of adelic Poisson summation. Lemma
Let f be in $\mathcal{S}\left(\mathbb{A}_{F}\right)$, and let x be in \mathbb{A}_{F}^{\times}. Then we have $\sum_{\gamma \in F} f(x \gamma)=\|x\|^{-1} \sum_{\gamma \in F} \widehat{f}\left(x^{-1} \gamma\right)$.

Proof.
Homework problem.

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $Z(s, \chi, f)=Z\left(1-s, \chi^{-1}, \widehat{f}\right)$.

Proof.
We know $Z(s, \chi, f)$ converges for $\operatorname{Re} s>1$, so the integral over $\left\{x \in \mathbb{A}_{F}^{\times} \mid\|x\|>1\right\}$ also converges. On this domain, lowering Res only shrinks the integral, so the integral here converges for all s.

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $Z(s, \chi, f)=Z\left(1-s, \chi^{-1}, \widehat{f}\right)$.

Proof (continued).
Hence we focus on the integral over $\left\{x \in \mathbb{A}_{F}^{x} \mid\|x\|<1\right\}$. The fundamental domain $D \times \mathbb{R}_{>0}$ of $\mathbb{A}_{F}^{\times} / F^{\times}$shows that this integral equals

$$
\int_{D \times(0,1)} \mathrm{d}^{\times} x \sum_{\gamma \in F^{\times}} f(x \gamma) \chi(x \gamma)\|x \gamma\|^{s}=\int_{D \times(0,1)} \mathrm{d}^{\times} x \sum_{\gamma \in F^{\times}} f(x \gamma) \chi(x)\|x\|^{s},
$$

since χ and $\|\cdot\|$ are trivial on F^{\times}. Adding and subtracting a $\gamma=0$ term turns this integral into

$$
\int_{D \times(0,1)} \mathrm{d}^{\times} x \sum_{\gamma \in F} f(x \gamma) \chi(x)\|x\|^{s}-f(0) \int_{D \times(0,1)} \mathrm{d}^{\times} x \chi(x)\|x\|^{s}
$$

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $Z(s, \chi, f)=Z\left(1-s, \chi^{-1}, \widehat{f}\right)$.

Proof (continued).
We first investigate the right term. Decomposing into D and $(0,1)$ yields

$$
-f(0) \int_{0}^{1} \mathrm{~d}^{\times} t t^{s} \chi(t) \int_{\mathbb{A}^{\times}, 1 / F^{\times}} \mathrm{d}^{\times} y \chi(y) .
$$

If χ is nontrivial on $\mathbb{A}_{F}^{\times, 1} / F^{\times}$, the usual trick shows this integral vanishes. If χ is trivial on $\mathbb{A}_{F}^{\times, 1} / F^{\times}$, we must have $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$. Then our expression becomes

$$
-f(0) m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right) \int_{0}^{1} \mathrm{~d}^{\times} t t^{s+\nu}=-\frac{f(0) m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)}{s+\nu}
$$

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $Z(s, \chi, f)=Z\left(1-s, \chi^{-1}, \widehat{f}\right)$.

Proof (continued).
Next, we investigate the left term. Using our lemma and setting $x^{\prime}=x^{-1}$ converts it into

$$
\begin{aligned}
& \int_{D \times(0,1)} \mathrm{d}^{\times} x \sum_{\gamma \in F} \widehat{f}\left(x^{-1} \gamma\right) \chi(x)\|x\|^{s-1} \\
= & \int_{D^{-1} \times(1, \infty)} \mathrm{d}^{\times} x^{\prime} \sum_{\gamma \in F} \widehat{f}\left(x^{\prime} \gamma\right) \chi\left(x^{\prime}\right)^{-1}\left\|x^{\prime}\right\|^{1-s} .
\end{aligned}
$$

Note that D^{-1} is also a fundamental domain for $\mathbb{A}_{F}^{\times, 1} / F^{\times}$. Next, we'll split off the $\gamma=0$ term to obtain...

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $Z(s, \chi, f)=Z\left(1-s, \chi^{-1}, \widehat{f}\right)$.

Proof (continued).

$$
\begin{aligned}
& \int_{D^{-1} \times(1, \infty)} \mathrm{d}^{\times} x^{\prime} \sum_{\gamma \in F^{\times}} \widehat{f}\left(x^{\prime} \gamma\right) \chi\left(x^{\prime}\right)^{-1}\left\|x^{\prime}\right\|^{1-s} \\
& +\widehat{f}(0) \int_{D^{-1} \times(1, \infty)} \mathrm{d}^{\times} x^{\prime} \chi\left(x^{\prime}\right)^{-1}\left\|x^{\prime}\right\|^{1-s} .
\end{aligned}
$$

Our previous argument shows that this new right term doesn't vanish if and only if $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case it equals

$$
-\frac{\widehat{f}(0) m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)}{1-s-\nu}
$$

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $Z(s, \chi, f)=Z\left(1-s, \chi^{-1}, \widehat{f}\right)$.

Proof (continued).
Because χ and $\|\cdot\|$ are trivial on F^{\times}, this new left term equals

$$
\int_{D^{-1} \times(1, \infty)} \mathrm{d}^{\times} x^{\prime} \sum_{\gamma \in F^{\times}} \widehat{f}\left(x^{\prime} \gamma\right) \chi\left(x^{\prime} \gamma\right)^{-1}\left\|x^{\prime} \gamma\right\|^{1-s}
$$

which is the integral for $Z\left(1-s, \chi^{-1}, \widehat{f}\right)$ over $\left\{x \in \mathbb{A}_{F}^{\times} \mid\|x\|>1\right\}$. This similarly converges for all s. Adding all these terms together yields the desired result.

We ignored the subset $\left\{x \in \mathbb{A}_{F}^{\times} \mid\|x\|=1\right\}$ throughout. It'll be a homework problem to show it has measure zero.

Here's another reason why it's nice to have flexibility in choosing f_{v} :

Proposition

Let s_{0} be in \mathbb{C}. We can choose f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ has no zeroes nor poles at $s=s_{0}$. Furthermore, if v is nonarchimedean, we can choose f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right)=1$.

Proof.

Recall that if f_{v} vanishes in a neighborhood of 0 , then $Z_{v}\left(s, \chi_{v}, f_{v}\right)=\int_{F_{v}^{\times}} \mathrm{d}^{\times} x_{v} f_{v}\left(x_{v}\right) \chi_{v}\left(x_{v}\right)\left\|x_{v}\right\|_{v}^{s}$ is holomorphic for all s in \mathbb{C}. In particular, it has no poles. By choosing nonzero f_{v} supported in a sufficiently small neighborhood of 1 , we can make this integral at $s=s_{0}$ arbitrarily close to $\chi_{v}(1)\|1\|_{v}^{s_{0}}=1$. Finally, if v is nonarchimedean, we can choose such an f_{v} supported in \mathcal{O}_{v}^{\times}. Since $\left\|\mathcal{O}_{v}^{\times}\right\|_{v}=1$, this makes the integral independent of s, and we can rescale f_{v} such that this constant integral equals 1.

Let $S \supseteq M_{F, \infty}$ be a finite subset of M_{F} such that v is unramified, χ_{v} is unramified, and $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$ for all v not in S.

Theorem

Our $L^{S}(s, \chi)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in \mathbb{R}, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, we have $L^{S}(s, \chi)=\left(\prod_{v \in S} \gamma_{v}\left(s, \chi_{v}\right)\right) L^{S}\left(1-s, \chi^{-1}\right)$.

Proof.

Recall that $L_{v}\left(s, \chi_{v}\right)=Z_{v}\left(s, \chi_{v}, f_{v}\right)$ for v not in S. Therefore we see that $L^{S}(s, \chi) \prod_{v \in S} Z_{v}\left(s, \chi_{v}, f_{v}\right)=Z(s, \chi, f)$. Now the $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ and $Z(s, \chi, f)$ have meromorphic continuation to all s in \mathbb{C}, so $L^{S}(s, \chi)$ does as well. Next, let s_{0} be in \mathbb{C}. For v in S, we can choose f_{v} such that $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ has no zeroes nor poles at $s=s_{0}$. Hence $L^{S}(s, \chi)$ has a pole at $s=s_{0}$ if and only if $Z(s, \chi, f)$ does, which yields the desired statement. Finally, we have

$$
\begin{aligned}
L^{S}(s, \chi) & =Z(s, \chi, f) \prod_{v \in S} Z_{v}\left(s, \chi_{v}, f_{v}\right)^{-1} \\
& =Z\left(1-s, \chi^{-1}, \widehat{f}\right) \prod_{v \in S}\left(\gamma_{v}\left(s, \chi_{v}\right) Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)^{-1}\right) \\
& =\left(\prod_{v \in S} \gamma_{v}\left(s, \chi_{v}\right)\right) L^{S}\left(1-s, \chi^{-1}\right) .
\end{aligned}
$$

The above theorem suffices for many applications, but we'd like to reach our ultimate result for the completed Hecke L-function. Let's conclude today with a complex-analytic lemma.

Lemma

Let \mathfrak{S} be a discrete subset of \mathbb{R} that's bounded below, let a: $\mathfrak{S} \rightarrow \mathbb{C}$ be a function, and suppose that $f:(0,1] \rightarrow \mathbb{C}$ is a continuous function such that $f(x)=\sum_{p \in \mathfrak{S}} a(p) x^{p}$ for small enough x. Then $\int_{0}^{1} \mathrm{~d}^{\times} x f(x) x^{s}$ has meromorphic continuation to all s in \mathbb{C}. Its only poles are at $s=-p$ for p in \mathfrak{S}, with residue $a(p)$. Furthermore, for any $\epsilon>0$ and real N, this integral is bounded on $\{s \in \mathbb{C} \mid \operatorname{Re} s>-N$ and $d(s, \mathfrak{S})>\epsilon\}$.

Proof.

Set $R(x)=f(x)-\sum_{\substack{p \in \mathscr{S} \\ p<N}} a(p) x^{p}$. Then $R(x)=\sum_{\substack{p \in \mathcal{S} \\ p>N}} a(p) x^{p}$ for small
enough x, so we see that $\int_{0}^{1} \mathrm{~d}^{\times} x R(x) x^{s}$ converges for $\operatorname{Re} s>-N$. Thus $\int_{0}^{1} \mathrm{~d}^{\times} \times f(x) x^{s}=\sum_{\substack{p \in \mathfrak{S} \\ p<N}} a(p) /(s+p)+\int_{0}^{1} \mathrm{~d}^{\times} \times R(x) x^{s}$ has the desired poles and residues. Taking absolute values also yields the desired bound.

