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Mentally recall our restricted product setup from last time.

Corollary

For all v in M, let fv : Gv→C be a continuous function in L1(Gv ). If
fv = 1Kv for cofinitely many v , then the continuous map f =

∏
v∈M fv lies

in L1(G ). Furthermore, if each of the Gv is abelian, then f̂ =
∏

v∈M f̂v .

Proof.

Let S ⊇ M∞ be a finite subset of M such that fv = 1Kv for v not in S .
Then

∫
G dx f (x) =

∏
v∈S

∫
Gv

dxv fv (xv ) converges, so f lies in L1(G ). If

each of the Gv is abelian, for all χ =
∏

v∈M χv in Ĝ we can thus form

f̂ (χ) =

∫
G
dx f (x)χ(x)−1 =

∏
v∈M

∫
Gv

dxv fv (xv )χv (xv )−1 =
∏
v∈M

f̂v (χv ).

Assume now that each of the Gv is abelian, and write m̂v for the dual
measure on Ĝv . How are the m̂v related to the dual measure on Ĝ?
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Lemma

Let v not be in M∞. If fv = 1Kv , then f̂v = mv (Kv )1Wv .

Proof.

If χv lies in Wv , then χv |Kv = 1. Thus f̂v (χv ) =
∫
Kv

dxv = mv (Kv ).
Otherwise, there exists g in Kv such that χv (g) 6= 1. Left invariance gives
f̂v (χv ) =

∫
Kv

dxv χv (xv )−1 =
∫
Kv

dxv χv (g−1xv )−1 = χv (g)f̂v (χv ), so we

have f̂v (χv ) = 0.

Applying Fourier inversion to fv shows that mv (Kv )m̂v (Wv ) = 1. Thus
m̂v (Wv ) = 1 for cofinitely many v , so we can form the Haar measure

m̂ =
∏

v∈M m̂v on Ĝ =
∏′

v∈M Ĝv .

For all v in M, let fv : Gv→C be a compactly supported continuous
function with fv (1) 6= 0 that fv = 1Kv for cofinitely many v . Applying
Fourier inversion to f =

∏
v∈M fv shows that m̂ is the dual measure on Ĝ .
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Now let’s focus on our cases of interest. Recall that F is a number field.

Definition

We write AF =
∏′

v∈MF
Fv for the adeles of F , and we write

A×F =
∏′

v∈MF
F×v for the ideles of F .

Remark

The adeles AF naturally form a topological ring, and we can identify its
invertible elements with A×F as a group. However, they do not have the
same topology!

For any nonzero x in F , we have vp(x) = 0 for cofinitely many nonzero
prime ideals p of OF . Hence we get an injective ring homomorphism
F →AF given by x 7→ (x)v , and it induces a group homomorphism
F×→A×F .

Let E/F be a finite extension, and let v be a nonarchimedean
nonarchimedean norm on F . We write v for the nonzero prime ideal
corresponding to v . Recall that the natural map E ⊗F Fv→

∏
w |v Ew is an

isomorphism. 4 / 9



Proposition

The natural map OE ⊗OF
Ov→

∏
w |v Ow is an isomorphism of

Ov -algebras.

Proof (sketch).

Both sides are free Ov -modules of the same rank, so it suffices to show
the map is surjective. By Nakayama’s lemma, it suffices to check this
modulo mv . The nonzero ideal vOE factorizes as

∏
w |v w

ew in OE , and we
see that mvOw = mew

w . The left-hand side modulo mv is

(OE ⊗OF
Ov )/mv = OE/vOE = OE/

∏
w |v w

ew

=
∏

w |v OE/w
ew =

∏
w |v Ow/mvOw = (

∏
w |v Ow )/mv

by the Chinese remainder theorem. This identification is our map modulo
mv , so we get an isomorphism as desired.

Write n for the degree of E/F .
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By choosing an F -basis of E , we can identify E = F n as F -vector spaces.
This identifies AF ⊗F E = An

F , which we give the product topology.
Because AF is a topological ring, this topology on AF ⊗F E is independent
of our F -basis of E .

Proposition

The natural map AF ⊗F E→AE is an isomorphism of topological rings.

Proof.

By looking at (AF )S ⊗F E for finite subsets S ⊇ MF ,∞ of MF , we can
identify AF ⊗F E with the restricted product of the Fv ⊗F E with respect
to the Ov ⊗OF

OE . By the Proposition, this equals the restricted product
of the

∏
w |v Ew with respect to the

∏
w |v Ow . As the

{w ∈ ME | w divides v} are finite and their union is ME , this restricted
product is precisely AE .

This lets us reduce statements to the case of F = Q, as we did with
Ostrowski’s theorem.
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I probably should’ve proved this earlier:

Proposition

Let A be a Dedekind domain. Let p1, . . . , pd be distinct nonzero prime
ideals of A, let x1, . . . , xd be in FracA, and let n ≥ 0 be an integer. Then
there exists x in FracA such that vpi (x − xi ) ≥ n for all 1 ≤ i ≤ d and
vp(x) ≥ 0 for nonzero prime ideals p not in {p1, . . . , pd}.

Proof.

First, suppose x2 = · · · = xd = 0. Now pn1 + pn2 · · · pnd = A, so x1 = y + x
for y in pn1 and x in pn2 · · · pnd . This x works.

Secondly, suppose the x1, . . . , xd lie in A. Apply the above to each of the
xi in turn to obtain ai in A, and take x = a1 + · · ·+ ad .

Finally, suppose the x1, . . . , xd lie in FracA. Write xi = ai/b for ai and b
in A. Apply the above to obtain a in A satisfying, for 1 ≤ i ≤ d ,
vpi (a− ai ) ≥ n + max{vp1(b), . . . , vpd (b)}, and vq(a) ≥ vq(b) for nonzero
prime ideals q with vq(b) ≥ 1. Then x = a/b works.
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Proposition

The field F is discrete in AF , and the quotient AF/F is compact.

Proof.

Write n = [F : Q]. By choosing a Q-basis of F , we can identify F = Qn as
Q-vector spaces. This identifies AF = An

Q by the Proposition, so we get
AF/F = (AQ/Q)n as topological groups. This it suffices to prove this for
F = Q.

Consider U = {(xv )v ∈ AQ | ‖xv‖v ≤ 1 for v 6=∞ and ‖xv‖∞ < 1} in
AQ. It’s evidently open, and any x in Q that lies in U must be an integer
with |x |∞ < 1. Thus x = 0, so Q is discrete in AQ.

Next, form K = {(xv )v ∈ AQ | ‖xv‖v ≤ 1 for all v}. It’s evidently
compact, and it suffices to show that K + Q = AQ. Let (av )v be in AQ.
For v 6=∞, if ‖av‖v ≤ 1, set bv = 0. If ‖av‖v > 1, choose a′v in Q with
‖av − a′v‖v ≤ 1, and use the Proposition to choose bv in Q such that
‖bv − a′v‖v ≤ 1 and and ‖bv‖v ′ ≤ 1 for nontrivial nonarchimedean v ′ 6= v .
Finally, set b′ =

∑
v 6=∞ bv , and let b∞ be the integer closest to a∞ − b′.
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Proposition

The field F is discrete in AF , and the quotient AF/F is compact.

Proof (continued).

Set b = b′ + b∞. Then b lies in Q, and we see that av − b lies in K for all
v in MQ.

For any x = (xv )v in AF , write ‖x‖ =
∏

v∈MF
‖xv‖v . This converges since

‖xv‖v ≤ 1 for cofinitely many v . We see ‖·‖ yields a continuous group
homomorphism A×F →R>0, and evaluating ‖·‖ on F×v for v | ∞ shows it is
surjective.

The product formula implies ‖x‖ = 1 for x in F×, so we see this induces a
continuous surjective group homomorphism A×F /F

×→R>0. In particular,
A×F /F

× is not compact.
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