Adelic Poisson Summation

Siyan Daniel Li-Huerta

November 3, 2020

Recall F is a number field. We had a continuous group homomorphism $\psi_{\mathbb{Q}}: \mathbb{A}_{\mathbb{Q}} / \mathbb{Q} \rightarrow S^{1}$, and then we set $\psi_{F}=\psi_{\mathbb{Q}} \circ \operatorname{tr}_{\mathbb{A}_{F} / \mathbb{A}_{\mathbb{Q}}}$. Let's now finish computing self-dual Haar measures for ψ_{F}.

Example

If $p \neq \infty$, then $\psi_{F, v}$ equals the composition

$$
F_{v} \xrightarrow{\operatorname{tr}_{F_{v} / \mathbb{Q}_{p}}} \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \subset \mathbb{Q} / \mathbb{Z} \subseteq \mathbb{R} / \mathbb{Z} \xrightarrow{\varphi} S^{1}
$$

Here, we take $f=\mathbf{1}_{\mathcal{O}_{v}}$. The Fourier transform of f with respect to the Lebesgue measure on F_{v} is

$$
\widehat{f}(a)=\int_{F_{v}} \mathrm{~d} x f(x) \psi_{F, v}(a x)^{-1}=\int_{\mathcal{O}_{v}} \mathrm{~d} x \psi_{F, v}(a x)
$$

This integral doesn't vanish if and only if $\psi_{F, v}(a x)=1$ for all x in \mathcal{O}_{v}, in which case it equals 1 . In turn, this occurs if and only if $\operatorname{tr}_{F_{v} / \mathbb{Q}_{p}}\left(a \mathcal{O}_{v}\right)$ lies in \mathbb{Z}_{p}, i.e. if and only if a lies in $\mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}^{-1}$. Therefore $\widehat{f}=\mathbf{1}_{\mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}^{-1}}$.
Write $\mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}=\pi_{v}^{d} \mathcal{O}_{v}$, where $d \geq 0$. So $\mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}^{-1}=\pi_{v}^{-d} \mathcal{O}_{v}$.

Example (continued)

The Fourier transform of \widehat{f} with respect to the Lebesgue measure on F_{v} is

$$
\begin{aligned}
\widehat{\hat{f}}(x) & =\int_{F_{v}} \mathrm{~d} a \widehat{f}(a) \psi_{F, v}(a x)^{-1}=\int_{\mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}^{-1}} \mathrm{~d} a \psi_{F, v}(a x) \\
& =\left\|\pi_{v}\right\|_{v}^{-d} \int_{\mathcal{O}_{v}} \mathrm{~d} a^{\prime} \psi_{F, v}\left(\pi_{v}^{-d} a^{\prime} x\right) \\
& =\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}\right) \int_{\mathcal{O}_{v}} \mathrm{~d} a^{\prime} \psi_{F, v}\left(\pi_{v}^{-d} a^{\prime} x\right)
\end{aligned}
$$

where $a=\pi_{v}^{-d} a^{\prime}$. This integral doesn't vanish if and only if $\psi_{F, v}\left(\pi_{v}^{-d} a^{\prime} x\right)=1$ for all a^{\prime} in \mathcal{O}_{v}, which occurs if and only if

$$
\operatorname{tr}_{F_{v} / \mathbb{Q}_{p}}\left(\pi_{v}^{-d} a^{\prime} \mathcal{O}_{v}\right) \subseteq \mathbb{Z}_{p} \Longleftrightarrow \pi_{v}^{-d} a^{\prime} \in \mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}^{-1}=\pi_{v}^{-d} \mathcal{O}_{v} \Longleftrightarrow a^{\prime} \in \mathcal{O}_{v}
$$

Therefore $\widehat{\hat{f}}=\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v}} / \mathbb{Q}_{p}\right) \mathbf{1}_{\mathcal{O}_{v}}$, so $\#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v} / \mathbb{Q}_{p}}\right)^{-1 / 2}$ times the Lebesgue measure on F_{v} is self-dual.

We henceforth use the self-dual Haar measure on \mathbb{A}_{F}.

Classical Poisson summation relates functions on \mathbb{R} with their Fourier transforms via summing on the discrete subgroup \mathbb{Z}. Adelic Poisson summation does the same with \mathbb{A}_{F} and F instead.

For all v in M_{F}, let f_{v} be in $\mathcal{S}\left(F_{v}^{n}\right)$, and suppose $f_{v}=\mathbf{1}_{\mathcal{O}_{v}^{n}}$ for cofinitely many v. Then we can form $f=\prod_{v \in M_{F}} f_{v}$. Since the f_{v} are continuous and integrable, we see f is as well.

Definition

A Bruhat-Schwartz function on \mathbb{A}_{F}^{n} is a finite sum of functions of the above form.

Write $\mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$ for the set of Bruhat-Schwartz functions on \mathbb{A}_{F}^{n}. Note it is preserved under addition, multiplication, and scaling by \mathbb{C}.

Remark

Because F_{v} / \mathbb{Q}_{p} is ramified only for finitely many v, we see the Fourier transform of $\mathbf{1}_{\mathcal{O}_{v}}$ equals itself for cofinitely many v. As the Fourier transform on F_{v} yields a \mathbb{C}-linear isomorphism $\mathcal{S}\left(F_{v}\right) \xrightarrow{\sim} \mathcal{S}\left(F_{v}\right)$ for all v in M_{F}, this implies the Fourier transform on \mathbb{A}_{F} yields a \mathbb{C}-linear isomorphism $\mathcal{S}\left(\mathbb{A}_{F}\right) \xrightarrow{\sim} \mathcal{S}\left(\mathbb{A}_{F}\right)$ too.

Proposition

Let f be in $\mathcal{S}\left(\mathbb{A}_{F}\right)$. Then $\mathcal{F}(x)=\sum_{\gamma \in F} f(x+\gamma)$ converges uniformly on compact subsets of \mathbb{A}_{F} and defines a continuous function $\mathcal{F}: \mathbb{A}_{F} / F \rightarrow \mathbb{C}$.

Proof.

Let $S \supseteq M_{F, \infty}$ be finite. It suffices to consider convergence on $\prod_{v \in M_{F}} C_{V}$, where C_{v} is a compact subset of F_{v} such that $C_{v}=\mathcal{O}_{v}$ for all v not in S and $C_{v}=\mathfrak{m}_{v}^{a_{v}}$ for all v in $S \backslash M_{F, \infty}$. By enlarging S, we can assume it contains all v for which $f_{v} \neq \mathbf{1}_{\mathcal{O}_{v}}$. For v in $S \backslash M_{F, \infty}$, by scaling f_{v} and enlarging its support, we can assume $f_{v}=\mathbf{1}_{\mathfrak{m}_{v}}$.
Form the fractional ideal $I=\prod_{v \in S \backslash M_{F, \infty}} v^{\min \left\{a_{v}, b_{v}\right\}}$ of \mathcal{O}_{F}. For all x in $\prod_{v \in M_{F}} C_{v}$, if $f(x+\gamma) \neq 0$, we see $x_{v}+\gamma$ lies in $\mathfrak{m}_{v}^{b_{v}}$ for all v in $S \backslash M_{F, \infty}$ and \mathcal{O}_{v} for all the other v. Thus γ lies in I, so we get $|\mathcal{F}(x)| \leq \sum_{\gamma \in I}\left|\prod_{v \in M_{F, \infty}} f_{v}\left(x_{v}+\gamma\right)\right|$. Recall that l is a lattice in $\prod_{V \in M_{F, \infty}} F_{V}$, and note $\left(x_{V}\right)_{v \in M_{F, \infty}}$ lies in the compact subset $\prod_{V \in M_{F, \infty}} C_{V}$ of $\prod_{v \in M_{F, \infty}} F_{V}$, so uniform convergence follows from the case of \mathbb{R}^{n}. This also implies \mathcal{F} descends to a continuous function $\mathbb{A}_{F} / F \rightarrow \mathbb{C}$.

Lemma

Let G be an abelian locally compact topological group, let m be a Haar measure on G, let H be a countable closed subgroup of G, and let D be a Borel subset of G. If D has compact closure, nonempty interior, and maps bijectively to G / H, then the pushforward of m via $D \rightarrow G / H$ yields a Haar measure on G / H.

Proof.

Homework problem.
We call this the quotient measure on G / H, and we call D a fundamental domain for G / H.

Examples

- Let $G=\mathbb{R}$, with m being the Lebesgue measure, and $H=\mathbb{Z}$. We can take $D=[0,1)$, which results in the usual measure on $\mathbb{R} / \mathbb{Z}=S^{1}$.
- Let $G=\mathbb{A}_{\mathbb{Q}}$ and $H=\mathbb{Q}$. It's a homework problem to show we can take $D=\left\{\left(x_{v}\right)_{v} \in \mathbb{A}_{\mathbb{Q}} \mid\left\|x_{v}\right\|_{v} \leq 1\right.$ for $v \neq \infty$ and $\left.0 \leq x_{\infty}<1\right\}$.

Examples (continued)

- Let $G=\mathbb{A}_{F}$ and $H=F$. By choosing a \mathbb{Q}-basis of F, we can identify $F=\mathbb{Q}^{n}$ and hence $\mathbb{A}_{F}=\mathbb{A}_{\mathbb{Q}}^{n}$. Thus we can take D to be the n-th power of the fundamental domain on $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$.

Lemma

Write m for the quotient measure on \mathbb{A}_{F} / F. Then the dual measure on $\widehat{\mathbb{A}_{F} / F}=F$ equals $m\left(\mathbb{A}_{F} / F\right)^{-1}$ times the counting measure.

Proof.

As F is discrete and the dual measure is a Haar measure, we see it equals c times the counting measure for some $c>0$. Taking $f=1$ in the Fourier inversion formula yields

$$
1=c \sum_{\gamma \in F} \widehat{f}(\gamma) \psi_{F}(\gamma x)^{-1}=c m\left(\mathbb{A}_{F} / F\right)
$$

since \widehat{f} equals $m\left(\mathbb{A}_{F} / F\right)$ times the indicator function on 0 .

Theorem (adelic Poisson summation)
Let f be in $\mathcal{S}\left(\mathbb{A}_{F}\right)$. Then $\sum_{\gamma \in F} f(\gamma)=\sum_{\gamma \in F} \widehat{f}(\gamma)$.

Proof.

Let $\mathcal{F}(x)=\sum_{\gamma \in F} f(x+\gamma)$, considered as a function $\mathbb{A}_{F} / F \rightarrow \mathbb{C}$. Note that $\mathcal{F}(0)$ equals the left-hand side above. Let $D \subseteq \mathbb{A}_{F}$ be a fundamental domain for G / H. First, I claim $\widehat{f}(c)=\widehat{\mathcal{F}}(c)$ for all c in F, where we use the self-dual measure on \mathbb{A}_{F} and the quotient measure on \mathbb{A}_{F} / F. To see this, note that

$$
\begin{aligned}
\widehat{\mathcal{F}}(c) & =\int_{D} \mathrm{~d} x \mathcal{F}(x) \psi_{F}(c x)^{-1}=\int_{D} \mathrm{~d} x \sum_{\gamma \in F} f(x+\gamma) \psi_{F}(c x)^{-1} \\
& =\int_{D} \mathrm{~d} x \sum_{\gamma \in F} f(x+\gamma) \psi_{F}(c(x+\gamma))^{-1}=\int_{\mathbb{A}_{F}} \mathrm{~d} y f(y) \psi_{F}(c y)^{-1}=\widehat{f}(c),
\end{aligned}
$$

where $y=x+\gamma$. Now \widehat{f} lies in $\mathcal{S}\left(\mathbb{A}_{F}\right)$, so $\sum_{\gamma \in F}|\widehat{f}(\gamma)|=\sum_{\gamma \in F}|\widehat{\mathcal{F}}(\gamma)|$ converges. In other words, $\widehat{\mathcal{F}}$ lies in $L^{1}(F)$.

Theorem (adelic Poisson summation)
Let f be in $\mathcal{S}\left(\mathbb{A}_{F}\right)$. Then $\sum_{\gamma \in F} f(\gamma)=\sum_{\gamma \in F} \widehat{f}(\gamma)$.
Proof (continued).
Hence Fourier inversion applies to \mathcal{F}, so
$\sum_{\gamma \in F} f(\gamma)=\mathcal{F}(0)=m\left(\mathbb{A}_{F} / F\right)^{-1} \sum_{\gamma \in F} \widehat{\mathcal{F}}(\gamma) \psi_{F}(0)^{-1}=m\left(\mathbb{A}_{F} / F\right)^{-1} \sum_{\gamma \in F} \widehat{f}(\gamma)$.
Replacing f with \widehat{f} in this formula and applying Fourier inversion to f yields

$$
\sum_{\gamma \in F} f(\gamma)=m\left(\mathbb{A}_{F} / F\right)^{-2} \sum_{\gamma \in F} f(-\gamma)=m\left(\mathbb{A}_{F} / F\right)^{-2} \sum_{\gamma \in F} f(\gamma) .
$$

Taking any f with $\sum_{\gamma \in F} f(\gamma) \neq 0$ indicates $m\left(\mathbb{A}_{F} / F\right)^{-2}=1$, so we see $m\left(\mathbb{A}_{F} / F\right)=1$. Thus the original formula yields the desired result.

Remark

This shows $m\left(\mathbb{A}_{F} / F\right)=1$ when m is the quotient measure of the self-dual measure on \mathbb{A}_{F} with respect to ψ_{F}. We won't use it, but it's often useful take the measure on \mathbb{A}_{F} that takes the usual Lebesgue measure for $v \nmid \infty$. With the quotient measure of this, the volume of \mathbb{A}_{F} / F is

$$
\begin{aligned}
\prod_{v \notin M_{F, \infty}} \#\left(\mathcal{O}_{v} / \mathfrak{d}_{F_{v} / \mathbb{Q}_{P}}\right)^{1 / 2} & =\#\left(\mathcal{O}_{F} / \mathfrak{d}_{F / \mathbb{Q}}\right)^{1 / 2} \\
& =\left|\operatorname{Nm}_{F / \mathbb{Q}}\left(\mathfrak{d}_{F / \mathbb{Q}}\right)\right|^{1 / 2}=\left|\mathcal{D}_{F / \mathbb{Q}}\right|^{1 / 2}
\end{aligned}
$$

We conclude by relating idelic and ray class group characters as follows.

Proposition

Let $\chi: \mathbb{A}_{F}^{\times} / F^{\times} \rightarrow \mathbb{C}^{\times}$be a continuous group homomorphism such that $\chi^{m}=1$ for some m. Then ker χ contains the image of $K_{\left(1, S_{0}\right)}$ for some modulus $\left(I, S_{0}\right)$ for F.

Hence χ induces a continuous group homomorphism from the ray class $\operatorname{group} \mathcal{C l}_{\left(I, S_{0}\right)}(F)=K_{\left(I, S_{0}\right)} \backslash \mathbb{A}_{F}^{\times} / F^{\times} \rightarrow \mathbb{C}^{\times}$.

Proposition

Let $\chi: \mathbb{A}_{F}^{\times} / F^{\times} \rightarrow \mathbb{C}^{\times}$be a continuous group homomorphism such that $\chi^{m}=1$ for some m. Then ker χ contains the image of $K_{\left(I, S_{0}\right)}$ for some modulus $\left(I, S_{0}\right)$ for F.

Proof.

As $\chi^{m}=1$, the image of χ lies in $\left\{\zeta \in \mathbb{C} \mid \zeta^{m}=1\right\}$, which is discrete. Now $\mathbb{R}_{>0}$ and \mathbb{C}^{\times}are connected, so their images under χ must be trivial by continuity. Thus if we take S to be all the real embeddings, ker χ contains $\prod_{v \in M_{F, \infty}} K_{\left(I, S_{0}\right), v}$.
Let U be a neighborhood of 1 in \mathbb{C}^{\times}containing no nontrivial subgroups of \mathbb{C}^{\times}. As the preimage of $\chi^{-1}(U)$ in \mathbb{A}_{F}^{\times}is a neighborhood of 1 , we see it contains $\prod_{V \notin M_{F, \infty}} N_{v}$, where the N_{v} are open subsets of F_{v}^{\times}such that $N_{v}=\mathcal{O}_{v}^{\times}$for all v not in some finite subset $S \supseteq M_{F, \infty}$, and $N_{v}=1+\mathfrak{m}_{v}^{a_{v}}$ for all v in $S \backslash M_{F, \infty}$. Now the image of $\prod_{v \notin M_{F, \infty}} N_{v}$ in \mathbb{C}^{\times}is a subgroup and thus trivial, so we can take $I=\prod_{v \in S \backslash M_{F, \infty}} v^{a_{V}}$.

