Volume of $\mathbb{A}_{F}^{\times,1}/F^{\times}$

Siyan Daniel Li-Huerta

November 10, 2020

Let's find a fundamental domain for $\mathbb{A}_{F}^{\times}/F^{\times}$. First, choose a v_{0} in $M_{F,\infty}$.

- If $F_v = \mathbb{R}$, consider the inclusion $\mathbb{R}_{>0} \hookrightarrow F_v^{\times}$.
- If $F_v = \mathbb{C}$, consider $\mathbb{R}_{>0} \hookrightarrow F_v^{\times}$ given by $x \mapsto \sqrt{x}$.

The composition $\mathbb{R}_{>0} \hookrightarrow F_v^{\times} \hookrightarrow \mathbb{A}_F^{\times}$ yields a section to $\|\cdot\| : \mathbb{A}_F^{\times} \to \mathbb{R}_{>0}$, so this identifies $\mathbb{A}_F^{\times} = \mathbb{A}_F^{\times,1} \times \mathbb{R}_{>0}$ as topological groups. Now we can just find a fundamental domain for $\mathbb{A}_F^{\times,1}/F^{\times}$.

Write $\mathbb{A}_{F,\infty}^{\times,1} = \mathbb{A}_{F}^{\times,1} \cap (\mathbb{A}_{F}^{\times})_{M_{F,\infty}}$. Then we get a continuous group homomorphism $\mathcal{L} : \mathbb{A}_{F,\infty}^{\times,1} \to \prod_{v \in M_{F,\infty} \setminus \{v_0\}} \mathbb{R}$ via $(x_v)_v \mapsto (\log \|x_v\|_v)_{v \neq v_0}$. Using flexibility in the v_0 -factor, we see \mathcal{L} is surjective.

Note that $\mathbb{A}_{F,\infty}^{\times,1} \cap F^{\times} = \mathcal{O}_{F}^{\times}$, and $(\ker \mathcal{L}) \cap F^{\times}$ is the set of roots of unity in F. The proof of Dirichlet's unit theorem shows that $\mathcal{L}(\mathcal{O}_{F}^{\times})$ is a free \mathbb{Z} -module of rank $r_{1} + r_{2} - 1$ in $\prod_{v \in M_{F,\infty} \setminus \{v_{0}\}} \mathbb{R} = \mathbb{R}^{r_{1}+r_{2}-1}$. Let \mathcal{P} be a parallelepiped fundamental domain for $\mathcal{L}(\mathcal{O}_{F}^{\times})$ in $\mathbb{R}^{r_{1}+r_{1}-1}$.

Definition

The *regulator* of F, denoted by \mathcal{R}_F , is $m(\mathcal{P})$, where m is the Lebesgue measure on $\mathbb{R}^{r_1+r_2-1}$.

Examples

- Suppose $r_1 + r_2 1 = 0$, i.e. F is either \mathbb{Q} or an imaginary quadratic field. Then \mathcal{R}_F equals 1.
- Let F be a real quadratic field. Then L(O_F[×]) is free of rank 1, so R_F equals the absolute value of the logarithm of a *fundamental unit*.

Write w_F for the number of roots of unity in F. Since $\mathcal{K}_{(\mathcal{O}_F, \varnothing), v_0}$ contains our $\mathbb{R}_{>0} \subset \mathbb{A}_F^{\times}$, we see that

$$(\mathbb{A}_F^{\times,1}\cap K_{(\mathcal{O}_F,\varnothing)})\setminus \mathbb{A}_F^{\times,1}/F^{\times}=K_{(\mathcal{O}_F,\varnothing)}\setminus \mathbb{A}_F^{\times}/F^{\times}=\mathcal{C}(F).$$

Write $h_F = \#\mathcal{C}(F)$, and let b_1, \ldots, b_{h_F} be representatives of $\mathcal{C}(F)$ in $\mathbb{A}_F^{\times,1}$. Let $D_0 = \{(x_v)_v \in \mathcal{L}^{-1}(\mathcal{P}) \mid 0 \leq \arg x_{v_0} < 1/w_F\}$, and set $D = D_0 b_1 \cup \cdots \cup D_0 b_{h_F}$, where $\arg : \mathbb{C}^{\times} \to [0,1)$ is the normalized argument.

Proposition

This D is a fundamental domain for $\mathbb{A}_{F}^{\times,1}/F^{\times}$.

Proposition

This D is a fundamental domain for $\mathbb{A}_{F}^{\times,1}/F^{\times}$.

Proof.

Our D_0 and hence D is evidently Borel, has compact closure, and has nonempty interior. To show $D \to \mathbb{A}_F^{\times,1}/F^{\times}$ is bijective, let x be in $\mathbb{A}_F^{\times,1}$. There exists a unique $1 \le i \le h_F$ such that xb_i^{-1} yields a principal fractional ideal $\alpha \mathcal{O}_F$, where α lies in F^{\times} . Hence $xb_i^{-1}\alpha^{-1}$ yields the ideal \mathcal{O}_F , i.e. it lies in $\mathbb{A}_{F,\infty}^{\times,1}$. Finally, the definition of \mathcal{P} and our argument bound in D_0 imply there exists a unique element β of \mathcal{O}_F^{\times} such that $xb_i^{-1}\alpha^{-1}\beta^{-1}$ lies in D_0 . Altogether, this process uniquely decomposes x as $(xb_i^{-1}\alpha^{-1}\beta^{-1})b_i \cdot \alpha\beta$, concluding the proof.

While we're here, let's compute the volume of $\mathbb{A}_{F}^{\times,1}/F^{\times}$.

Proposition

We have
$$m(\mathbb{A}_F^{ imes,1}/F^{ imes})=2^{r_1}(2\pi)^{r_2}h_F\mathcal{R}_F/|\mathcal{D}_{F/\mathbb{Q}}|^{1/2}w_F.$$

Proposition

We have
$$\mathit{m}(\mathbb{A}_{\mathit{F}}^{ imes,1}/\mathit{F}^{ imes})=2^{r_1}(2\pi)^{r_2}\mathit{h}_{\mathit{F}}\mathcal{R}_{\mathit{F}}/|\mathcal{D}_{\mathit{F}/\mathbb{Q}}|^{1/2}\mathit{w}_{\mathit{F}}.$$

Proof.

Because $D_0 \subseteq \mathcal{L}^{-1}(\mathcal{P}) \subseteq \mathbb{A}_{F,\infty}^{\times,1} = (\mathbb{A}_F^{\times,1} \cap \mathcal{K}_{(\mathcal{O}_F,\varnothing)})$, we see the $D_0 b_i$ are disjoint. Thus it suffices to show $m(D_0) = 2^{r_1}(2\pi)^{r_2}\mathcal{R}_F/|\mathcal{D}_{F/\mathbb{Q}}|^{1/2}w_F$. Now $w_F \ge 2$, and if $w_F \ge 3$ then F has no real embeddings. Thus in every case it suffices to show $m(\mathcal{L}^{-1}(\mathcal{P})) = 2^{r_1}(2\pi)^{r_2}\mathcal{R}_F/|\mathcal{D}_{F/\mathbb{Q}}|^{1/2}$. By an \mathbb{R} -linear change of variables, it suffices to show $m(\mathcal{L}^{-1}([0,1)^{r_1+r_2-1})) = 2^{r_1}(2\pi)^{r_2}/|\mathcal{D}_{F/\mathbb{Q}}|^{1/2}$. Next, note that

$$\mathcal{L}^{-1}([0,1)^{r_1+r_2-1}) = \{(x_v)_v \in \mathbb{A}_{F,\infty}^{ imes,1} \mid 1 \leq \|x_v\|_v < e \text{ for } v \in M_{F,\infty} \smallsetminus \{v_0\}\}.$$

Write $\mathcal{N} = \{(x_v)_v \in (\mathbb{A}_F^{\times})_{M_{F,\infty}} \mid 1 \leq \|x_v\|_v < e \text{ for } v \in M_{F,\infty}\}$. For x in \mathbb{A}_F^{\times} , write y for its $\mathbb{A}_F^{\times,1}$ -component and t for its $\mathbb{R}_{>0}$ -component. Then x lies in \mathcal{N} if and only if y lies in $\mathcal{L}^{-1}([0,1)^{r_1+r_2-1})$ and $1 \leq \|x_{v_0}\|_{v_0} < e$.

Proposition

We have
$$\mathit{m}(\mathbb{A}_{\mathit{F}}^{ imes,1}/\mathit{F}^{ imes})=2^{r_1}(2\pi)^{r_2}\mathit{h}_{\mathit{F}}\mathcal{R}_{\mathit{F}}/|\mathcal{D}_{\mathit{F}/\mathbb{Q}}|^{1/2}\mathit{w}_{\mathit{F}}.$$

Proof (continued).

Note that \mathcal{N} is an $\mathbb{A}_{F}^{\times,1}$ -coset. Therefore

$$\begin{split} \int_{\mathcal{N}} \mathrm{d}^{\times} x &= \int_{\mathbb{A}_{F}^{\times,1}} \mathrm{d}^{\times} y \int_{\mathcal{N} y^{-1} \cap \mathbb{R}_{>0}} \mathrm{d}^{\times} t = \int_{\mathcal{L}^{-1}([0,1)^{r_{1}+r_{2}-1})} \mathrm{d}^{\times} y \int_{\|y\|^{-1}}^{e\|y\|^{-1}} \mathrm{d}^{\times} t \\ &= \int_{\mathcal{L}^{-1}([0,1)^{r_{1}+r_{2}-1})} \mathrm{d}^{\times} y \int_{1}^{e} \mathrm{d}^{\times} t = m(\mathcal{L}^{-1}([0,1)^{r_{1}+r_{2}-1})), \end{split}$$

so it suffices to show $m(\mathcal{N}) = 2^{r_1}(2\pi)^{r_2}/|\mathcal{D}_{F/\mathbb{Q}}|^{1/2}$. The nonarchimedean factors amount to $|\mathcal{D}_{F/\mathbb{Q}}|^{-1/2}$. The archimedean factors amount to $\int_{-e}^{-1} d^{\times}x + \int_{1}^{e} d^{\times}x = 2$ for each real embedding and $4\pi \int_{0}^{1} d\theta \int_{1}^{\sqrt{e}} dr / r = 2\pi$ for each complex embedding.