Hecke L-functions and Zeta Integrals

Siyan Daniel Li-Huerta

November 5, 2020

The Riemann zeta function is our prototype. Recall $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$ absolutely converges for Re s > 1, and here we have the *Euler product*

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Write $\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$ for the *completed* Riemann zeta function.

Theorem (Riemann)

Our ξ has meromorphic continuation to all s in \mathbb{C} , and its only poles are at s = 0 and s = 1. Furthermore, we have $\xi(s) = \xi(1 - s)$.

We want to know:

• Where does $\pi^{-s/2}\Gamma(s/2)$ come from, conceptually?

⁽²⁾ Can we prove the theorem for more general "zeta functions"? We explain (2) first. Let F be a number field, and let $\chi : \mathbb{A}_{F}^{\times}/F^{\times} \to S^{1}$ be a continuous group homomorphism. We'll take the Euler product as a definition for generalizations of $\zeta(s)$. Let v be in M_F . Let's define local factors for the Euler product:

- If $F_{\nu} = \mathbb{R}$, then $\chi_{\nu}(x) = (x/|x|)^{\varepsilon} ||x||_{\nu}^{\nu}$ for ε in $\{0,1\}$ and ν in $i\mathbb{R}$. Set $L_{\nu}(s, \chi_{\nu}) = \pi^{-(s+\varepsilon)/2} \Gamma((s+\varepsilon)/2).$
- If $F_{\nu} = \mathbb{C}$, then $\chi_{\nu}(z) = (z/|z|)^{k} ||z||_{\nu}^{\nu}$ for k in \mathbb{Z} and ν in $i\mathbb{R}$. Set $L_{\nu}(s, \chi_{\nu}) = 2(2\pi)^{-s-\nu+|k|/2} \Gamma(s+\nu+|k|/2).$
- If F_{ν} is nonarchimedean, then χ_{ν} is either ramified or unramified. In the former case, set $L_{\nu}(s, \chi_{\nu}) = 1$, and in the latter case, set $L_{\nu}(s, \chi_{\nu}) = (1 \chi_{\nu}(\varpi_{\nu})q_{\nu}^{-s})^{-1}$.

For any finite subset $S \subseteq M_F$, write $L^S(s, \chi) = \prod_{v \notin S} L_v(s, \chi_v)$. We write $L(s, \chi)$ for $L^{\varnothing}(s, \chi)$. We call this the *Hecke L-function* of χ .

Examples

- Let $\chi = 1$. Then $L^{M_{F,\infty}}(s,\chi) = \prod_{\mathfrak{p}} (1 \operatorname{Nm}(\mathfrak{p})^{-s})^{-1} = \sum_{I} \operatorname{Nm}(I)^{-s}$ by unique factorization, where I runs through nonzero ideals of \mathcal{O}_{F} . Therefore this yields the Dedekind zeta function $\zeta_{F}(s)$ of F.
- Let (I, S₀) be a modulus for F. Then we get a χ from any group homomorphism Cℓ_(I,S₀)(F) → S¹ via precomposition with A[×]_F/F[×] → K_(I,S₀) \A[×]_F/F[×] = Cℓ_(I,S₀)(F).

Examples (continued)

In particular, let F = Q, and let χ be thusly obtained from a primitive Dirichlet character χ : (Z/mZ)[×] → S¹, which corresponds to (1, S₀) = (mZ, {Q→ ℝ}). Primitivity implies χ_p is unramified if and only if p ∤ m, so unique factorization gives us

$$L^{\{\infty\}}(s,\chi) = \prod_{p \nmid m} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1} = \prod_{\substack{n=1\\(n,m)=1}}^{\infty} \frac{\chi(n)}{n^s}$$

Therefore this yields the Dirichlet *L*-function of χ .

Theorem (Hecke, Tate)

Our $L(s,\chi)$ has meromorphic continuation to all s in \mathbb{C} . It is entire unless $\chi = \|\cdot\|^{\nu}$ for some ν in $i\mathbb{R}$, in which case its only poles are at $s = -\nu$ and $s = 1 - \nu$. Furthermore, there exists a function $\epsilon(s,\chi) = ab^s$, where a lies in \mathbb{C}^{\times} and b lies in \mathbb{R} , such that $L(s,\chi) = \epsilon(s,\chi)L(1-s,\chi^{-1})$.

Proving the above result is the ultimate goal of this course. Our strategy will be to rewrite every local factor as a certain integral and then put them together using adeles and ideles.

We choose our Haar measure on \mathbb{A}_{F}^{\times} as follows. For all v in M_{F} , take the Haar measure on F_{v}^{\times} given by integrating $d^{\times}x_{v} = dx_{v} / ||x_{v}||_{v}$ with respect to our self-dual measure on F_{v} , and then multiply by $(1 - q_{v}^{-1})$ for nonarchimedean v.

Definition

Let f be in
$$\mathcal{S}(\mathbb{A}_F)$$
. Write $Z(s, \chi, f) = \int_{\mathbb{A}_F^{\times}} d^{\times}x f(x)\chi(x) ||x||^s$.

If $f = \prod_{v \in M_F} f_v$ for f_v in $S(F_v)$ such that $f_v = \mathbf{1}_{\mathcal{O}_v}$ for cofinitely many v, we see that $Z(s, \chi, f) = \prod_{v \in M_F} Z_v(s, \chi_v, f_v)$, where

$$Z_{\mathbf{v}}(\mathbf{s},\chi_{\mathbf{v}},f_{\mathbf{v}}) = \int_{F_{\mathbf{v}}^{\times}} \mathrm{d}^{\times} x_{\mathbf{v}} f_{\mathbf{v}}(x_{\mathbf{v}}) \chi_{\mathbf{v}}(x_{\mathbf{v}}) \|x_{\mathbf{v}}\|_{\mathbf{v}}^{\mathbf{s}}.$$

We call these *zeta integrals*. Since elements of $S(\mathbb{A}_F)$ are finite sums of such f, we always reduce to this case.

The integral $Z_v(s, \chi_v, f_v)$ converges for Re s > 0.

Proof.

Since χ is valued in S^1 , we need to show $\int_{F_v^{\times}} d^{\times}x_v |f_v(x_v)| ||x_v||_v^{\text{Res}}$ converges. As f_v is (Bruhat–)Schwartz, we see the integral over $\{x_v \in F_v^{\times} |||x_v||_v > 1\}$ converges. Hence it suffices to show the integral over $\{x_v \in F_v^{\times} | ||x_v||_v \leq 1\}$ converges. Now f_v is continuous and hence bounded on $\{x_v \in F_v^{\times} | ||x_v||_v \leq 1\}$, so we can reduce to showing $\int_{\{||x_v||_v \leq 1\}} d^{\times}x ||x_v||_v^{\text{Res}}$ converges.

If $F_v = \mathbb{R}$, this integral is $\int_{-1}^{1} dx_v |x_v|^{\operatorname{Re} s - 1} < \infty$. If $F_v = \mathbb{C}$, using polar coordinates $x_v = re^{2\pi i\theta}$ turns this integral into $4\pi \int_0^1 d\theta \int_0^1 dr r^{2\operatorname{Re} s - 1}$, which converges. If F_v is nonarchimedean, this integral equals $\#(\mathcal{O}_v/\mathfrak{d}_{F_v/\mathbb{Q}_p})^{-1/2}(1-q_v^{\operatorname{Re} s})^{-1} < \infty$.

It follows from the homework that, if v is nonarchimedean and unramified, χ_v is unramified, and $f_v = \mathbf{1}_{\mathcal{O}_v}$, then $Z_v(s, \chi_v, f_v) = (1 - \chi_v(\varpi_v)q_v^{-s})^{-1}$.

The integral $Z(s, \chi, f)$ converges for Re s > 1.

Proof.

Let $S \supseteq M_{F,\infty}$ be a finite subset of M_F such that v is unramified, χ_v is unramified, and $f_v = \mathbf{1}_{\mathcal{O}_v}$ for all v not in S. As the $Z_v(s, \chi_v, f_v)$ and hence $\prod_{v \in S} Z_v(s, \chi_v, f_v)$ converge, it suffices to consider $\prod_{v \notin S} Z_v(s, \chi_v, f_v)$. For v not in S, we have $|Z_v(s, \chi_v, f_v)| \le \sum_{k=0}^{\infty} |\chi_v(\varpi_v)q_v^{-s}| = \sum_{k=0}^{\infty} q_v^{-\operatorname{Re} s}$. Hence we get

$$\prod_{\nu \notin S} |Z_{\nu}(s, \chi_{\nu}, f_{\nu})| \leq \prod_{\nu \notin S} \left(1 - \frac{1}{q_{\nu}^{\mathsf{Re}\,s}}\right)^{-1}$$

The same method used to show that the Dedekind zeta function of F absolutely converges for Re s > 1 shows the same for this too.

Next, we work to prove a local version of our ultimate result.

Our $Z_{\nu}(s, \chi_{\nu}, f_{\nu})$ has meromorphic continuation to all s in \mathbb{C} , with no poles for Re s > 0. Furthermore, there exists a meromorphic function $\gamma_{\nu}(s, \chi_{\nu})$ such that $\gamma_{\nu}(s, \chi_{\nu})Z_{\nu}(s, \chi_{\nu}, f_{\nu}) = Z_{\nu}(1 - s, \chi_{\nu}^{-1}, \hat{f_{\nu}})$ for all f_{ν} in $\mathcal{S}(F_{\nu})$.

Proof.

The convergence and thus holomorphy of $Z_v(s, \chi_v, f_v)$ and $Z_v(1-s, \chi_v^{-1}, \hat{f_v})$ for $\operatorname{Re} s > 0$ imply that $Z_v(1-s, \chi_v^{-1}, \hat{f_v})/Z_v(s, \chi_v, f_v)$ is meromorphic for $0 < \operatorname{Re} s < 1$.

First, I claim this quotient is independent of f_v , i.e. for all f'_v in $\mathcal{S}(F_v)$ $Z_v(1-s,\chi_v^{-1},\widehat{f_v})Z_v(s,\chi_v,f'_v) = Z_v(1-s,\chi_v^{-1},\widehat{f'_v})Z_v(s,\chi_v,f_v).$

To see this, expand the left-hand side to get

$$\begin{split} &\int_{F_{v}^{\times}} \mathrm{d}^{\times} x_{v} \int_{F_{v}} \mathrm{d} y_{v} f_{v}(y_{v}) \psi_{F,v}(x_{v}y_{v})^{-1} \chi_{v}^{-1}(x_{v}) \|x_{v}\|_{v}^{1-s} \\ &\cdot \int_{F_{v}^{\times}} \mathrm{d}^{\times} z_{v} f_{v}'(z_{v}) \chi_{v}(z_{v}) \|z_{v}\|_{v}^{s}. \end{split}$$

Our $Z_{\nu}(s, \chi_{\nu}, f_{\nu})$ has meromorphic continuation to all s in \mathbb{C} , with no poles for $\operatorname{Re} s > 0$. Furthermore, there exists a meromorphic function $\gamma_{\nu}(s, \chi_{\nu})$ such that $\gamma_{\nu}(s, \chi_{\nu})Z_{\nu}(s, \chi_{\nu}, f_{\nu}) = Z_{\nu}(1 - s, \chi_{\nu}^{-1}, \widehat{f_{\nu}})$ for all f_{ν} in $\mathcal{S}(F_{\nu})$.

Proof (continued).

Since F_{ν}^{\times} has full measure in F_{ν} , setting $x'_{\nu} = x_{\nu}y_{\nu}$ turns our integral into

$$(1-q_{\nu}^{-1})^{-1}\int_{F_{\nu}^{\times}} \mathrm{d}^{\times}x_{\nu}'\int_{F_{\nu}^{\times}} \mathrm{d}^{\times}y_{\nu}\int_{F_{\nu}^{\times}} \mathrm{d}^{\times}z_{\nu}f_{\nu}(y_{\nu})f_{\nu}'(z_{\nu})$$
$$\cdot\psi_{F,\nu}(x_{\nu}')^{-1}\chi_{\nu}(x_{\nu}')^{-1}\chi_{\nu}(y_{\nu}z_{\nu})\|x_{\nu}'\|_{\nu}^{1-s}\|y_{\nu}z_{\nu}\|_{\nu}^{s},$$

where we omit $(1 - q_v^{-1})^{-1}$ for archimedean v. Similarly expanding the right-hand side reverses the role of y_v and z_v . As the above integral is evidently invariant under this reversal, we see the two sides are equal.

So we can set $\gamma_v(s, \chi_v) = Z_v(1-s, \chi_v^{-1}, \hat{f}_v)/Z_v(s, \chi_v, f_v)$. By choosing f_v with \hat{f}_v vanishing in a neighborhood of 0, our previous proof shows $Z_v(1-s, \chi_v^{-1}, \hat{f}_v)$ is holomorphic for all s in \mathbb{C} .

Our $Z_v(s, \chi_v, f_v)$ has meromorphic continuation to all s in \mathbb{C} , with no poles for Re s > 0. Furthermore, there exists a meromorphic function $\gamma_v(s, \chi_v)$ such that $\gamma_v(s, \chi_v)Z_v(s, \chi_v, f_v) = Z_v(1 - s, \chi_v^{-1}, \widehat{f_v})$ for all f_v in $\mathcal{S}(F_v)$.

Proof (continued).

As $Z_{\nu}(s, \chi_{\nu}, f_{\nu})$ is holomorphic for Re s > 0, we see $\gamma_{\nu}(s, \chi_{\nu})$ meromorphically extends for Re s > 0. Choosing f_{ν} that vanishes in a neighborhood of 0 similarly shows that $\gamma_{\nu}(s, \chi_{\nu})$ meromorphically extends for Re s < 1.

Finally, we turn to $Z_{\nu}(s, \chi_{\nu}, f_{\nu})$. We already showed it's holomorphic for Re s > 0, and the meromorphy of $\gamma_{\nu}(s, \chi_{\nu})$ indicates that $Z_{\nu}(1-s, \chi_{\nu}^{-1}, \widehat{f_{\nu}}) = \gamma_{\nu}(s, \chi_{\nu}) Z_{\nu}(s, \chi_{\nu}, f_{\nu})$ meromorphically extends for Re s > 0. Replacing s with 1-s, χ_{ν} with χ_{ν}^{-1} , and f_{ν} with $\widehat{f_{\nu}}$ shows that $Z_{\nu}(s, \chi_{\nu}, f_{\nu})$ meromorphically extends for Re s < 1.