Volume of $\mathbb{A}_{F}^{\times, 1} / F^{\times}$

Siyan Daniel Li-Huerta

November 10, 2020

Let's find a fundamental domain for $\mathbb{A}_{F}^{\times} / F^{\times}$. First, choose a v_{0} in $M_{F, \infty}$.

- If $F_{v}=\mathbb{R}$, consider the inclusion $\mathbb{R}_{>0} \hookrightarrow F_{v}^{\times}$.
- If $F_{v}=\mathbb{C}$, consider $\mathbb{R}_{>0} \hookrightarrow F_{v}^{\times}$given by $x \mapsto \sqrt{x}$.

The composition $\mathbb{R}_{>0} \hookrightarrow F_{V}^{\times} \hookrightarrow \mathbb{A}_{F}^{\times}$yields a section to $\|\cdot\|: \mathbb{A}_{F}^{\times} \rightarrow \mathbb{R}_{>0}$, so this identifies $\mathbb{A}_{F}^{\times}=\mathbb{A}_{F}^{\times, 1} \times \mathbb{R}_{>0}$ as topological groups. Now we can just find a fundamental domain for $\mathbb{A}_{F}^{\times, 1} / F^{\times}$.
Write $\mathbb{A}_{F, \infty}^{\times, 1}=\mathbb{A}_{F}^{\times, 1} \cap\left(\mathbb{A}_{F}^{\times}\right)_{M_{F, \infty}}$. Then we get a continuous group homomorphism $\mathcal{L}: \mathbb{A}_{F, \infty}^{\times, 1} \rightarrow \prod_{v \in M_{F, \infty} \backslash\left\{v_{0}\right\}} \mathbb{R}$ via $\left(x_{v}\right)_{v} \mapsto\left(\log \left\|x_{v}\right\|_{v}\right)_{v \neq v_{0}}$. Using flexibility in the v_{0}-factor, we see \mathcal{L} is surjective.
Note that $\mathbb{A}_{F, \infty}^{\times, 1} \cap F^{\times}=\mathcal{O}_{F}^{\times}$, and $(\operatorname{ker} \mathcal{L}) \cap F^{\times}$is the set of roots of unity in F. The proof of Dirichlet's unit theorem shows that $\mathcal{L}\left(\mathcal{O}_{F}^{\times}\right)$is a free \mathbb{Z}-module of rank $r_{1}+r_{2}-1$ in $\prod_{v \in M_{F, \infty} \backslash\left\{v_{0}\right\}} \mathbb{R}=\mathbb{R}^{r_{1}+r_{2}-1}$. Let \mathcal{P} be a parallelepiped fundamental domain for $\mathcal{L}\left(\mathcal{O}_{F}^{\times}\right)$in $\mathbb{R}^{r_{1}+r_{1}-1}$.

Definition

The regulator of F, denoted by \mathcal{R}_{F}, is $m(\mathcal{P})$, where m is the Lebesgue measure on $\mathbb{R}^{r_{1}+r_{2}-1}$.

Examples

- Suppose $r_{1}+r_{2}-1=0$, i.e. F is either \mathbb{Q} or an imaginary quadratic field. Then \mathcal{R}_{F} equals 1 .
- Let F be a real quadratic field. Then $\mathcal{L}\left(\mathcal{O}_{F}^{\times}\right)$is free of rank 1 , so \mathcal{R}_{F} equals the absolute value of the logarithm of a fundamental unit.

Write w_{F} for the number of roots of unity in F. Since $K_{\left(\mathcal{O}_{F}, \varnothing\right), v_{0}}$ contains our $\mathbb{R}_{>0} \subset \mathbb{A}_{F}^{\times}$, we see that

$$
\left(\mathbb{A}_{F}^{\times, 1} \cap K_{\left(\mathcal{O}_{F}, \varnothing\right)}\right) \backslash \mathbb{A}_{F}^{\times, 1} / F^{\times}=K_{\left(\mathcal{O}_{F}, \varnothing\right)} \backslash \mathbb{A}_{F}^{\times} / F^{\times}=\mathcal{C} \ell(F)
$$

Write $h_{F}=\# \mathcal{C l}(F)$, and let $b_{1}, \ldots, b_{h_{F}}$ be representatives of $\mathcal{C l}(F)$ in $\mathbb{A}_{F}^{\times, 1}$. Let $D_{0}=\left\{\left(x_{v}\right)_{v} \in \mathcal{L}^{-1}(\mathcal{P}) \mid 0 \leq \arg x_{v_{0}}<1 / w_{F}\right\}$, and set $D=D_{0} b_{1} \cup \cdots \cup D_{0} b_{h_{F}}$, where arg : $\mathbb{C}^{\times} \rightarrow[0,1)$ is the normalized argument.

Proposition
This D is a fundamental domain for $\mathbb{A}_{F}^{\times, 1} / F^{\times}$.

Proposition

This D is a fundamental domain for $\mathbb{A}_{F}^{\times, 1} / F^{\times}$.

Proof.

Our D_{0} and hence D is evidently Borel, has compact closure, and has nonempty interior. To show $D \rightarrow \mathbb{A}_{F}^{\times, 1} / F^{\times}$is bijective, let x be in $\mathbb{A}_{F}^{\times, 1}$. There exists a unique $1 \leq i \leq h_{F}$ such that $x b_{i}^{-1}$ yields a principal fractional ideal $\alpha \mathcal{O}_{F}$, where α lies in F^{\times}. Hence $x b_{i}^{-1} \alpha^{-1}$ yields the ideal \mathcal{O}_{F}, i.e. it lies in $\mathbb{A}_{F, \infty}^{\times, 1}$. Finally, the definition of \mathcal{P} and our argument bound in D_{0} imply there exists a unique element β of \mathcal{O}_{F}^{\times}such that $x b_{i}^{-1} \alpha^{-1} \beta^{-1}$ lies in D_{0}. Altogether, this process uniquely decomposes x as $\left(x b_{i}^{-1} \alpha^{-1} \beta^{-1}\right) b_{i} \cdot \alpha \beta$, concluding the proof.

While we're here, let's compute the volume of $\mathbb{A}_{F}^{\times, 1} / F^{\times}$.
Proposition
We have $m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)=2^{r_{1}}(2 \pi)^{r_{2}} h_{F} \mathcal{R}_{F} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2} w_{F}$.

Proposition

We have $m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)=2^{r_{1}}(2 \pi)^{r_{2}} h_{F} \mathcal{R}_{F} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2} w_{F}$.

Proof.

Because $D_{0} \subseteq \mathcal{L}^{-1}(\mathcal{P}) \subseteq \mathbb{A}_{F, \infty}^{\times, 1}=\left(\mathbb{A}_{F}^{\times, 1} \cap K_{\left(\mathcal{O}_{F}, \varnothing\right)}\right)$, we see the $D_{0} b_{i}$ are disjoint. Thus it suffices to show $m\left(D_{0}\right)=2^{r_{1}}(2 \pi)^{r_{2}} \mathcal{R}_{F} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2} w_{F}$. Now $w_{F} \geq 2$, and if $w_{F} \geq 3$ then F has no real embeddings. Thus in every case it suffices to show $m\left(\mathcal{L}^{-1}(\mathcal{P})\right)=2^{r_{1}}(2 \pi)^{r_{2}} \mathcal{R}_{F} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2}$. By an \mathbb{R}-linear change of variables, it suffices to show $m\left(\mathcal{L}^{-1}\left([0,1)^{r_{1}+r_{2}-1}\right)\right)=2^{r_{1}}(2 \pi)^{r_{2}} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2}$. Next, note that $\mathcal{L}^{-1}\left([0,1)^{r_{1}+r_{2}-1}\right)=\left\{\left(x_{v}\right)_{v} \in \mathbb{A}_{F, \infty}^{\times, 1} \mid 1 \leq\left\|x_{v}\right\|_{v}<e\right.$ for $\left.v \in M_{F, \infty} \backslash\left\{v_{0}\right\}\right\}$.

Write $\mathcal{N}=\left\{\left(x_{v}\right)_{v} \in\left(\mathbb{A}_{F}^{x}\right)_{M_{F, \infty}} \mid 1 \leq\left\|x_{v}\right\|_{v}<e\right.$ for $\left.v \in M_{F, \infty}\right\}$. For x in \mathbb{A}_{F}^{\times}, write y for its $\mathbb{A}_{F}^{\times, 1}$-component and t for its $\mathbb{R}_{>0}$-component. Then x lies in \mathcal{N} if and only if y lies in $\mathcal{L}^{-1}\left([0,1)^{r_{1}+r_{2}-1}\right)$ and $1 \leq\left\|x_{v_{0}}\right\|_{v_{0}}<e$.

Proposition

We have $m\left(\mathbb{A}_{F}^{\times, 1} / F^{\times}\right)=2^{r_{1}}(2 \pi)^{r_{2}} h_{F} \mathcal{R}_{F} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2} w_{F}$.

Proof (continued).

Note that \mathcal{N} is an $\mathbb{A}_{F}^{\times, 1}$-coset. Therefore

$$
\begin{aligned}
\int_{\mathcal{N}} \mathrm{d}^{\times} x & =\int_{\mathbb{A}_{F}^{\times, 1}} \mathrm{~d}^{\times} y \int_{\mathcal{N}^{-}-1} \cap \mathbb{R}_{>0} \mathrm{~d}^{\times} t=\int_{\mathcal{L}^{-1}\left([0,1)^{r_{1}+r_{2}-1}\right)} \mathrm{d}^{\times} y \int_{\|y\|^{-1}}^{e\|y\|^{-1}} \mathrm{~d}^{\times} t \\
& =\int_{\mathcal{L}^{-1}\left([0,1)^{r_{1}+r_{2}-1}\right)} \mathrm{d}^{\times} y \int_{1}^{e} \mathrm{~d}^{\times} t=m\left(\mathcal{L}^{-1}\left([0,1)^{r_{1}+r_{2}-1}\right)\right),
\end{aligned}
$$

so it suffices to show $m(\mathcal{N})=2^{r_{1}}(2 \pi)^{r_{2}} /\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2}$. The nonarchimedean factors amount to $\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{-1 / 2}$. The archimedean factors amount to
$\int_{-e}^{-1} \mathrm{~d}^{\times} x+\int_{1}^{e} \mathrm{~d}^{\times} x=2$ for each real embedding and $4 \pi \int_{0}^{1} \mathrm{~d} \theta \int_{1}^{\sqrt{e}} \mathrm{~d} r / r=2 \pi$ for each complex embedding.

