More on Adeles and Ideles

Siyan Daniel Li-Huerta

October 27, 2020

Let F be a number field. Here's a generalization of class groups.

Definition

A modulus for F is a pair (I, S_0) , where I is a nonzero ideal of \mathcal{O}_F , and S_0 is a subset of the real embeddings $\{\sigma_1,\ldots,\sigma_{r_1}\}.$

For any modulus (I, S_0) , write $J(I, S_0)$ for the subgroup

$$
J(I, S_0) = \left\{ \begin{array}{c} x \in F^\times \text{ } \left| \text{ for all } v | I \text{, we have } v(x-1) \geq v(I), \\ \text{ for all } \sigma \in S_0 \text{, we have } \sigma(x) > 0, \end{array} \right. \right\}.
$$

Write $\mathcal{I}_{\mathsf{F},I}$ for the subgroup of \mathcal{I}_{F} of nonzero fractional ideals that are coprime to I. For x in $J(I,S_0)$, we see that (x) lies in $\mathcal{I}_{\mathsf{F},I}.$

Definition

The *ray class group* of conductor (I, \mathcal{S}_0) , denoted by $\mathcal{C}\!\ell_{(I, \mathcal{S}_0)}(F)$, is the quotient group $\mathcal{I}_{F,I}/$ im $J(I, S_0)$.

Examples

Let $(I, S_0) = (\mathcal{O}_F, \varnothing)$. We see that $J(I, S_0) = F^\times$ and $\mathcal{I}_{F,I} = \mathcal{I}_F$, so here $\mathcal{C}\!\ell_{(I, S_0)}(\digamma)$ is the usual class group. $2/\frac{10}{2}$

Examples (continued)

- Let $F = \mathbb{Q}$, and let $(I, S_0) = (m\mathbb{Z}, \emptyset)$. Form the homomorphism $\mathcal{I}_{F, I}\!\to\! (\mathbb{Z}/m\mathbb{Z})^\times/\{\pm 1\}$ given by $\frac{a}{b}\mathbb{Z}\mapsto ab^{-1}$ for integers a and b not divisible by m . This homomorphism is well-defined and evidently surjective. Furthermore, its kernel consists of $\frac{a}{b}\mathbb{Z}$ such that $a \equiv \pm b$ (mod *m*), and such $\frac{a}{b}$ are precisely those in $J(I, S_0)$. So here ${\mathcal C}\hskip-2pt{\ell}_{(I, S_0)}(F) = ({\mathbb Z}/m{\mathbb Z})^\times/\{\pm 1\},$
- Let $F = \mathbb{Q}$, and let $(I, S_0) = (m\mathbb{Z}, \{\mathbb{Q} \to \mathbb{R}\})$. Form the homomorphism $\mathcal{I}_{F, I}\!\rightarrow\!(\mathbb{Z}/m\mathbb{Z})^\times$ given by $\frac{a}{b}\mathbb{Z}\mapsto ab^{-1}$ for integers a and b not divisible by m, where we choose $a > 0$ and $b > 0$. This homomorphism is well-defined and evidently surjective, and we see its kernel consists of $\frac{a}{b}\mathbb{Z}$ such that $a \equiv b \pmod{m}$, where $\frac{a}{b}$ must be positive. Such $\frac{a}{b}$ are precisely those in $J(I, S_0)$, so here ${\mathcal{C}\!\ell}_{(I, S_0)}(\mathsf{F}) = (\tilde{\mathbb{Z}}/m\mathbb{Z})^\times$,
- \bullet Let F be a real quadratic field of discriminant D, and let $(I, S_0) = (\mathcal{O}_F, \{\sigma_1, \sigma_2\})$. One can show that $\mathcal{C}\!\ell_{(I, S_0)}(F)$ naturally bijects with $SL_2(\mathbb{Z})$ -equivalence classes of primitive integral binary quadratic forms of discriminant D . $\frac{3}{10}$

For any modulus (I,S_0) and any v in M_F , write $\mathcal{K}_{(I,S_0),v}$ for the subgroup

 $K_{(I,S_0),v} =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\mathcal{O}_\mathsf{v}^\times$ if v is nonarchimedean and $\mathsf{v}\nmid I,$ $1 + \mathfrak{m}_{v}^{v(I)}$ if v is nonarchimedean and $v|I$, $\mathbb{R}_{>0}$ if v is archimedean and $v \in S_0$, F_{v}^{\times} otherwise,

of F_{v}^\times . Then $\mathcal{K}_{(I,S_0)}=\prod_{\mathsf{v}\in\mathcal{M}_F}\mathcal{K}_{(I,S_0),\mathsf{v}}$ is an open subgroup of \mathbb{A}_F^\times $\mathop{F}\limits^{\times}$. Proposition

The double quotient $\mathcal{K}_{(I, S_0)} \backslash \mathbb{A}_F^\times$ $\frac{\times}{F}/F^\times$ is naturally isomorphic to ${\mathcal C}\hskip-2pt{\ell}_{(I, S_0)}(F).$

Proof.

Set $\mathbb{A}_{\mathsf{F}}^{\times,(I,S_0)}=\{(x_{\mathsf{v}})_{\mathsf{v}}\in\mathbb{A}_{\mathsf{F}}^{\times}$ $\frac{\times}{F}$ | for $v|I$ and v archimedean, $x_v \in K_{(I, S_0), v}$ }. Evidently $\mathbb{A}_F^{\times,(I,S_0)}$ $\mathcal{F}_F^{\times,(1,30)}$ contains $\mathcal{K}_{(I, \mathcal{S}_0)}$, and the valuation maps induce an isomorphism $\mathcal{K}_{(I, \mathcal{S}_0)} \backslash \mathbb{A}_\mathcal{F}^{\times, (I, \mathcal{S}_0)}$ $\stackrel{\times}{\mathcal{F}}^{(I,S_0)} \stackrel{\sim}{\rightarrow} \mathcal{I}_{\mathcal{F},I}.$ Writing $\mathcal{F}^{\times}_{(I,S_0)}$ $\overset{\sim}{(I, S_0)}$ for $F^\times \cap \mathbb{A}_F^{\times, (I, S_0)}$ $\hat{F}^{(1,30)}$, we see that $\mathit{F_{(I, S_0)}^{\times}} = \mathit{J(I, S_0)}.$ Hence $\mathit{K_{(I, S_0)}}\backslash \mathbb{A}_\mathit{F}^{\times, (I, S_0)}$ $\frac{\times}{F}$,(1,5₀)/ $F_{(1)}^{\times}$ $\widetilde{C}(I,S_0) \stackrel{\sim}{\rightarrow} \mathcal{C}\ell_{(I,S_0)}(F).$

Proposition

The double quotient $\mathcal{K}_{(I, S_0)} \backslash \mathbb{A}_F^\times$ $_{F}^{\times}/F^{\times}$ is naturally isomorphic to ${\mathcal C}\hskip-2pt{\ell}_{(I, S_{0})}(F).$

Proof (continued).

Applying weak approximation to $\{v \in M_F \mid v \mid I \text{ or } v \in S_0\}$ shows that $\mathbb{A}_{\mathsf{F}}^{\times} = \mathsf{F}^{\times} \mathbb{A}_{\mathsf{F}}^{\times, (I, \mathcal{S}_0)}$ $F_F^{(\lambda,1,30)}$. Therefore inclusion yields an isomorphism $\mathbb{A}_\mathsf{r}^{\times,(I,\mathcal{S}_0)}$ $\frac{\times}{F}$,(1,5₀)/ $F_{(1,5)}^{\times}$ χ^{\times} _{(I,S₀) \rightarrow A $_{F}^{\times}$} $\frac{\times}{F}/F^\times$. Quotienting by $\mathcal{K}_{(I, S_0)}$ and combining this with the above yields the desired result.

Next, let's turn towards *strong approximation*. First, recall that for any Borel subset U_v of F_v and x_v in F_v , we have $m_v(x_vU_v) = ||x_v||_v m_v(U_v)$. As the measure m on \mathbb{A}_F^\times \sum_{μ}^{\times} is given by the product of every m_v , for any Borel subset U of A_F and x in A_F , we similarly have $m(xU) = ||x||m(U)$.

Recall from the proof of the compactness of A_F/F that we had a compact subset K of A_F with nonempty interior such that $K + F = A_F$. Thus $m(K)$ is positive and finite.

Lemma

Let G be an abelian locally compact topological group, let m be a Haar measure on G, let H be a countable subgroup of G, and let K be a Borel subset of G such that $K + H = G$. If Y is a Borel subset of G such that $m(Y) > m(K)$, then there exist distinct y₁ and y₂ in Y such that y₁ – y₂ lies in H.

Lemma (Blichfeldt–Minkowski)

There exists a positive $C > 0$ such that, for any z in \mathbb{A}_F with $||z|| > C$, there exists b in F^{\times} such that $||b||_{v} \le ||z_{v}||_{v}$ for all v in M_{F} .

Proof.

Write c_0 for $m(K)$, where K is as above. Next, write c_1 for the measure of $X = \{ (x_v)_v \in \mathbb{A}_F \mid ||x_v||_v \leq 1 \text{ for } v \nmid \infty \text{ and } ||x_v||_v \leq \frac{1}{4}$ $\frac{1}{4}$ for $v \mid \infty$, which is positive and finite. Set $C = \frac{c_0}{c_1}$ $\frac{c_0}{c_1}$, and suppose z in \mathbb{A}_F has $||z|| > C$. Now form the compact subset

$$
Y=\{(y_v)_v\in \mathbb{A}_F\mid \|y_v\|_v\leq \|z_v\|_v \text{ for } v\nmid \infty \text{ and } \|y_v\|_v\leq \tfrac{1}{4}\|z_v\|_v \text{ for } v\mid \infty\}
$$

Lemma (Blichfeldt–Minkowski)

There exists a positive $C > 0$ such that, for any x in \mathbb{A}_F with $||z|| > C$, there exists b in F^\times such that $\|b\|_{\nu} \le \|z_\nu\|_{\nu}$ for all ν in M_F .

Proof (continued).

We see $Y = zX$, so $m(Y) = ||z||_{C_1} > c_0 = m(D)$. Thus there exist distinct y_1 and y_2 in Y such that $b = y_1 - y_2$ lies in F.

For $v \nmid \infty$, the strong triangle inequality yields $||b||_v \le ||z_v||_v$. For real v, we have $\|b\|_{\mathsf{v}} \le \|y_{1,\mathsf{v}}\|_{\mathsf{v}} + \|y_{2,\mathsf{v}}\|_{\mathsf{v}} \le \frac{1}{2}$ $\frac{1}{2}||z_v||_V$, and for complex v we get

$$
(\|b\|_v^{1/2})^2 \le (\|y_{1,v}\|_v^{1/2} + \|y_{2,v}\|_v^{1/2})^2 \le (\frac{1}{2}\|z_v\|_v^{1/2} + \frac{1}{2}\|z_v\|_v^{1/2})^2 \le \|z_v\|_v.
$$

Note that the above strongly resembles the usual proof of Minkowski's convex body theorem.

Theorem (Strong approximation)

Let w be in M_F , let S be a finite subset of M_F not containing w. For all v in S, let x_v be in K_v , and let $\epsilon > 0$. Then there exists x in F such that $||x - x_v||_v < \epsilon$ for all v in S, and $||x||_v < 1$ for all v not in $S \cup \{w\}.$

Proof.

Write $K = \{(x_v)_v \in A_F \mid ||x_v||_v \leq 1$ for all v $\}$. Evidently K is compact, and it'll be a homework problem to show $K+F=\mathbb{A}_F$. For any b in F^\times , we see that $bK + F = b(K + F) = b\mathbb{A}_F = \mathbb{A}_F$.

Choose z in \mathbb{A}_K such that $0 < ||z_v||_V < \epsilon$ for v in S , $0 < ||z_v||_V \leq 1$ for v not in $S ∪ {w}$, and $||z|| > C$. Blichfeldt–Minkowski yields b in F^{\times} such that $||b||_v \le ||z_v||_v$ for all v in M_F .

Let $a = (a_v)_v$ be given by $a_v = x_v$ for all v in S and $a_v = 0$ otherwise. Then $a = bk + x$ for some k in K and x in F. Thus $x - a = bk$ satisfies $||x - a_v||_v = ||b||_v \le ||z_v||_v$ for all v in M_F , and this concludes the proof by our choice of z.

Upshot: we get great approximations by sacrificing one w.

Corollary

Let w be in M_F . Then the image of F in A_F/F_w is dense.

So even though F is discrete in all of A_F , if you get rid of any one factor in A_F , it becomes dense!

Recall that the continuous surjective group homomorphism $\left\Vert \cdot\right\Vert :\mathbb{A}_{\mathsf{F}}^{\times}$ $\mathbb{F}_F^\times/F^\times \to \mathbb{R}_{>0}$ prevents $\mathbb{A}^\times/F^\times$ from being compact. We'll see that this is the only obstruction to compactness. Write $\mathbb{A}_\mathsf{F}^{\times,1}$ $\sum_{f}^{x,1}$ for the closed subgroup of $\mathbb{A}_{\mathsf{F}}^{\times}$ \sum_{μ}^{\times} given by x with $\|x\|=1$.

Proposition

The quotient $\mathbb{A}_F^{\times,1}$ $\frac{\times}{F}$, $\frac{1}{F}$ is compact.

Proof.

Let K be our compact subset such that $K + F = A_F$. Choose any compact subset Y such that $m(Y) > m(K)$. Then $Y_1 = Y - Y$ and $Y_2 = Y_1Y_1$ are also compact, and $Y_1 \cap F^\times$ and hence $Y_2 \cap F^\times$ is nonempty. $\text{Syl}10$

Proposition

The quotient $\mathbb{A}_\mathsf{F}^{\times,1}$ $\frac{\times}{F}$, $\frac{1}{F}$ is compact.

Proof (continued).

As $Y_2 \cap F^\times$ is discrete and compact, it is finite. Write x_1, \ldots, x_r for its elements. Write $\Delta: \mathbb{A}_\mathsf{F}^\times \to \mathbb{A}_\mathsf{F}^2$ for the map $x \mapsto (x, x^{-1})$, and set

$$
K^* = \bigcup_{i=1}^r \Delta^{-1}(\{(y, x_i^{-1}y') \in \mathbb{A}_F^2 \mid y, y' \in Y_1\}).
$$

Since Δ is a homeomorphism onto its image, which is closed in \mathbb{A}_F^2 , we see K^* is compact. I claim that $\mathbb{A}_{F}^{\times,1} \subseteq K^*F^{\times}.$

To see this, let x be in $\mathbb{A}_F^{\times,1}$ $_{F}^{\times,1}$. Then $m(xY) = m(x^{-1}Y) = m(Y) > m(K)$, so there exist y_1, y_2, y_3, y_4 in Y with $y_1 \neq y_2$ and $y_3 \neq y_4$ such that $\alpha = \mathsf{x}(y_1-y_2)$ and $\beta = \mathsf{x}^{-1}(y_1-y_2)$ lie in $\mathsf{F}.$ Therefore $\alpha\beta=(y_1-y_2)(y_3-y_4)$ lies in $Y_2\cap F^\times$, so $\alpha\beta$ equals some x_i . Thus $\Delta(x\beta) = \Delta(y_1 - y_2) = (y_1 - y_2, x_i^{-1})$ $i_f^{-1}(y_3-y_4)$), making $x\beta$ lie in $K^*.$ $10/10$