Pontryagin Duality on the Adeles
 (featuring differents)

Siyan Daniel Li-Huerta

October 29, 2020

Let F be a number field, and let $\psi: \mathbb{A}_{F} \rightarrow S^{1}$ be a continuous homomorphism such that $\psi_{v}: F_{v} \rightarrow S^{1}$ is nontrivial for all v in M_{F}. Our previous work implies the map ψ. : $\mathbb{A}_{F} \rightarrow \widehat{\mathbb{A}_{F}}$ given by $a \mapsto(x \mapsto \psi(a x))$ is an isomorphism of topological groups.

In addition, suppose that $\left.\psi\right|_{F}=1$. Then we have $\left.\psi_{a}\right|_{F}=1$ for all a in F, so ψ. induces a morphism $\psi: F \rightarrow \widehat{\mathbb{A}_{F} / F}$ of topological groups.

Example

Let $F=\mathbb{Q}$, let $\psi_{\infty}: \mathbb{R} \rightarrow S^{1}$ be $x \mapsto \varphi(-x)$, and for all prime numbers p, let ψ_{p} be $\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z} \xrightarrow{\varphi} S^{1}$. Then $\psi=\prod_{v \in M_{\mathbb{Q}}} \psi_{v}$ works.

Proposition

This yields an isomorphism $\psi: F \xrightarrow{\sim} \widehat{\mathbb{A}_{F} / F}$ of topological groups.

Proof.

Homework problem.

Example

Recall that $\mathbb{A}_{\mathbb{Q}} \otimes_{\mathbb{Q}} F \xrightarrow{\sim} \mathbb{A}_{F}$. Hence \mathbb{A}_{F} is a free $\mathbb{A}_{\mathbb{Q}}$-module of finite rank, so we have a trace map $\operatorname{tr}_{\mathbb{A}_{F} / \mathbb{A}_{\mathbb{Q}}}: \mathbb{A}_{F} \rightarrow \mathbb{A}_{\mathbb{Q}}$. This is evidently a continuous group homomorphism, and we see its restriction to F equals $\operatorname{tr}_{F / \mathbb{Q}}$. Hence it sends F to \mathbb{Q}, so the composition $\psi_{F}=\psi \circ \operatorname{tr}_{\mathbb{A}_{F} / \mathbb{A}_{\mathbb{Q}}}$ yields a continuous group homomorphism $\mathbb{A}_{F} \rightarrow S^{1}$ that is trivial on F.

For any p (including $p=\infty$) in $M_{\mathbb{Q}}$, recall that $\mathbb{Q}_{p} \otimes_{\mathbb{Q}} F \xrightarrow{\sim} \prod_{v \mid p} F_{v}$ in the above isomorphism. Thus $\operatorname{tr}_{\mathbb{A}_{F} / \mathbb{A}_{\mathbb{Q}}}$ restricted to F_{V} equals $\operatorname{tr}_{F_{V} / \mathbb{Q}_{p}}$, which makes $\psi_{F, v}=\psi_{p} \circ \operatorname{tr}_{F_{v} / \mathbb{Q}_{p}}$. This is evidently nontrivial, so altogether ψ_{F} works.

We use this ψ_{F} in computations, for which we want to know what the corresponding self-dual Haar measure is.

Example

If $p=\infty$ and $F_{v}=\mathbb{R}$, then $\psi_{F, v}(x)=\varphi(-x)$ for all x in \mathbb{R}. Integrating the Gaussian $f(x)=e^{-\pi x^{2}}$ again, since the change of variables $x \mapsto-x$ preserves $f(x)$, shows the Lebesgue measure is self-dual.

Example

If $p=\infty$ and $F_{v}=\mathbb{C}$, then $\psi_{F, v}(z)=\varphi(-2 \operatorname{Re} z)$ for all z in \mathbb{C}. Here, we take $f(z)=e^{-2 \pi|z|^{2}}$. Writing $\xi=a+b i$ for a variable valued in $\widehat{F_{v}}=\mathbb{C}$, the Fourier transform of f with respect to the Lebesgue measure on \mathbb{C} is

$$
\begin{aligned}
\widehat{f}(\xi) & =\int_{\mathbb{C}} \mathrm{d} z f(z) \psi_{F, v}(\xi z)^{-1}=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} y e^{-2 \pi\left(x^{2}+y^{2}\right)} e^{4 \pi i(a x-b y)} \\
& =\int_{-\infty}^{\infty} \mathrm{d} x e^{-2 \pi x^{2}} e^{4 \pi a i x} \int_{-\infty}^{\infty} \mathrm{d} y e^{-2 \pi y^{2}} e^{-4 \pi b i y}=\frac{e^{-\pi(\sqrt{2} a)^{2}}}{\sqrt{2}} \cdot \frac{e^{-\pi(\sqrt{2} b)^{2}}}{\sqrt{2}} \\
& =\frac{1}{2} f(\xi) .
\end{aligned}
$$

Thus 2 times the Lebesgue measure on \mathbb{C} is self-dual.
Before proceeding to nonarchimedean v, we need to introduce the different. Let A be a Dedekind domain, write $F=\operatorname{Frac} A$, let E / F be a finite separable extension, and write B for the integral closure of A in E. Recall that $\operatorname{Frac} B=E$.

Examples

- For a finite extension E / F of number fields, taking $A=\mathcal{O}_{F}$ yields $B=\mathcal{O}_{E}$.
- For a finite separable extension E_{w} / F_{v} of nonarchimedean local fields, taking $A=\mathcal{O}_{v}$ yields $B=\mathcal{O}_{w}$.

Since E / F is separable, the F-bilinear pairing $E \times E \rightarrow F$ given by $(x, y) \mapsto \operatorname{tr}_{E / F}(x y)$ is non-degenerate. We call this the trace pairing.

Definition
Let M be an A-submodule of E. The dual of M with respect to the trace pairing is the A-submodule $M^{*}=\left\{x \in E \mid \operatorname{tr}_{E / F}(x M) \subseteq A\right\}$ of E.

Note that if $M_{1} \subseteq M_{2}$ are A-submodules of E, then $M_{2}^{*} \subseteq M_{1}^{*}$.
Let M be a B-submodule of E. For all b in B and x in M^{*}, we have $\operatorname{tr}_{E / F}(b x M)=\operatorname{tr}_{E / F}(x b M) \subseteq \operatorname{tr}_{E / F}(x M) \subseteq A$, so M^{*} is a B-submodule of E.

Proposition

Let M be a nonzero fractional ideal of B. Then M^{*} is also a nonzero fractional ideal of B.

Proof.

Suppose $b M \subseteq B$ for some b in B. Then $\operatorname{tr}_{E / F}(b M) \subseteq \operatorname{tr}_{E / F}(B)=A$, so b lies in B. Since M is nonzero, we can take $b \neq 0$, making M^{*} also nonzero.

Next, we show M^{*} is a finitely generated B-module. Let x_{1}, \ldots, x_{n} be an F-basis of E, which we may assume to lie in B via scaling. For any nonzero m in M, the $x_{1} m, \ldots, x_{n} m$ are also an F-basis of E, and they lie in M. Hence the free A-module N they generate lies in M, so $M^{*} \subseteq N^{*}$. Now N^{*} is a free A-module of rank n, so the noetherianity of B implies that M^{*} is finitely generated over A. So M^{*} is finitely generated over B too.

Definition

The different of B over A, denoted by $\mathfrak{d}_{B / A}$, is the nonzero fractional ideal $\left(B^{*}\right)^{-1}$.

Note that the B-submodule B^{*} contains 1 , so $B \subseteq B^{*}$. Hence $\mathfrak{d}_{B / A} \subseteq B^{-1}=B$, so $\mathfrak{d}_{B / A}$ is actually an ideal of B.

Proposition

Let S be a multiplicative subset of A. Then $\mathfrak{d}_{S^{-1} B / S^{-1} B}=S^{-1} \mathfrak{d}_{B / A}$.

Proof.

I claim that $S^{-1}\left(B^{*}\right)=\left(S^{-1} B\right)^{*}$, where the latter is taken with respect to $S^{-1} A$. For $\frac{x}{s}$ in $S^{-1}\left(B^{*}\right)$, where s lies S and x lies in B^{*}, and $\frac{b}{t}$ in $S^{-1} B$, where t lies in S and b lies in B, we see $\operatorname{tr}_{E / F}\left(\frac{x}{s} \cdot \frac{b}{t}\right)=\frac{1}{s t} \operatorname{tr}_{E / F}(x b)$ lies in $S^{-1} B$. Therefore $S^{-1}\left(B^{*}\right) \subseteq\left(S^{-1} B\right)^{*}$.
Conversely, let x be in $\left(S^{-1} B\right)^{*}$. Write x_{1}, \ldots, x_{r} for generators of B over A. Then every $\operatorname{tr}_{E / F}\left(x x_{i}\right)$ lies in $S^{-1} A$, so it equals $\frac{a_{i}}{s_{i}}$ for some s_{i} in S and a_{i} in A. Then $\operatorname{tr}_{E / F}\left(s_{1} \cdots s_{r} x B\right)=\left(s_{1} \cdots s_{r}\right) \operatorname{tr}_{E / F}(x B) \subseteq A$, so we have $s_{1} \cdots s_{r} x$ lying in B^{*}. Hence x lies in $S^{-1}\left(B^{*}\right)$.

The desired result follows from taking ideal inverses.

Let v be a nonzero prime ideal of A. We use $(\cdot)_{v}$ to denote completions with respect to the norm induced by v.

Proposition

Let w be a nonzero prime ideal of B dividing v. Then $\mathfrak{d}_{B_{w} / A_{v}}=\mathfrak{d}_{B / A} B_{w}$.

Proof.

Recall that $E_{v} \xrightarrow{\sim} \prod_{w \mid v} E_{w}$ as F_{v}-algebras, so $\operatorname{tr}_{E_{v} / F_{v}}=\sum_{w \mid v} \operatorname{tr}_{E_{w} / F_{v}}$. We have shown that $B_{v}=\prod_{w \mid v} B_{w}$ as A_{v}-algebras under this identification, so we see that $\left(B_{v}\right)^{*}=\prod_{w \mid v}\left(B_{w}\right)^{*}$. Now $\left(B_{v}\right)^{*}=\left(B^{*}\right)_{v}$, so it's generated by B^{*} over A_{v}. Looking at the w-component shows $\left(B_{w}\right)^{*}$ is generated by B^{*} over B_{w}, so taking ideal inverses yields the desired result.

Combining this Proposition with unique factorization shows that we can compute $\mathfrak{d}_{B / A}$ by computing it after completing at each nonzero prime w of B.

Remark

The ideal $\mathfrak{d}_{B / A}$ contains fine information about ramification-for example, w is ramified over v if and only if w divides $\mathfrak{d}_{B / A}$, and the ramification degree can be bounded using $\mathfrak{d}_{B / A}$. In tamely ramified cases, the ramification degree can be computed exactly using $\mathfrak{d}_{B / A}$.

Instead of the above, we content ourselves with the following link to ramification. Write $\mathcal{D}_{B / A}$ for the discriminant ideal of B over A, which is a nonzero ideal of A.

Proposition

We have $\mathcal{D}_{B / A}=\operatorname{Nm}_{B / A}\left(\mathfrak{d}_{B / A}\right)$.

Proof.

Because norms, differents, and discriminants commute with localization, unique factorization allows us to reduce to the case when A and hence B are local rings. Thus A is a principal ideal domain, so B is a free A-module of finite rank. Let x_{1}, \ldots, x_{n} be an A-basis of B. Then B^{*} is also a free A-module, with an A-basis $x_{1}^{*}, \ldots, x_{n}^{*}$ characterized by $\operatorname{tr}_{E / F}\left(x_{i} x_{j}^{*}\right)=\delta_{i j \cdot 9 / 10}$

Proposition

We have $\mathcal{D}_{B / A}=\operatorname{Nm}_{B / A}\left(\mathfrak{d}_{B / A}\right)$.

Proof (continued).

Thus for any free A-submodule M of E with A-basis b_{1}, \ldots, b_{n}, we see that $m_{i}=\sum_{j=1}^{n} \operatorname{tr}_{E / F}\left(m_{i} x_{j}\right) x_{j}^{*}$. Applying this to B shows that

$$
\mathcal{D}_{B / A}=\operatorname{det}\left(\operatorname{tr}_{E / F}\left(x_{i} x_{j}\right)\right)_{i, j=1}^{n}
$$

is the ideal generated by the product of the elementary divisors of B^{*} over B, where both are considered as free A-modules of finite rank. This in turn equals the product of the elementary divisors of $B^{-1}=B$ over $\left(B^{*}\right)^{-1}=\mathfrak{d}_{B / A}$, which is precisely $\operatorname{Nm}_{B / A}\left(\mathfrak{d}_{B / A}\right)$.

As usual, when working with number fields or local fields, we often index everything with the field instead of the Dedekind domain.

