Adeles and Ideles

Siyan Daniel Li-Huerta

October 22, 2020

Mentally recall our restricted product setup from last time.

Corollary

For all v in M, let $f_{v}: G_{v} \rightarrow \mathbb{C}$ be a continuous function in $L^{1}\left(G_{v}\right)$. If $f_{v}=\mathbf{1}_{K_{v}}$ for cofinitely many v, then the continuous map $f=\prod_{v \in M} f_{v}$ lies in $L^{1}(G)$. Furthermore, if each of the G_{v} is abelian, then $\widehat{f}=\prod_{v \in M} \widehat{f}_{v}$.

Proof.

Let $S \supseteq M_{\infty}$ be a finite subset of M such that $f_{v}=\mathbf{1}_{K_{v}}$ for v not in S. Then $\int_{G} \mathrm{~d} x f(x)=\prod_{v \in S} \int_{G_{v}} \mathrm{~d} x_{v} f_{v}\left(x_{v}\right)$ converges, so f lies in $L^{1}(G)$. If each of the G_{v} is abelian, for all $\chi=\prod_{v \in M} \chi_{v}$ in \widehat{G} we can thus form

$$
\widehat{f}(\chi)=\int_{G} \mathrm{~d} x f(x) \chi(x)^{-1}=\prod_{v \in M} \int_{G_{v}} \mathrm{~d} x_{v} f_{v}\left(x_{v}\right) \chi_{v}\left(x_{v}\right)^{-1}=\prod_{v \in M} \widehat{f}_{v}\left(\chi_{v}\right) .
$$

Assume now that each of the G_{v} is abelian, and write $\widehat{m_{v}}$ for the dual measure on $\widehat{G_{v}}$. How are the $\widehat{m_{v}}$ related to the dual measure on \widehat{G} ?

Lemma

Let v not be in M_{∞}. If $f_{v}=\mathbf{1}_{K_{v}}$, then $\widehat{f}_{v}=m_{v}\left(K_{v}\right) \mathbf{1}_{W_{v}}$.

Proof.

If χ_{v} lies in W_{v}, then $\chi_{v} \mid K_{v}=1$. Thus $\widehat{f}_{v}\left(\chi_{v}\right)=\int_{K_{v}} \mathrm{~d} x_{v}=m_{v}\left(K_{v}\right)$. Otherwise, there exists g in K_{v} such that $\chi_{v}(g) \neq 1$. Left invariance gives $\widehat{f}_{v}\left(\chi_{v}\right)=\int_{K_{v}} \mathrm{~d} x_{v} \chi_{v}\left(x_{v}\right)^{-1}=\int_{K_{v}} \mathrm{~d} x_{v} \chi_{v}\left(g^{-1} x_{v}\right)^{-1}=\chi_{v}(g) \widehat{f}_{v}\left(\chi_{v}\right)$, so we have $\widehat{f}_{v}\left(\chi_{v}\right)=0$.

Applying Fourier inversion to f_{v} shows that $m_{v}\left(K_{v}\right) \widehat{m_{v}}\left(W_{v}\right)=1$. Thus $\widehat{m_{v}}\left(W_{v}\right)=1$ for cofinitely many v, so we can form the Haar measure $\widehat{m}=\prod_{v \in M} \widehat{m_{v}}$ on $\widehat{G}=\prod_{v \in M}^{\prime} \widehat{G_{v}}$.

For all v in M, let $f_{v}: G_{v} \rightarrow \mathbb{C}$ be a compactly supported continuous function with $f_{v}(1) \neq 0$ that $f_{v}=\mathbf{1}_{K_{v}}$ for cofinitely many v. Applying Fourier inversion to $f=\prod_{v \in M} f_{v}$ shows that \widehat{m} is the dual measure on \widehat{G}.

Now let's focus on our cases of interest. Recall that F is a number field. Definition
We write $\mathbb{A}_{F}=\prod_{v \in M_{F}}^{\prime} F_{V}$ for the adeles of F, and we write $\mathbb{A}_{F}^{\times}=\prod_{v \in M_{F}}^{\prime} F_{v}^{\times}$for the ideles of F.

Remark

The adeles \mathbb{A}_{F} naturally form a topological ring, and we can identify its invertible elements with \mathbb{A}_{F}^{\times}as a group. However, they do not have the same topology!

For any nonzero x in F, we have $v_{\mathfrak{p}}(x)=0$ for cofinitely many nonzero prime ideals \mathfrak{p} of \mathcal{O}_{F}. Hence we get an injective ring homomorphism $F \rightarrow \mathbb{A}_{F}$ given by $x \mapsto(x)_{v}$, and it induces a group homomorphism $F^{\times} \rightarrow \mathbb{A}_{F}^{\times}$.

Let E / F be a finite extension, and let v be a nonarchimedean nonarchimedean norm on F. We write v for the nonzero prime ideal corresponding to v. Recall that the natural map $E \otimes_{F} F_{v} \rightarrow \prod_{w \mid v} E_{w}$ is an isomorphism.

Proposition

The natural map $\mathcal{O}_{E} \otimes_{\mathcal{O}_{F}} \mathcal{O}_{v} \rightarrow \prod_{w \mid V} \mathcal{O}_{w}$ is an isomorphism of \mathcal{O}_{v}-algebras.

Proof (sketch).

Both sides are free \mathcal{O}_{v}-modules of the same rank, so it suffices to show the map is surjective. By Nakayama's lemma, it suffices to check this modulo \mathfrak{m}_{v}. The nonzero ideal $v \mathcal{O}_{E}$ factorizes as $\prod_{w \mid V} w^{e_{w}}$ in \mathcal{O}_{E}, and we see that $\mathfrak{m}_{v} \mathcal{O}_{w}=\mathfrak{m}_{w}^{e_{w}}$. The left-hand side modulo \mathfrak{m}_{v} is

$$
\begin{aligned}
\left(\mathcal{O}_{E} \otimes \mathcal{O}_{F} \mathcal{O}_{v}\right) / \mathfrak{m}_{v} & =\mathcal{O}_{E} / v \mathcal{O}_{E}=\mathcal{O}_{E} / \prod_{w \mid v} w^{e_{w}} \\
& =\prod_{w \mid v} \mathcal{O}_{E} / w^{e_{w}}=\prod_{w \mid v} \mathcal{O}_{w} / \mathfrak{m}_{v} \mathcal{O}_{w}=\left(\prod_{w \mid v} \mathcal{O}_{w}\right) / \mathfrak{m}_{v}
\end{aligned}
$$

by the Chinese remainder theorem. This identification is our map modulo \mathfrak{m}_{v}, so we get an isomorphism as desired.

Write n for the degree of E / F.

By choosing an F-basis of E, we can identify $E=F^{n}$ as F-vector spaces. This identifies $\mathbb{A}_{F} \otimes_{F} E=\mathbb{A}_{F}^{n}$, which we give the product topology. Because \mathbb{A}_{F} is a topological ring, this topology on $\mathbb{A}_{F} \otimes_{F} E$ is independent of our F-basis of E.

Proposition

The natural map $\mathbb{A}_{F} \otimes_{F} E \rightarrow \mathbb{A}_{E}$ is an isomorphism of topological rings.

Proof.

By looking at $\left(\mathbb{A}_{F}\right)_{S} \otimes_{F} E$ for finite subsets $S \supseteq M_{F, \infty}$ of M_{F}, we can identify $\mathbb{A}_{F} \otimes_{F} E$ with the restricted product of the $F_{V} \otimes_{F} E$ with respect to the $\mathcal{O}_{V} \otimes_{\mathcal{O}_{F}} \mathcal{O}_{E}$. By the Proposition, this equals the restricted product of the $\prod_{w \mid v} E_{w}$ with respect to the $\prod_{w \mid v} \mathcal{O}_{w}$. As the $\left\{w \in M_{E} \mid w\right.$ divides $\left.v\right\}$ are finite and their union is M_{E}, this restricted product is precisely \mathbb{A}_{E}.

This lets us reduce statements to the case of $F=\mathbb{Q}$, as we did with Ostrowski's theorem.

I probably should've proved this earlier:

Proposition

Let A be a Dedekind domain. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{d}$ be distinct nonzero prime ideals of A, let x_{1}, \ldots, x_{d} be in $\operatorname{Frac} A$, and let $n \geq 0$ be an integer. Then there exists x in Frac A such that $v_{\mathfrak{p}_{i}}\left(x-x_{i}\right) \geq n$ for all $1 \leq i \leq d$ and $v_{\mathfrak{p}}(x) \geq 0$ for nonzero prime ideals \mathfrak{p} not in $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{d}\right\}$.

Proof.

First, suppose $x_{2}=\cdots=x_{d}=0$. Now $\mathfrak{p}_{1}^{n}+\mathfrak{p}_{2}^{n} \cdots \mathfrak{p}_{d}^{n}=A$, so $x_{1}=y+x$ for y in \mathfrak{p}_{1}^{n} and x in $\mathfrak{p}_{2}^{n} \cdots \mathfrak{p}_{d}^{n}$. This x works.

Secondly, suppose the x_{1}, \ldots, x_{d} lie in A. Apply the above to each of the x_{i} in turn to obtain a_{i} in A, and take $x=a_{1}+\cdots+a_{d}$.

Finally, suppose the x_{1}, \ldots, x_{d} lie in Frac A. Write $x_{i}=a_{i} / b$ for a_{i} and b in A. Apply the above to obtain a in A satisfying, for $1 \leq i \leq d$, $v_{\mathfrak{p}_{i}}\left(a-a_{i}\right) \geq n+\max \left\{v_{\mathfrak{p}_{1}}(b), \ldots, v_{\mathfrak{p}_{d}}(b)\right\}$, and $v_{\mathfrak{q}}(a) \geq v_{\mathfrak{q}}(b)$ for nonzero prime ideals \mathfrak{q} with $v_{\mathfrak{q}}(b) \geq 1$. Then $x=a / b$ works.

Proposition

The field F is discrete in \mathbb{A}_{F}, and the quotient \mathbb{A}_{F} / F is compact.

Proof.

Write $n=[F: \mathbb{Q}]$. By choosing a \mathbb{Q}-basis of F, we can identify $F=\mathbb{Q}^{n}$ as \mathbb{Q}-vector spaces. This identifies $\mathbb{A}_{F}=\mathbb{A}_{\mathbb{Q}}^{n}$ by the Proposition, so we get $\mathbb{A}_{F} / F=\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)^{n}$ as topological groups. This it suffices to prove this for $F=\mathbb{Q}$.

Consider $U=\left\{\left(x_{v}\right)_{v} \in \mathbb{A}_{\mathbb{Q}} \mid\left\|x_{v}\right\|_{v} \leq 1\right.$ for $v \neq \infty$ and $\left.\left\|x_{v}\right\|_{\infty}<1\right\}$ in $\mathbb{A}_{\mathbb{Q}}$. It's evidently open, and any x in \mathbb{Q} that lies in U must be an integer with $|x|_{\infty}<1$. Thus $x=0$, so \mathbb{Q} is discrete in $\mathbb{A}_{\mathbb{Q}}$.

Next, form $K=\left\{\left(x_{v}\right)_{v} \in \mathbb{A}_{\mathbb{Q}} \mid\left\|x_{v}\right\|_{v} \leq 1\right.$ for all $\left.v\right\}$. It's evidently compact, and it suffices to show that $K+\mathbb{Q}=\mathbb{A}_{\mathbb{Q}}$. Let $\left(a_{v}\right)_{v}$ be in $\mathbb{A}_{\mathbb{Q}}$. For $v \neq \infty$, if $\left\|a_{v}\right\|_{v} \leq 1$, set $b_{v}=0$. If $\left\|a_{v}\right\|_{v}>1$, choose a_{v}^{\prime} in \mathbb{Q} with $\left\|a_{v}-a_{v}^{\prime}\right\|_{v} \leq 1$, and use the Proposition to choose b_{v} in \mathbb{Q} such that $\left\|b_{v}-a_{v}^{\prime}\right\|_{v} \leq 1$ and and $\left\|b_{v}\right\|_{v^{\prime}} \leq 1$ for nontrivial nonarchimedean $v^{\prime} \neq v$. Finally, set $b^{\prime}=\sum_{v \neq \infty} b_{v}$, and let b_{∞} be the integer closest to $a_{\infty}-b^{\prime}$.

Proposition

The field F is discrete in \mathbb{A}_{F}, and the quotient \mathbb{A}_{F} / F is compact.

Proof (continued).

Set $b=b^{\prime}+b_{\infty}$. Then b lies in \mathbb{Q}, and we see that $a_{v}-b$ lies in K for all v in $M_{\mathbb{Q}}$.

For any $x=\left(x_{v}\right)_{v}$ in \mathbb{A}_{F}, write $\|x\|=\prod_{v \in M_{F}}\left\|x_{v}\right\|_{v}$. This converges since $\left\|x_{v}\right\|_{v} \leq 1$ for cofinitely many v. We see $\|\cdot\|$ yields a continuous group homomorphism $\mathbb{A}_{F}^{\times} \rightarrow \mathbb{R}_{>0}$, and evaluating $\|\cdot\|$ on F_{v}^{\times}for $v \mid \infty$ shows it is surjective.

The product formula implies $\|x\|=1$ for x in F^{\times}, so we see this induces a continuous surjective group homomorphism $\mathbb{A}_{F}^{\times} / F^{\times} \rightarrow \mathbb{R}_{>0}$. In particular, $\mathbb{A}_{F}^{\times} / F^{\times}$is not compact.

