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We’ll use the following consequence of adelic Poisson summation.

Lemma

Let f be in S(AF ), and let x be in A×F . Then we have∑
γ∈F f (xγ) = ‖x‖−1

∑
γ∈F f̂ (x−1γ).

Proof.

Homework problem.

Proposition

Our Z (s, χ, f ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
Z (s, χ, f ) = Z (1− s, χ−1, f̂ ).

Proof.

We know Z (s, χ, f ) converges for Re s > 1, so the integral over
{x ∈ A×F | ‖x‖ > 1} also converges. On this domain, lowering Re s only
shrinks the integral, so the integral here converges for all s.
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Proposition

Our Z (s, χ, f ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
Z (s, χ, f ) = Z (1− s, χ−1, f̂ ).

Proof (continued).

Hence we focus on the integral over {x ∈ A×F | ‖x‖ < 1}. The
fundamental domain D × R>0 of A×F /F

× shows that this integral equals∫
D×(0,1)

d×x
∑
γ∈F×

f (xγ)χ(xγ)‖xγ‖s =

∫
D×(0,1)

d×x
∑
γ∈F×

f (xγ)χ(x)‖x‖s ,

since χ and ‖·‖ are trivial on F×. Adding and subtracting a γ = 0 term
turns this integral into∫

D×(0,1)
d×x

∑
γ∈F

f (xγ)χ(x)‖x‖s − f (0)

∫
D×(0,1)

d×x χ(x)‖x‖s .
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Proposition

Our Z (s, χ, f ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
Z (s, χ, f ) = Z (1− s, χ−1, f̂ ).

Proof (continued).

We first investigate the right term. Decomposing into D and (0, 1) yields

−f (0)

∫ 1

0
d×t tsχ(t)

∫
A×,1/F×

d×y χ(y).

If χ is nontrivial on A×,1F /F×, the usual trick shows this integral vanishes.

If χ is trivial on A×,1F /F×, we must have χ = ‖·‖ν for some ν in iR. Then
our expression becomes

−f (0)m(A×,1F /F×)

∫ 1

0
d×t ts+ν = −

f (0)m(A×,1F /F×)

s + ν
.
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Proposition

Our Z (s, χ, f ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
Z (s, χ, f ) = Z (1− s, χ−1, f̂ ).

Proof (continued).

Next, we investigate the left term. Using our lemma and setting x ′ = x−1

converts it into ∫
D×(0,1)

d×x
∑
γ∈F

f̂ (x−1γ)χ(x)‖x‖s−1

=

∫
D−1×(1,∞)

d×x ′
∑
γ∈F

f̂ (x ′γ)χ(x ′)−1‖x ′‖1−s .

Note that D−1 is also a fundamental domain for A×,1F /F×. Next, we’ll
split off the γ = 0 term to obtain. . .
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Proposition

Our Z (s, χ, f ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
Z (s, χ, f ) = Z (1− s, χ−1, f̂ ).

Proof (continued).

∫
D−1×(1,∞)

d×x ′
∑
γ∈F×

f̂ (x ′γ)χ(x ′)−1‖x ′‖1−s

+ f̂ (0)

∫
D−1×(1,∞)

d×x ′χ(x ′)−1‖x ′‖1−s .

Our previous argument shows that this new right term doesn’t vanish if
and only if χ = ‖·‖ν for some ν in iR, in which case it equals

−
f̂ (0)m(A×,1F /F×)

1− s − ν
.
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Proposition

Our Z (s, χ, f ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
Z (s, χ, f ) = Z (1− s, χ−1, f̂ ).

Proof (continued).

Because χ and ‖·‖ are trivial on F×, this new left term equals∫
D−1×(1,∞)

d×x ′
∑
γ∈F×

f̂ (x ′γ)χ(x ′γ)−1‖x ′γ‖1−s ,

which is the integral for Z (1− s, χ−1, f̂ ) over {x ∈ A×F | ‖x‖ > 1}. This
similarly converges for all s. Adding all these terms together yields the
desired result.

We ignored the subset {x ∈ A×F | ‖x‖ = 1} throughout. It’ll be a
homework problem to show it has measure zero.
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Here’s another reason why it’s nice to have flexibility in choosing fv :

Proposition

Let s0 be in C. We can choose fv such that Zv (s, χv , fv ) has no zeroes nor
poles at s = s0. Furthermore, if v is nonarchimedean, we can choose fv
such that Zv (s, χv , fv ) = 1.

Proof.

Recall that if fv vanishes in a neighborhood of 0, then
Zv (s, χv , fv ) =

∫
F×
v
d×xv fv (xv )χv (xv )‖xv‖sv is holomorphic for all s in C.

In particular, it has no poles. By choosing nonzero fv supported in a
sufficiently small neighborhood of 1, we can make this integral at s = s0
arbitrarily close to χv (1)‖1‖s0v = 1. Finally, if v is nonarchimedean, we can
choose such an fv supported in O×v . Since ‖O×v ‖v = 1, this makes the
integral independent of s, and we can rescale fv such that this constant
integral equals 1.

Let S ⊇ MF ,∞ be a finite subset of MF such that v is unramified, χv is
unramified, and fv = 1Ov for all v not in S .
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Theorem

Our LS(s, χ) has meromorphic continuation to all s in C. It is entire
unless χ = ‖·‖ν for some ν in iR, in which case its only poles are at
s = −ν and s = 1− ν. Furthermore, we have
LS(s, χ) =

(∏
v∈S γv (s, χv )

)
LS(1− s, χ−1).

Proof.

Recall that Lv (s, χv ) = Zv (s, χv , fv ) for v not in S . Therefore we see that
LS(s, χ)

∏
v∈S Zv (s, χv , fv ) = Z (s, χ, f ). Now the Zv (s, χv , fv ) and

Z (s, χ, f ) have meromorphic continuation to all s in C, so LS(s, χ) does
as well. Next, let s0 be in C. For v in S , we can choose fv such that
Zv (s, χv , fv ) has no zeroes nor poles at s = s0. Hence LS(s, χ) has a pole
at s = s0 if and only if Z (s, χ, f ) does, which yields the desired statement.
Finally, we have

LS(s, χ) = Z (s, χ, f )
∏

v∈S Zv (s, χv , fv )−1

= Z (1− s, χ−1, f̂ )
∏

v∈S

(
γv (s, χv )Zv (1− s, χ−1v , f̂v )−1

)
=
(∏

v∈S γv (s, χv )
)
LS(1− s, χ−1). 9 / 10



The above theorem suffices for many applications, but we’d like to reach
our ultimate result for the completed Hecke L-function. Let’s conclude
today with a complex-analytic lemma.

Lemma

Let S be a discrete subset of R that’s bounded below, let a : S→C be a
function, and suppose that f : (0, 1]→C is a continuous function such

that f (x) =
∑

p∈S a(p)xp for small enough x. Then
∫ 1
0 d×x f (x)x s has

meromorphic continuation to all s in C. Its only poles are at s = −p for p
in S, with residue a(p). Furthermore, for any ε > 0 and real N, this
integral is bounded on {s ∈ C | Re s > −N and d(s,S) > ε}.

Proof.

Set R(x) = f (x)−
∑

p∈S
p<N

a(p)xp. Then R(x) =
∑

p∈S
p>N

a(p)xp for small

enough x , so we see that
∫ 1
0 d×x R(x)x s converges for Re s > −N. Thus∫ 1

0 d×x f (x)x s =
∑

p∈S
p<N

a(p)/(s +p) +
∫ 1
0 d×x R(x)x s has the desired poles

and residues. Taking absolute values also yields the desired bound.
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