More on Adeles and Ideles

Siyan Daniel Li-Huerta

October 27, 2020

Let F be a number field. Here's a generalization of class groups. Definition

A modulus for F is a pair (I, S_0) , where I is a nonzero ideal of \mathcal{O}_F , and S_0 is a subset of the real embeddings $\{\sigma_1, \ldots, \sigma_{r_1}\}$.

For any modulus (I, S_0) , write $J(I, S_0)$ for the subgroup

$$J(I, S_0) = \left\{ \begin{array}{c} x \in F^{\times} \\ \text{for all } v \mid I, \text{ we have } v(x-1) \ge v(I), \\ \text{for all } \sigma \in S_0, \text{ we have } \sigma(x) > 0, \end{array} \right\}.$$

Write $\mathcal{I}_{F,I}$ for the subgroup of \mathcal{I}_F of nonzero fractional ideals that are coprime to *I*. For *x* in $J(I, S_0)$, we see that (*x*) lies in $\mathcal{I}_{F,I}$.

Definition

The ray class group of conductor (I, S_0) , denoted by $\mathcal{C}\ell_{(I,S_0)}(F)$, is the quotient group $\mathcal{I}_{F,I}/\operatorname{im} J(I, S_0)$.

Examples

Let (I, S₀) = (O_F, ∅). We see that J(I, S₀) = F[×] and I_{F,I} = I_F, so here Cℓ_(I,S₀)(F) is the usual class group.

Examples (continued)

- Let F = Q, and let (I, S₀) = (mZ, Ø). Form the homomorphism *I*_{F,I}→(Z/mZ)[×]/{±1} given by ^a/_bZ → ab⁻¹ for integers a and b not divisible by m. This homomorphism is well-defined and evidently surjective. Furthermore, its kernel consists of ^a/_bZ such that a ≡ ±b (mod m), and such ^a/_b are precisely those in *J*(*I*, S₀). So here *Cl*_(*I*,S₀)(*F*) = (Z/mZ)[×]/{±1},
- Let $F = \mathbb{Q}$, and let $(I, S_0) = (m\mathbb{Z}, {\mathbb{Q} \to \mathbb{R}})$. Form the homomorphism $\mathcal{I}_{F,I} \to (\mathbb{Z}/m\mathbb{Z})^{\times}$ given by $\frac{a}{b}\mathbb{Z} \mapsto ab^{-1}$ for integers aand b not divisible by m, where we choose a > 0 and b > 0. This homomorphism is well-defined and evidently surjective, and we see its kernel consists of $\frac{a}{b}\mathbb{Z}$ such that $a \equiv b \pmod{m}$, where $\frac{a}{b}$ must be positive. Such $\frac{a}{b}$ are precisely those in $J(I, S_0)$, so here $\mathcal{C}\ell_{(I,S_0)}(F) = (\mathbb{Z}/m\mathbb{Z})^{\times}$,
- Let *F* be a real quadratic field of discriminant *D*, and let $(I, S_0) = (\mathcal{O}_F, \{\sigma_1, \sigma_2\})$. One can show that $\mathcal{C}\ell_{(I,S_0)}(F)$ naturally bijects with $SL_2(\mathbb{Z})$ -equivalence classes of primitive integral binary quadratic forms of discriminant *D*.

For any modulus (I, S_0) and any v in M_F , write $K_{(I,S_0),v}$ for the subgroup

 $\mathcal{K}_{(I,S_0),v} = \begin{cases} \mathcal{O}_v^{\times} & \text{if } v \text{ is nonarchimedean and } v \nmid I, \\ 1 + \mathfrak{m}_v^{v(I)} & \text{if } v \text{ is nonarchimedean and } v \mid I, \\ \mathbb{R}_{>0} & \text{if } v \text{ is archimedean and } v \in S_0, \\ F_v^{\times} & \text{otherwise,} \end{cases}$

of F_{v}^{\times} . Then $K_{(I,S_0)} = \prod_{v \in M_F} K_{(I,S_0),v}$ is an open subgroup of \mathbb{A}_F^{\times} . Proposition

The double quotient $\mathcal{K}_{(I,S_0)} \setminus \mathbb{A}_F^{\times}/F^{\times}$ is naturally isomorphic to $\mathcal{C}_{(I,S_0)}(F)$.

Proof.

Set $\mathbb{A}_{F}^{\times,(I,S_{0})} = \{(x_{v})_{v} \in \mathbb{A}_{F}^{\times} | \text{ for } v|I \text{ and } v \text{ archimedean, } x_{v} \in K_{(I,S_{0}),v}\}.$ Evidently $\mathbb{A}_{F}^{\times,(I,S_{0})}$ contains $K_{(I,S_{0})}$, and the valuation maps induce an isomorphism $K_{(I,S_{0})} \setminus \mathbb{A}_{F}^{\times,(I,S_{0})} \xrightarrow{\sim} \mathcal{I}_{F,I}.$ Writing $F_{(I,S_{0})}^{\times}$ for $F^{\times} \cap \mathbb{A}_{F}^{\times,(I,S_{0})}$, we see that $F_{(I,S_{0})}^{\times} = J(I,S_{0}).$ Hence $K_{(I,S_{0})} \setminus \mathbb{A}_{F}^{\times,(I,S_{0})} / F_{(I,S_{0})}^{\times} \xrightarrow{\sim} \mathcal{C}_{(I,S_{0})}(F).$

Proposition

The double quotient $K_{(I,S_0)} \setminus \mathbb{A}_F^{\times} / F^{\times}$ is naturally isomorphic to $\mathcal{C}_{(I,S_0)}(F)$.

Proof (continued).

Applying weak approximation to $\{v \in M_F \mid v \mid I \text{ or } v \in S_0\}$ shows that $\mathbb{A}_F^{\times} = F^{\times} \mathbb{A}_F^{\times,(I,S_0)}$. Therefore inclusion yields an isomorphism $\mathbb{A}_F^{\times,(I,S_0)}/F_{(I,S_0)}^{\times} \xrightarrow{\sim} \mathbb{A}_F^{\times}/F^{\times}$. Quotienting by $K_{(I,S_0)}$ and combining this with the above yields the desired result.

Next, let's turn towards *strong approximation*. First, recall that for any Borel subset U_v of F_v and x_v in F_v , we have $m_v(x_v U_v) = ||x_v||_v m_v(U_v)$. As the measure m on \mathbb{A}_F^{\times} is given by the product of every m_v , for any Borel subset U of \mathbb{A}_F and x in \mathbb{A}_F , we similarly have m(xU) = ||x||m(U).

Recall from the proof of the compactness of \mathbb{A}_F/F that we had a compact subset K of \mathbb{A}_F with nonempty interior such that $K + F = \mathbb{A}_F$. Thus m(K) is positive and finite.

Lemma

Let G be an abelian locally compact topological group, let m be a Haar measure on G, let H be a countable subgroup of G, and let K be a Borel subset of G such that K + H = G. If Y is a Borel subset of G such that m(Y) > m(K), then there exist distinct y_1 and y_2 in Y such that $y_1 - y_2$ lies in H.

Lemma (Blichfeldt-Minkowski)

There exists a positive C > 0 such that, for any z in \mathbb{A}_F with ||z|| > C, there exists b in F^{\times} such that $||b||_v \le ||z_v||_v$ for all v in M_F .

Proof.

Write c_0 for m(K), where K is as above. Next, write c_1 for the measure of $X = \{(x_v)_v \in \mathbb{A}_F \mid ||x_v||_v \leq 1 \text{ for } v \nmid \infty \text{ and } ||x_v||_v \leq \frac{1}{4} \text{ for } v \mid \infty\}$, which is positive and finite. Set $C = \frac{c_0}{c_1}$, and suppose z in \mathbb{A}_F has ||z|| > C. Now form the compact subset

$$Y = \{(y_v)_v \in \mathbb{A}_F \mid ||y_v||_v \le ||z_v||_v \text{ for } v \nmid \infty \text{ and } ||y_v||_v \le \frac{1}{4} ||z_v||_v \text{ for } v \mid \infty$$

Lemma (Blichfeldt–Minkowski)

There exists a positive C > 0 such that, for any x in \mathbb{A}_F with ||z|| > C, there exists b in F^{\times} such that $||b||_v \le ||z_v||_v$ for all v in M_F .

Proof (continued).

We see Y = zX, so $m(Y) = ||z||c_1 > c_0 = m(D)$. Thus there exist distinct y_1 and y_2 in Y such that $b = y_1 - y_2$ lies in F.

For $v \nmid \infty$, the strong triangle inequality yields $\|b\|_v \leq \|z_v\|_v$. For real v, we have $\|b\|_v \leq \|y_{1,v}\|_v + \|y_{2,v}\|_v \leq \frac{1}{2}\|z_v\|_v$, and for complex v we get

$$(\|b\|_{v}^{1/2})^{2} \leq (\|y_{1,v}\|_{v}^{1/2} + \|y_{2,v}\|_{v}^{1/2})^{2} \leq (\frac{1}{2}\|z_{v}\|_{v}^{1/2} + \frac{1}{2}\|z_{v}\|_{v}^{1/2})^{2} \leq \|z_{v}\|_{v}.$$

Note that the above strongly resembles the usual proof of Minkowski's convex body theorem.

Theorem (Strong approximation)

Let w be in M_F , let S be a finite subset of M_F not containing w. For all v in S, let x_v be in K_v , and let $\epsilon > 0$. Then there exists x in F such that $||x - x_v||_v < \epsilon$ for all v in S, and $||x||_v \le 1$ for all v not in $S \cup \{w\}$.

Proof.

Write $K = \{(x_v)_v \in \mathbb{A}_F \mid ||x_v||_v \leq 1 \text{ for all } v\}$. Evidently K is compact, and it'll be a homework problem to show $K + F = \mathbb{A}_F$. For any b in F^{\times} , we see that $bK + F = b(K + F) = b\mathbb{A}_F = \mathbb{A}_F$.

Choose z in \mathbb{A}_K such that $0 < ||z_v||_v < \epsilon$ for v in S, $0 < ||z_v||_v \le 1$ for v not in $S \cup \{w\}$, and ||z|| > C. Blichfeldt–Minkowski yields b in F^{\times} such that $||b||_v \le ||z_v||_v$ for all v in M_F .

Let $a = (a_v)_v$ be given by $a_v = x_v$ for all v in S and $a_v = 0$ otherwise. Then a = bk + x for some k in K and x in F. Thus x - a = bk satisfies $||x - a_v||_v = ||b||_v \le ||z_v||_v$ for all v in M_F , and this concludes the proof by our choice of z. Upshot: we get great approximations by sacrificing one w.

Corollary

Let w be in M_F . Then the image of F in \mathbb{A}_F/F_w is dense.

So even though F is discrete in all of \mathbb{A}_F , if you get rid of any one factor in \mathbb{A}_F , it becomes dense!

Recall that the continuous surjective group homomorphism $\|\cdot\| : \mathbb{A}_F^{\times}/F^{\times} \to \mathbb{R}_{>0}$ prevents $\mathbb{A}^{\times}/F^{\times}$ from being compact. We'll see that this is the only obstruction to compactness. Write $\mathbb{A}_F^{\times,1}$ for the closed subgroup of \mathbb{A}_F^{\times} given by x with $\|x\| = 1$.

Proposition

The quotient $\mathbb{A}_{F}^{\times,1}/F^{\times}$ is compact.

Proof.

Let *K* be our compact subset such that $K + F = \mathbb{A}_F$. Choose any compact subset *Y* such that m(Y) > m(K). Then $Y_1 = Y - Y$ and $Y_2 = Y_1Y_1$ are also compact, and $Y_1 \cap F^{\times}$ and hence $Y_2 \cap F^{\times}$ is nonempty.

Proposition

The quotient $\mathbb{A}_{F}^{\times,1}/F^{\times}$ is compact.

Proof (continued).

As $Y_2 \cap F^{\times}$ is discrete and compact, it is finite. Write x_1, \ldots, x_r for its elements. Write $\Delta : \mathbb{A}_F^{\times} \to \mathbb{A}_F^2$ for the map $x \mapsto (x, x^{-1})$, and set

$$\mathcal{K}^* = \bigcup_{i=1}^r \Delta^{-1}(\{(y, x_i^{-1}y') \in \mathbb{A}_F^2 \mid y, y' \in Y_1\}).$$

Since Δ is a homeomorphism onto its image, which is closed in \mathbb{A}^2_F , we see K^* is compact. I claim that $\mathbb{A}^{\times,1}_F \subseteq K^*F^{\times}$.

To see this, let x be in $\mathbb{A}_{F}^{\times,1}$. Then $m(xY) = m(x^{-1}Y) = m(Y) > m(K)$, so there exist y_1, y_2, y_3, y_4 in Y with $y_1 \neq y_2$ and $y_3 \neq y_4$ such that $\alpha = x(y_1 - y_2)$ and $\beta = x^{-1}(y_1 - y_2)$ lie in F. Therefore $\alpha\beta = (y_1 - y_2)(y_3 - y_4)$ lies in $Y_2 \cap F^{\times}$, so $\alpha\beta$ equals some x_i . Thus $\Delta(x\beta) = \Delta(y_1 - y_2) = (y_1 - y_2, x_i^{-1}(y_3 - y_4))$, making $x\beta$ lie in K^* .