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Let F be a number field, and let ψ : AF →S1 be a continuous
homomorphism such that ψv : Fv→S1 is nontrivial for all v in MF . Our
previous work implies the map ψ· : AF → ÂF given by a 7→ (x 7→ ψ(ax)) is
an isomorphism of topological groups.

In addition, suppose that ψ|F = 1. Then we have ψa|F = 1 for all a in F ,

so ψ· induces a morphism ψ· : F → ÂF/F of topological groups.

Example

Let F = Q, let ψ∞ : R→S1 be x 7→ ϕ(−x), and for all prime numbers p,

let ψp be Qp→Qp/Zp ⊂ Q/Z ⊂ R/Z ϕ→ S1. Then ψ =
∏

v∈MQ
ψv works.

Proposition

This yields an isomorphism ψ· : F
∼→ ÂF/F of topological groups.

Proof.

Homework problem.
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Example

Recall that AQ ⊗Q F
∼→AF . Hence AF is a free AQ-module of finite rank,

so we have a trace map trAF /AQ : AF →AQ. This is evidently a continuous
group homomorphism, and we see its restriction to F equals trF/Q. Hence
it sends F to Q, so the composition ψF = ψ ◦ trAF /AQ yields a continuous

group homomorphism AF →S1 that is trivial on F .

For any p (including p =∞) in MQ, recall that Qp ⊗Q F
∼→
∏

v |p Fv in the
above isomorphism. Thus trAF /AQ restricted to Fv equals trFv/Qp

, which
makes ψF ,v = ψp ◦ trFv/Qp

. This is evidently nontrivial, so altogether ψF

works.

We use this ψF in computations, for which we want to know what the
corresponding self-dual Haar measure is.

Example

If p =∞ and Fv = R, then ψF ,v (x) = ϕ(−x) for all x in R. Integrating

the Gaussian f (x) = e−πx
2

again, since the change of variables x 7→ −x
preserves f (x), shows the Lebesgue measure is self-dual.
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Example

If p =∞ and Fv = C, then ψF ,v (z) = ϕ(−2 Re z) for all z in C. Here, we

take f (z) = e−2π|z|
2
. Writing ξ = a + bi for a variable valued in F̂v = C,

the Fourier transform of f with respect to the Lebesgue measure on C is

f̂ (ξ) =

∫
C
dz f (z)ψF ,v (ξz)−1 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−2π(x
2+y2)e4πi(ax−by)

=

∫ ∞
−∞

dx e−2πx
2
e4πaix

∫ ∞
−∞

dy e−2πy
2
e−4πbiy =

e−π(
√
2a)2

√
2

· e
−π(
√
2b)2

√
2

=
1

2
f (ξ).

Thus 2 times the Lebesgue measure on C is self-dual.

Before proceeding to nonarchimedean v , we need to introduce the
different. Let A be a Dedekind domain, write F = FracA, let E/F be a
finite separable extension, and write B for the integral closure of A in E .
Recall that FracB = E .
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Examples

For a finite extension E/F of number fields, taking A = OF yields
B = OE .

For a finite separable extension Ew/Fv of nonarchimedean local fields,
taking A = Ov yields B = Ow .

Since E/F is separable, the F -bilinear pairing E × E→F given by
(x , y) 7→ trE/F (xy) is non-degenerate. We call this the trace pairing.

Definition

Let M be an A-submodule of E . The dual of M with respect to the trace
pairing is the A-submodule M∗ = {x ∈ E | trE/F (xM) ⊆ A} of E .

Note that if M1 ⊆ M2 are A-submodules of E , then M∗2 ⊆ M∗1 .

Let M be a B-submodule of E . For all b in B and x in M∗, we have
trE/F (bxM) = trE/F (xbM) ⊆ trE/F (xM) ⊆ A, so M∗ is a B-submodule of
E .
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Proposition

Let M be a nonzero fractional ideal of B. Then M∗ is also a nonzero
fractional ideal of B.

Proof.

Suppose bM ⊆ B for some b in B. Then trE/F (bM) ⊆ trE/F (B) = A, so b
lies in B. Since M is nonzero, we can take b 6= 0, making M∗ also nonzero.

Next, we show M∗ is a finitely generated B-module. Let x1, . . . , xn be an
F -basis of E , which we may assume to lie in B via scaling. For any
nonzero m in M, the x1m, . . . , xnm are also an F -basis of E , and they lie in
M. Hence the free A-module N they generate lies in M, so M∗ ⊆ N∗. Now
N∗ is a free A-module of rank n, so the noetherianity of B implies that M∗

is finitely generated over A. So M∗ is finitely generated over B too.

Definition

The different of B over A, denoted by dB/A, is the nonzero fractional ideal
(B∗)−1.
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Note that the B-submodule B∗ contains 1, so B ⊆ B∗. Hence
dB/A ⊆ B−1 = B, so dB/A is actually an ideal of B.

Proposition

Let S be a multiplicative subset of A. Then dS−1B/S−1B = S−1dB/A.

Proof.

I claim that S−1(B∗) = (S−1B)∗, where the latter is taken with respect to
S−1A. For x

s in S−1(B∗), where s lies S and x lies in B∗, and b
t in S−1B,

where t lies in S and b lies in B, we see trE/F ( xs ·
b
t ) = 1

st trE/F (xb) lies in
S−1B. Therefore S−1(B∗) ⊆ (S−1B)∗.

Conversely, let x be in (S−1B)∗. Write x1, . . . , xr for generators of B over
A. Then every trE/F (xxi ) lies in S−1A, so it equals ai

si
for some si in S and

ai in A. Then trE/F (s1 · · · srxB) = (s1 · · · sr ) trE/F (xB) ⊆ A, so we have
s1 · · · srx lying in B∗. Hence x lies in S−1(B∗).

The desired result follows from taking ideal inverses.
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Let v be a nonzero prime ideal of A. We use (·)v to denote completions
with respect to the norm induced by v .

Proposition

Let w be a nonzero prime ideal of B dividing v . Then dBw/Av
= dB/ABw .

Proof.

Recall that Ev
∼→
∏

w |v Ew as Fv -algebras, so trEv/Fv
=
∑

w |v trEw/Fv
. We

have shown that Bv =
∏

w |v Bw as Av -algebras under this identification,
so we see that (Bv )∗ =

∏
w |v (Bw )∗. Now (Bv )∗ = (B∗)v , so it’s generated

by B∗ over Av . Looking at the w -component shows (Bw )∗ is generated by
B∗ over Bw , so taking ideal inverses yields the desired result.

Combining this Proposition with unique factorization shows that we can
compute dB/A by computing it after completing at each nonzero prime w
of B.
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Remark

The ideal dB/A contains fine information about ramification—for example,
w is ramified over v if and only if w divides dB/A, and the ramification
degree can be bounded using dB/A. In tamely ramified cases, the
ramification degree can be computed exactly using dB/A.

Instead of the above, we content ourselves with the following link to
ramification. Write DB/A for the discriminant ideal of B over A, which is a
nonzero ideal of A.

Proposition

We have DB/A = NmB/A(dB/A).

Proof.

Because norms, differents, and discriminants commute with localization,
unique factorization allows us to reduce to the case when A and hence B
are local rings. Thus A is a principal ideal domain, so B is a free A-module
of finite rank. Let x1, . . . , xn be an A-basis of B. Then B∗ is also a free
A-module, with an A-basis x∗1 , . . . , x

∗
n characterized by trE/F (xix

∗
j ) = δij .9 / 10



Proposition

We have DB/A = NmB/A(dB/A).

Proof (continued).

Thus for any free A-submodule M of E with A-basis b1, . . . , bn, we see
that mi =

∑n
j=1 trE/F (mixj)x

∗
j . Applying this to B shows that

DB/A = det
(
trE/F (xixj)

)n
i ,j=1

is the ideal generated by the product of the elementary divisors of B∗ over
B, where both are considered as free A-modules of finite rank. This in
turn equals the product of the elementary divisors of B−1 = B over
(B∗)−1 = dB/A, which is precisely NmB/A(dB/A).

As usual, when working with number fields or local fields, we often index
everything with the field instead of the Dedekind domain.
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