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Mentally recall our restricted product setup from last time.

Corollary

For all v in M, let f, : G, — C be a continuous function in L*(G,). If

f, = 1k, for cofinitely many v, then the continuous map f = [[,cp, f, lies
in LX(G). Furthermore, if each of the G, is abelian, then f = [Lvenm .

Proof.
Let S O My, be a finite subset of M such that f, = 1, for v not in S.
Then [ dx f(x) = [I,es [g, dx fi(x,) converges, so f lies in L'(G). If

each of the G, is abelian, for all x =], cp Xy in G we can thus form

H/dXVVXvaXv HfXV

veM veM

flx) = / dx F(x)x(x)~

Assume now that each of the G, is abelian, and write m, for the dual
measure on G,. How are the m, related to the dual measure on G?



Lemma

Let v not be in My, If f, = 1k, then fv =m,(K,)1w,.

Proof.

If Xy lies in W, then x|k, = 1. Thus £, (x,) = [, dx, = my(K,).

OtherW|se there exists g in K, such that x,(g) ;é L. Left invariance gives
Xv) fK dxy Xv(Xv fK dxy Xv(g 1Xv) = Xv(g) (Xv) SO we

have fv( v)=0. O

v

Applying Fourier inversion to f,, shows that m,(K,)m,(W,) = 1. Thus
r/n\\,(Wv) = 1 for cofinitely many v, so we can form the Haar measure

=TI, M m, on G = HVeM

For all v in M, let f, : G, — C be a compactly supported continuous
function with £,(1) # 0 that f, = 1k, for cofinitely many v. Applying
Fourier inversion to f =[], fv shows that m is the dual measure on G.
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Now let’s focus on our cases of interest. Recall that F is a number field.
Definition

We write A = H:/EMF F, for the adeles of F, and we write

Af = HlveMF F . for the ideles of F.

Remark

The adeles Ar naturally form a topological ring, and we can identify its
invertible elements with Af as a group. However, they do not have the
same topology!

For any nonzero x in F, we have v;(x) = 0 for cofinitely many nonzero
prime ideals p of Of. Hence we get an injective ring homomorphism

F — Af given by x — (x),, and it induces a group homomorphism
F*—Af.

Let E/F be a finite extension, and let v be a nonarchimedean
nonarchimedean norm on F. We write v for the nonzero prime ideal
corresponding to v. Recall that the natural map E ®f F, — HW|V E, is an
isomorphism. 4/9



Proposition

The natural map O ®p, O, — lev Oy, is an isomorphism of
O, -algebras.

Proof (sketch).

Both sides are free O,-modules of the same rank, so it suffices to show
the map is surjective. By Nakayama's lemma, it suffices to check this
modulo m,. The nonzero ideal vOFg factorizes as lev w® in Og, and we
see that m,O,, = m{». The left-hand side modulo m, is

(OE ®OF (’)V)/mv = OE/VOE = OE/ Hw\v wew
= Hw|v OE/WeW = Hw|v OW/mVoW = (Hw|v OW)/mV

by the Chinese remainder theorem. This identification is our map modulo
m,, so we get an isomorphism as desired. O

v

Write n for the degree of E/F.



By choosing an F-basis of E, we can identify E = F" as F-vector spaces.
This identifies Ar ®f E = AL, which we give the product topology.
Because Af is a topological ring, this topology on Ar ®f E is independent
of our F-basis of E.

Proposition
The natural map Ar ®F E — Ag is an isomorphism of topological rings.

Proof.

By looking at (Af)s ®F E for finite subsets S O Mr o, of Mg, we can
identify Ar ® ¢ E with the restricted product of the F, ® ¢ E with respect
to the O, ®o, Of. By the Proposition, this equals the restricted product
of the [, Ew with respect to the [, , Ow. As the

{w € Mg | w divides v} are finite and their union is Mg, this restricted
product is precisely Ag. []

v

This lets us reduce statements to the case of F = Q, as we did with
Ostrowski's theorem.
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| probably should've proved this earlier:

Proposition

Let A be a Dedekind domain. Let py,...,pg be distinct nonzero prime
ideals of A, let x1,...,xy be in FracA, and let n > 0 be an integer. Then
there exists x in Frac A such that v,,(x — x;) > nforall 1 </ < d and
vp(x) > 0 for nonzero prime ideals p not in {p1,...,pq}. )
Proof.

First, suppose xp = --- = xg = 0. Now p{ +pg---p = A, s0ox3 =y + x

for y in p7 and x in p3---p7. This x works.

Secondly, suppose the xi,...,xy lie in A. Apply the above to each of the
X; in turn to obtain a; in A, and take x = a1 + - - - + aq4.

Finally, suppose the xi,...,xq lie in Frac A. Write x; = a;/b for a; and b
in A. Apply the above to obtain a in A satisfying, for 1 </ < d,

vp,(@ = aj) > n4+ max{vy,(b),..., v, (b)}, and v4(a) > v4(b) for nonzero
prime ideals g with v(b) > 1. Then x = a/b works. O

v
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Proposition

The field F is discrete in Af, and the quotient Ag/F is compact.

Proof.

Write n = [F : Q]. By choosing a Q-basis of F, we can identify F = Q" as
Q-vector spaces. This identifies Ar = A{é by the Proposition, so we get
Ar/F = (Ag/Q)" as topological groups. This it suffices to prove this for

F=Q.
Consider U = {(xv)y € Ag | [Ixv|lv <1 for v # oo and |[x,[|cc < 1} in

Ag. It's evidently open, and any x in Q that lies in U must be an integer
with |x|sc < 1. Thus x =0, so Q is discrete in Ag.

Next, form K = {(x,)v € Ag | ||xv||v < 1 for all v}. It's evidently
compact, and it suffices to show that K + Q = Ag. Let (a,), be in Ag.
For v # oo, if ||ay||y < 1, set b, = 0. If ||a,||v > 1, choose a;, in Q with
llav — a,||v <1, and use the Proposition to choose b, in @ such that

by — &,||, <1 and and ||b,||, <1 for nontrivial nonarchimedean v/ # v.

Finally, set b’ = Zv;éoo by, and let b, be the integer closest to as, — b’.8




Proposition
The field F is discrete in Af, and the quotient Ag/F is compact.

Proof (continued).

Set b = b’ 4 bs,. Then b lies in Q, and we see that a, — b lies in K for all
v in Mg. O

v

For any x = (x,)v in Af, write |Ix[| = [[,cp, [Ixv|lv. This converges since
Ixv]|v < 1 for cofinitely many v. We see ||| yields a continuous group
homomorphism Af — R+, and evaluating ||-|| on F* for v | co shows it is
surjective.

The product formula implies ||x|| =1 for x in F*, so we see this induces a
continuous surjective group homomorphism Af/F* —Rxo. In particular,
A /F* is not compact.



