Hecke L-functions and Zeta Integrals

Siyan Daniel Li-Huerta

November 5, 2020

The Riemann zeta function is our prototype. Recall $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$ absolutely converges for $\operatorname{Re} s>1$, and here we have the Euler product

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Write $\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$ for the completed Riemann zeta function.

Theorem (Riemann)

Our ξ has meromorphic continuation to all s in \mathbb{C}, and its only poles are at $s=0$ and $s=1$. Furthermore, we have $\xi(s)=\xi(1-s)$.

We want to know:
(1) Where does $\pi^{-s / 2} \Gamma(s / 2)$ come from, conceptually?
(2) Can we prove the theorem for more general "zeta functions"?

We explain (2) first. Let F be a number field, and let $\chi: \mathbb{A}_{F}^{\times} / F^{\times} \rightarrow S^{1}$ be a continuous group homomorphism. We'll take the Euler product as a definition for generalizations of $\zeta(s)$.

Let v be in M_{F}. Let's define local factors for the Euler product:

- If $F_{v}=\mathbb{R}$, then $\chi_{v}(x)=(x /|x|)^{\varepsilon}\|x\|_{v}^{\nu}$ for ε in $\{0,1\}$ and ν in $i \mathbb{R}$. Set $L_{v}\left(s, \chi_{v}\right)=\pi^{-(s+\varepsilon) / 2} \Gamma((s+\varepsilon) / 2)$.
- If $F_{v}=\mathbb{C}$, then $\chi_{v}(z)=(z /|z|)^{k}\|z\|_{v}^{\nu}$ for k in \mathbb{Z} and ν in $i \mathbb{R}$. Set $L_{v}\left(s, \chi_{v}\right)=2(2 \pi)^{-s-\nu+|k| / 2} \Gamma(s+\nu+|k| / 2)$.
- If F_{v} is nonarchimedean, then χ_{v} is either ramified or unramified. In the former case, set $L_{v}\left(s, \chi_{v}\right)=1$, and in the latter case, set $L_{v}\left(s, \chi_{v}\right)=\left(1-\chi_{v}\left(\varpi_{v}\right) q_{v}^{-s}\right)^{-1}$.
For any finite subset $S \subseteq M_{F}$, write $L^{S}(s, \chi)=\prod_{v \notin S} L_{v}\left(s, \chi_{v}\right)$. We write $L(s, \chi)$ for $L^{\varnothing}(s, \chi)$. We call this the Hecke L-function of χ.

Examples

- Let $\chi=1$. Then $L^{M_{F, \infty}}(s, \chi)=\prod_{\mathfrak{p}}\left(1-\mathrm{Nm}(\mathfrak{p})^{-s}\right)^{-1}=\sum_{l} \operatorname{Nm}(I)^{-s}$ by unique factorization, where I runs through nonzero ideals of \mathcal{O}_{F}. Therefore this yields the Dedekind zeta function $\zeta_{F}(s)$ of F.
- Let $\left(I, S_{0}\right)$ be a modulus for F. Then we get a χ from any group homomorphism $\mathcal{C l}_{\left(I, S_{0}\right)}(F) \rightarrow S^{1}$ via precomposition with $\mathbb{A}_{F}^{\times} / F^{\times} \rightarrow K_{\left(I, S_{0}\right)} \backslash \mathbb{A}_{F}^{\times} / F^{\times}=\mathcal{C l}_{\left(I, S_{0}\right)}(F)$.

Examples (continued)

- In particular, let $F=\mathbb{Q}$, and let χ be thusly obtained from a primitive Dirichlet character $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow S^{1}$, which corresponds to $\left(I, S_{0}\right)=(m \mathbb{Z},\{\mathbb{Q} \rightarrow \mathbb{R}\})$. Primitivity implies χ_{p} is unramified if and only if $p \nmid m$, so unique factorization gives us

$$
L^{\{\infty\}}(s, \chi)=\prod_{p \nmid m}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}=\prod_{\substack{n=1 \\(n, m)=1}}^{\infty} \frac{\chi(n)}{n^{s}} .
$$

Therefore this yields the Dirichlet L-function of χ.

Theorem (Hecke, Tate)
Our $L(s, \chi)$ has meromorphic continuation to all s in \mathbb{C}. It is entire unless $\chi=\|\cdot\|^{\nu}$ for some ν in $i \mathbb{R}$, in which case its only poles are at $s=-\nu$ and $s=1-\nu$. Furthermore, there exists a function $\epsilon(s, \chi)=a b^{s}$, where a lies in \mathbb{C}^{\times}and b lies in \mathbb{R}, such that $L(s, \chi)=\epsilon(s, \chi) L\left(1-s, \chi^{-1}\right)$.

Proving the above result is the ultimate goal of this course. Our strategy will be to rewrite every local factor as a certain integral and then put them together using adeles and ideles.

We choose our Haar measure on \mathbb{A}_{F}^{\times}as follows. For all v in M_{F}, take the Haar measure on $F_{v} \times$ given by integrating $\mathrm{d}^{\times} x_{v}=\mathrm{d} x_{v} /\left\|x_{v}\right\|_{v}$ with respect to our self-dual measure on F_{v}, and then multiply by $\left(1-q_{v}^{-1}\right)$ for nonarchimedean v.

Definition

Let f be in $\mathcal{S}\left(\mathbb{A}_{F}\right)$. Write $Z(s, \chi, f)=\int_{\mathbb{A}_{F}^{x}} \mathrm{~d}^{\times} x f(x) \chi(x)\|x\|^{s}$.
If $f=\prod_{v \in M_{F}} f_{v}$ for f_{v} in $\mathcal{S}\left(F_{v}\right)$ such that $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$ for cofinitely many v, we see that $Z(s, \chi, f)=\prod_{v \in M_{F}} Z_{v}\left(s, \chi_{v}, f_{v}\right)$, where

$$
Z_{v}\left(s, \chi_{v}, f_{v}\right)=\int_{F_{v}^{\times}} \mathrm{d}^{\times} x_{v} f_{v}\left(x_{v}\right) \chi_{v}\left(x_{v}\right)\left\|x_{v}\right\|_{v}^{s}
$$

We call these zeta integrals. Since elements of $\mathcal{S}\left(\mathbb{A}_{F}\right)$ are finite sums of such f, we always reduce to this case.

Proposition

The integral $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ converges for $\operatorname{Re} s>0$.

Proof.

Since χ is valued in S^{1}, we need to show $\int_{F_{v} \times} \mathrm{d}^{\times} X_{V}\left|f_{v}\left(x_{V}\right)\right|\left\|x_{V}\right\|_{V}^{\operatorname{Re} s}$ converges. As f_{v} is (Bruhat-)Schwartz, we see the integral over $\left\{x_{v} \in F_{v}^{\times} \mid\left\|x_{v}\right\|_{v}>1\right\}$ converges. Hence it suffices to show the integral over $\left\{x_{v} \in F_{v}^{\times} \mid\left\|x_{v}\right\|_{v} \leq 1\right\}$ converges. Now f_{v} is continuous and hence bounded on $\left\{x_{v} \in F_{v}^{\times} \mid\left\|x_{v}\right\|_{v} \leq 1\right\}$, so we can reduce to showing $\int_{\left\{\left\|x_{v}\right\|_{v} \leq 1\right\}} \mathrm{d}^{\times} x\left\|x_{v}\right\|_{v}^{\operatorname{Res}}$ converges.
If $F_{v}=\mathbb{R}$, this integral is $\int_{-1}^{1} \mathrm{~d} x_{v}\left|x_{v}\right|^{\operatorname{Res}-1}<\infty$. If $F_{v}=\mathbb{C}$, using polar coordinates $x_{v}=r e^{2 \pi i \theta}$ turns this integral into $4 \pi \int_{0}^{1} \mathrm{~d} \theta \int_{0}^{1} \mathrm{~d} r r^{2 R e s-1}$, which converges. If F_{v} is nonarchimedean, this integral equals $\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}\right)^{-1 / 2}\left(1-q_{v}^{\operatorname{Res} s}\right)^{-1}<\infty$.

It follows from the homework that, if v is nonarchimedean and unramified, χ_{v} is unramified, and $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$, then $Z_{v}\left(s, \chi_{v}, f_{v}\right)=\left(1-\chi_{v}\left(\varpi_{v}\right) q_{v}^{-s}\right)^{-1}$.

Proposition

The integral $Z(s, \chi, f)$ converges for $\operatorname{Re} s>1$.

Proof.

Let $S \supseteq M_{F, \infty}$ be a finite subset of M_{F} such that v is unramified, χ_{v} is unramified, and $f_{v}=\mathbf{1}_{\mathcal{O}_{v}}$ for all v not in S. As the $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ and hence $\prod_{v \in S} Z_{v}\left(s, \chi_{v}, f_{v}\right)$ converge, it suffices to consider $\prod_{v \notin S} Z_{v}\left(s, \chi_{v}, f_{v}\right)$. For v not in S, we have $\left|Z_{v}\left(s, \chi_{v}, f_{v}\right)\right| \leq \sum_{k=0}^{\infty}\left|\chi_{v}\left(\varpi_{v}\right) q_{v}^{-s}\right|=\sum_{k=0}^{\infty} q_{v}^{-\operatorname{Re} s}$. Hence we get

$$
\prod_{v \notin S}\left|Z_{v}\left(s, \chi_{v}, f_{v}\right)\right| \leq \prod_{v \notin S}\left(1-\frac{1}{q_{v}^{\mathrm{Re} s}}\right)^{-1}
$$

The same method used to show that the Dedekind zeta function of F absolutely converges for $\operatorname{Re} s>1$ shows the same for this too.

Next, we work to prove a local version of our ultimate result.

Proposition

Our $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ has meromorphic continuation to all s in \mathbb{C}, with no poles for $\operatorname{Re} s>0$. Furthermore, there exists a meromorphic function $\gamma_{v}\left(s, \chi_{v}\right)$ such that $\gamma_{v}\left(s, \chi_{v}\right) Z_{v}\left(s, \chi_{v}, f_{v}\right)=Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)$ for all f_{v} in $\mathcal{S}\left(F_{v}\right)$.

Proof.

The convergence and thus holomorphy of $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ and
$Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)$ for Re $s>0$ imply that $Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right) / Z_{v}\left(s, \chi_{v}, f_{v}\right)$ is meromorphic for $0<\operatorname{Re} s<1$.

First, I claim this quotient is independent of f_{v}, i.e. for all f_{v}^{\prime} in $\mathcal{S}\left(F_{v}\right)$

$$
Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right) Z_{v}\left(s, \chi_{v}, f_{v}^{\prime}\right)=Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}^{\prime}\right) Z_{v}\left(s, \chi_{v}, f_{v}\right)
$$

To see this, expand the left-hand side to get

$$
\begin{aligned}
& \int_{F_{v}^{\times}} \mathrm{d}^{\times} x_{v} \int_{F_{v}} \mathrm{~d} y_{v} f_{v}\left(y_{v}\right) \psi_{F, v}\left(x_{v} y_{v}\right)^{-1} \chi_{v}^{-1}\left(x_{v}\right)\left\|x_{v}\right\|_{v}^{1-s} \\
& \cdot \int_{F_{v} \times} \mathrm{d}^{\times} z_{v} f_{v}^{\prime}\left(z_{v}\right) \chi_{v}\left(z_{v}\right)\left\|z_{v}\right\|_{v}^{s} .
\end{aligned}
$$

Proposition

Our $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ has meromorphic continuation to all s in \mathbb{C}, with no poles for $\operatorname{Re} s>0$. Furthermore, there exists a meromorphic function $\gamma_{v}\left(s, \chi_{v}\right)$ such that $\gamma_{v}\left(s, \chi_{v}\right) Z_{v}\left(s, \chi_{v}, f_{v}\right)=Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)$ for all f_{v} in $\mathcal{S}\left(F_{v}\right)$.

Proof (continued).

Since F_{v}^{\times}has full measure in F_{v}, setting $x_{v}^{\prime}=x_{v} y_{v}$ turns our integral into

$$
\begin{aligned}
& \left(1-q_{v}^{-1}\right)^{-1} \int_{F_{v}^{\times}} \mathrm{d}^{\times} x_{v}^{\prime} \int_{F_{v}^{\times}} \mathrm{d}^{\times} y_{v} \int_{F_{v}^{\times}} \mathrm{d}^{\times} z_{v} f_{v}\left(y_{v}\right) f_{v}^{\prime}\left(z_{v}\right) \\
& \cdot \psi_{F, v}\left(x_{v}^{\prime}\right)^{-1} \chi_{v}\left(x_{v}^{\prime}\right)^{-1} \chi_{v}\left(y_{v} z_{v}\right)\left\|x_{v}^{\prime}\right\|_{v}^{1-s}\left\|y_{v} z_{v}\right\|_{v}^{s}
\end{aligned}
$$

where we omit $\left(1-q_{v}^{-1}\right)^{-1}$ for archimedean v. Similarly expanding the right-hand side reverses the role of y_{v} and z_{v}. As the above integral is evidently invariant under this reversal, we see the two sides are equal.
So we can set $\gamma_{v}\left(s, \chi_{v}\right)=Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right) / Z_{v}\left(s, \chi_{v}, f_{v}\right)$. By choosing f_{v} with \widehat{f}_{v} vanishing in a neighborhood of 0 , our previous proof shows $Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f_{v}}\right)$ is holomorphic for all s in \mathbb{C}.

Proposition

Our $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ has meromorphic continuation to all s in \mathbb{C}, with no poles for $\operatorname{Re} s>0$. Furthermore, there exists a meromorphic function $\gamma_{v}\left(s, \chi_{v}\right)$ such that $\gamma_{v}\left(s, \chi_{v}\right) Z_{v}\left(s, \chi_{v}, f_{v}\right)=Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)$ for all f_{v} in $\mathcal{S}\left(F_{v}\right)$.

Proof (continued).

As $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ is holomorphic for $\operatorname{Re} s>0$, we see $\gamma_{v}\left(s, \chi_{v}\right)$ meromorphically extends for $\operatorname{Re} s>0$. Choosing f_{v} that vanishes in a neighborhood of 0 similarly shows that $\gamma_{v}\left(s, \chi_{v}\right)$ meromorphically extends for $\operatorname{Re} s<1$.

Finally, we turn to $Z_{v}\left(s, \chi_{v}, f_{v}\right)$. We already showed it's holomorphic for Res >0, and the meromorphy of $\gamma_{v}\left(s, \chi_{v}\right)$ indicates that $Z_{v}\left(1-s, \chi_{v}^{-1}, \widehat{f}_{v}\right)=\gamma_{v}\left(s, \chi_{v}\right) Z_{v}\left(s, \chi_{v}, f_{v}\right)$ meromorphically extends for $\operatorname{Re} s>0$. Replacing s with $1-s, \chi_{v}$ with χ_{v}^{-1}, and f_{v} with \widehat{f}_{v} shows that $Z_{v}\left(s, \chi_{v}, f_{v}\right)$ meromorphically extends for $\operatorname{Re} s<1$.

