Global Zeta Integrals

Siyan Daniel Li-Huerta

November 12, 2020

We'll use the following consequence of adelic Poisson summation. Lemma

Let f be in
$$S(\mathbb{A}_F)$$
, and let x be in \mathbb{A}_F^{\times} . Then we have
 $\sum_{\gamma \in F} f(x\gamma) = ||x||^{-1} \sum_{\gamma \in F} \widehat{f}(x^{-1}\gamma).$

Proof.

Homework problem.

Proposition

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $Z(s, \chi, f) = Z(1 - s, \chi^{-1}, \widehat{f})$.

Proof.

We know $Z(s, \chi, f)$ converges for Re s > 1, so the integral over $\{x \in \mathbb{A}_F^{\times} \mid ||x|| > 1\}$ also converges. On this domain, lowering Re s only shrinks the integral, so the integral here converges for all s.

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $Z(s, \chi, f) = Z(1 - s, \chi^{-1}, \widehat{f})$.

Proof (continued).

Hence we focus on the integral over $\{x \in \mathbb{A}_F^{\times} \mid ||x|| < 1\}$. The fundamental domain $D \times \mathbb{R}_{>0}$ of $\mathbb{A}_F^{\times}/F^{\times}$ shows that this integral equals

$$\int_{D\times(0,1)} \mathrm{d}^{\mathsf{X}} x \sum_{\gamma\in F^{\mathsf{X}}} f(x\gamma)\chi(x\gamma) \|x\gamma\|^{\mathfrak{s}} = \int_{D\times(0,1)} \mathrm{d}^{\mathsf{X}} x \sum_{\gamma\in F^{\mathsf{X}}} f(x\gamma)\chi(x) \|x\|^{\mathfrak{s}},$$

since χ and $\|\cdot\|$ are trivial on F^{\times} . Adding and subtracting a $\gamma = 0$ term turns this integral into

$$\int_{D\times(0,1)} \mathrm{d}^{\times} x \sum_{\gamma\in F} f(x\gamma)\chi(x) \|x\|^{s} - f(0) \int_{D\times(0,1)} \mathrm{d}^{\times} x \,\chi(x) \|x\|^{s}.$$

3/1

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $Z(s, \chi, f) = Z(1 - s, \chi^{-1}, \widehat{f})$.

Proof (continued).

We first investigate the right term. Decomposing into D and (0,1) yields

$$-f(0)\int_0^1\mathrm{d}^{\times}t\,t^s\chi(t)\int_{\mathbb{A}^{\times,1}/F^{\times}}\mathrm{d}^{\times}y\,\chi(y).$$

If χ is nontrivial on $\mathbb{A}_{F}^{\times,1}/F^{\times}$, the usual trick shows this integral vanishes. If χ is trivial on $\mathbb{A}_{F}^{\times,1}/F^{\times}$, we must have $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$. Then our expression becomes

$$-f(0)m(\mathbb{A}_F^{\times,1}/F^{\times})\int_0^1\mathrm{d}^{\times}t\,t^{s+\nu}=-\frac{f(0)m(\mathbb{A}_F^{\times,1}/F^{\times})}{s+\nu}.$$

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $Z(s, \chi, f) = Z(1 - s, \chi^{-1}, \widehat{f})$.

Proof (continued).

Next, we investigate the left term. Using our lemma and setting $x' = x^{-1}$ converts it into

$$\int_{D\times(0,1)} \mathrm{d}^{\times} x \sum_{\gamma\in F} \widehat{f}(x^{-1}\gamma)\chi(x) \|x\|^{s-1}$$
$$= \int_{D^{-1}\times(1,\infty)} \mathrm{d}^{\times} x' \sum_{\gamma\in F} \widehat{f}(x'\gamma)\chi(x')^{-1} \|x'\|^{1-s}$$

Note that D^{-1} is also a fundamental domain for $\mathbb{A}_{F}^{\times,1}/F^{\times}$. Next, we'll split off the $\gamma = 0$ term to obtain...

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $Z(s, \chi, f) = Z(1 - s, \chi^{-1}, \widehat{f})$.

Proof (continued).

$$\begin{split} &\int_{D^{-1}\times(1,\infty)} \mathrm{d}^{\times} x' \sum_{\gamma \in F^{\times}} \widehat{f}(x'\gamma) \chi(x')^{-1} \|x'\|^{1-s} \\ &+ \widehat{f}(0) \int_{D^{-1}\times(1,\infty)} \mathrm{d}^{\times} x' \chi(x')^{-1} \|x'\|^{1-s}. \end{split}$$

Our previous argument shows that this new right term doesn't vanish if and only if $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case it equals

$$-\frac{\widehat{f}(0)m(\mathbb{A}_{F}^{\times,1}/F^{\times})}{1-s-\nu}.$$

Our $Z(s, \chi, f)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $Z(s, \chi, f) = Z(1 - s, \chi^{-1}, \hat{f})$.

Proof (continued).

Because χ and $\|\cdot\|$ are trivial on F^{\times} , this new left term equals

$$\int_{D^{-1}\times(1,\infty)} \mathrm{d}^{\times} x' \sum_{\gamma\in F^{\times}} \widehat{f}(x'\gamma) \chi(x'\gamma)^{-1} \|x'\gamma\|^{1-s},$$

which is the integral for $Z(1 - s, \chi^{-1}, \hat{f})$ over $\{x \in \mathbb{A}_F^{\times} | ||x|| > 1\}$. This similarly converges for all s. Adding all these terms together yields the desired result.

We ignored the subset $\{x \in \mathbb{A}_F^{\times} \mid ||x|| = 1\}$ throughout. It'll be a homework problem to show it has measure zero.

Here's another reason why it's nice to have flexibility in choosing f_v :

Proposition

Let s_0 be in \mathbb{C} . We can choose f_v such that $Z_v(s, \chi_v, f_v)$ has no zeroes nor poles at $s = s_0$. Furthermore, if v is nonarchimedean, we can choose f_v such that $Z_v(s, \chi_v, f_v) = 1$.

Proof.

Recall that if f_v vanishes in a neighborhood of 0, then $Z_v(s, \chi_v, f_v) = \int_{F_v^{\times}} d^{\times} x_v f_v(x_v) \chi_v(x_v) \|x_v\|_v^s$ is holomorphic for all s in \mathbb{C} . In particular, it has no poles. By choosing nonzero f_v supported in a sufficiently small neighborhood of 1, we can make this integral at $s = s_0$ arbitrarily close to $\chi_v(1) \|1\|_v^{s_0} = 1$. Finally, if v is nonarchimedean, we can choose such an f_v supported in \mathcal{O}_v^{\times} . Since $\|\mathcal{O}_v^{\times}\|_v = 1$, this makes the integral independent of s, and we can rescale f_v such that this constant integral equals 1.

Let $S \supseteq M_{F,\infty}$ be a finite subset of M_F such that v is unramified, χ_v is unramified, and $f_v = \mathbf{1}_{\mathcal{O}_v}$ for all v not in S.

Theorem

Our $L^{S}(s, \chi)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, we have $L^{S}(s, \chi) = (\prod_{v \in S} \gamma_{v}(s, \chi_{v})) L^{S}(1 - s, \chi^{-1}).$

Proof.

Recall that $L_v(s, \chi_v) = Z_v(s, \chi_v, f_v)$ for v not in S. Therefore we see that $L^S(s, \chi) \prod_{v \in S} Z_v(s, \chi_v, f_v) = Z(s, \chi, f)$. Now the $Z_v(s, \chi_v, f_v)$ and $Z(s, \chi, f)$ have meromorphic continuation to all s in \mathbb{C} , so $L^S(s, \chi)$ does as well. Next, let s_0 be in \mathbb{C} . For v in S, we can choose f_v such that $Z_v(s, \chi_v, f_v)$ has no zeroes nor poles at $s = s_0$. Hence $L^S(s, \chi)$ has a pole at $s = s_0$ if and only if $Z(s, \chi, f)$ does, which yields the desired statement. Finally, we have

$$\begin{split} L^{S}(s,\chi) &= Z(s,\chi,f) \prod_{\nu \in S} Z_{\nu}(s,\chi_{\nu},f_{\nu})^{-1} \\ &= Z(1-s,\chi^{-1},\widehat{f}) \prod_{\nu \in S} \left(\gamma_{\nu}(s,\chi_{\nu}) Z_{\nu}(1-s,\chi_{\nu}^{-1},\widehat{f}_{\nu})^{-1} \right) \\ &= \left(\prod_{\nu \in S} \gamma_{\nu}(s,\chi_{\nu}) \right) L^{S}(1-s,\chi^{-1}). \end{split}$$

The above theorem suffices for many applications, but we'd like to reach our ultimate result for the completed Hecke *L*-function. Let's conclude today with a complex-analytic lemma.

Lemma

Let \mathfrak{S} be a discrete subset of \mathbb{R} that's bounded below, let $a : \mathfrak{S} \to \mathbb{C}$ be a function, and suppose that $f : (0,1] \to \mathbb{C}$ is a continuous function such that $f(x) = \sum_{p \in \mathfrak{S}} a(p)x^p$ for small enough x. Then $\int_0^1 d^{\times}x f(x)x^s$ has meromorphic continuation to all s in \mathbb{C} . Its only poles are at s = -p for p in \mathfrak{S} , with residue a(p). Furthermore, for any $\epsilon > 0$ and real N, this integral is bounded on $\{s \in \mathbb{C} \mid \text{Re } s > -N \text{ and } d(s, \mathfrak{S}) > \epsilon\}$.

Proof.

Set $R(x) = f(x) - \sum_{\substack{p \in \mathfrak{S} \\ p < N}} a(p)x^p$. Then $R(x) = \sum_{\substack{p \in \mathfrak{S} \\ p > N}} a(p)x^p$ for small enough x, so we see that $\int_0^1 d^x x R(x)x^s$ converges for $\operatorname{Re} s > -N$. Thus $\int_0^1 d^x x f(x)x^s = \sum_{\substack{p \in \mathfrak{S} \\ p < N}} a(p)/(s+p) + \int_0^1 d^x x R(x)x^s$ has the desired poles and residues. Taking absolute values also yields the desired bound.