Adeles and Ideles

Siyan Daniel Li-Huerta

October 22, 2020

Mentally recall our restricted product setup from last time.

Corollary

For all v in M, let $f_v : G_v \to \mathbb{C}$ be a continuous function in $L^1(G_v)$. If $f_v = \mathbf{1}_{K_v}$ for cofinitely many v, then the continuous map $f = \prod_{v \in M} f_v$ lies in $L^1(G)$. Furthermore, if each of the G_v is abelian, then $\widehat{f} = \prod_{v \in M} \widehat{f_v}$.

Proof.

Let $S \supseteq M_{\infty}$ be a finite subset of M such that $f_v = \mathbf{1}_{K_v}$ for v not in S. Then $\int_G \mathrm{d}x f(x) = \prod_{v \in S} \int_{G_v} \mathrm{d}x_v f_v(x_v)$ converges, so f lies in $L^1(G)$. If each of the G_v is abelian, for all $\chi = \prod_{v \in M} \chi_v$ in \widehat{G} we can thus form

$$\widehat{f}(\chi) = \int_{G} \mathrm{d}x \, f(x) \chi(x)^{-1} = \prod_{\nu \in M} \int_{G_{\nu}} \mathrm{d}x_{\nu} \, f_{\nu}(x_{\nu}) \chi_{\nu}(x_{\nu})^{-1} = \prod_{\nu \in M} \widehat{f_{\nu}}(\chi_{\nu}).$$

Assume now that each of the G_v is abelian, and write $\widehat{m_v}$ for the dual measure on $\widehat{G_v}$. How are the $\widehat{m_v}$ related to the dual measure on \widehat{G} ?

Lemma

Let v not be in
$$M_{\infty}$$
. If $f_v = \mathbf{1}_{K_v}$, then $\widehat{f_v} = m_v(K_v)\mathbf{1}_{W_v}$.

Proof.

If χ_{ν} lies in W_{ν} , then $\chi_{\nu}|_{K_{\nu}} = 1$. Thus $\widehat{f}_{\nu}(\chi_{\nu}) = \int_{K_{\nu}} dx_{\nu} = m_{\nu}(K_{\nu})$. Otherwise, there exists g in K_{ν} such that $\chi_{\nu}(g) \neq 1$. Left invariance gives $\widehat{f}_{\nu}(\chi_{\nu}) = \int_{K_{\nu}} dx_{\nu} \chi_{\nu}(x_{\nu})^{-1} = \int_{K_{\nu}} dx_{\nu} \chi_{\nu}(g^{-1}x_{\nu})^{-1} = \chi_{\nu}(g)\widehat{f}_{\nu}(\chi_{\nu})$, so we have $\widehat{f}_{\nu}(\chi_{\nu}) = 0$.

Applying Fourier inversion to f_v shows that $m_v(K_v)\widehat{m_v}(W_v) = 1$. Thus $\widehat{m_v}(W_v) = 1$ for cofinitely many v, so we can form the Haar measure $\widehat{m} = \prod_{v \in M} \widehat{m_v}$ on $\widehat{G} = \prod'_{v \in M} \widehat{G_v}$.

For all v in M, let $f_v : G_v \to \mathbb{C}$ be a compactly supported continuous function with $f_v(1) \neq 0$ that $f_v = \mathbf{1}_{K_v}$ for cofinitely many v. Applying Fourier inversion to $f = \prod_{v \in M} f_v$ shows that \widehat{m} is the dual measure on \widehat{G} .

Now let's focus on our cases of interest. Recall that F is a number field. Definition

We write $\mathbb{A}_F = \prod_{\nu \in M_F}' F_{\nu}$ for the *adeles* of *F*, and we write $\mathbb{A}_F^{\times} = \prod_{\nu \in M_F}' F_{\nu}^{\times}$ for the *ideles* of *F*.

Remark

The adeles \mathbb{A}_F naturally form a topological ring, and we can identify its invertible elements with \mathbb{A}_F^{\times} as a group. However, they do not have the same topology!

For any nonzero x in F, we have $v_{\mathfrak{p}}(x) = 0$ for cofinitely many nonzero prime ideals \mathfrak{p} of \mathcal{O}_F . Hence we get an injective ring homomorphism $F \to \mathbb{A}_F$ given by $x \mapsto (x)_v$, and it induces a group homomorphism $F^{\times} \to \mathbb{A}_F^{\times}$.

Let E/F be a finite extension, and let v be a nonarchimedean nonarchimedean norm on F. We write v for the nonzero prime ideal corresponding to v. Recall that the natural map $E \otimes_F F_v \to \prod_{w|v} E_w$ is an isomorphism.

Proposition

The natural map $\mathcal{O}_E \otimes_{\mathcal{O}_F} \mathcal{O}_v \to \prod_{w|v} \mathcal{O}_w$ is an isomorphism of \mathcal{O}_v -algebras.

Proof (sketch).

Both sides are free \mathcal{O}_v -modules of the same rank, so it suffices to show the map is surjective. By Nakayama's lemma, it suffices to check this modulo \mathfrak{m}_v . The nonzero ideal $v\mathcal{O}_E$ factorizes as $\prod_{w|v} w^{e_w}$ in \mathcal{O}_E , and we see that $\mathfrak{m}_v\mathcal{O}_w = \mathfrak{m}_w^{e_w}$. The left-hand side modulo \mathfrak{m}_v is

$$\begin{aligned} (\mathcal{O}_E \otimes_{\mathcal{O}_F} \mathcal{O}_v)/\mathfrak{m}_v &= \mathcal{O}_E/v\mathcal{O}_E = \mathcal{O}_E/\prod_{w|v} w^{e_w} \\ &= \prod_{w|v} \mathcal{O}_E/w^{e_w} = \prod_{w|v} \mathcal{O}_w/\mathfrak{m}_v\mathcal{O}_w = (\prod_{w|v} \mathcal{O}_w)/\mathfrak{m}_v \end{aligned}$$

by the Chinese remainder theorem. This identification is our map modulo \mathfrak{m}_{v} , so we get an isomorphism as desired.

Write *n* for the degree of E/F.

By choosing an *F*-basis of *E*, we can identify $E = F^n$ as *F*-vector spaces. This identifies $\mathbb{A}_F \otimes_F E = \mathbb{A}_F^n$, which we give the product topology. Because \mathbb{A}_F is a topological ring, this topology on $\mathbb{A}_F \otimes_F E$ is independent of our *F*-basis of *E*.

Proposition

The natural map $\mathbb{A}_F \otimes_F E \to \mathbb{A}_E$ is an isomorphism of topological rings.

Proof.

By looking at $(\mathbb{A}_F)_S \otimes_F E$ for finite subsets $S \supseteq M_{F,\infty}$ of M_F , we can identify $\mathbb{A}_F \otimes_F E$ with the restricted product of the $F_v \otimes_F E$ with respect to the $\mathcal{O}_v \otimes_{\mathcal{O}_F} \mathcal{O}_E$. By the Proposition, this equals the restricted product of the $\prod_{w|v} E_w$ with respect to the $\prod_{w|v} \mathcal{O}_w$. As the $\{w \in M_E \mid w \text{ divides } v\}$ are finite and their union is M_E , this restricted product is precisely \mathbb{A}_E .

This lets us reduce statements to the case of $F = \mathbb{Q}$, as we did with Ostrowski's theorem.

I probably should've proved this earlier:

Proposition

Let A be a Dedekind domain. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_d$ be distinct nonzero prime ideals of A, let x_1, \ldots, x_d be in Frac A, and let $n \ge 0$ be an integer. Then there exists x in Frac A such that $v_{\mathfrak{p}_i}(x - x_i) \ge n$ for all $1 \le i \le d$ and $v_{\mathfrak{p}}(x) \ge 0$ for nonzero prime ideals \mathfrak{p} not in $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_d\}$.

Proof.

First, suppose $x_2 = \cdots = x_d = 0$. Now $\mathfrak{p}_1^n + \mathfrak{p}_2^n \cdots \mathfrak{p}_d^n = A$, so $x_1 = y + x$ for y in \mathfrak{p}_1^n and x in $\mathfrak{p}_2^n \cdots \mathfrak{p}_d^n$. This x works.

Secondly, suppose the x_1, \ldots, x_d lie in A. Apply the above to each of the x_i in turn to obtain a_i in A, and take $x = a_1 + \cdots + a_d$.

Finally, suppose the x_1, \ldots, x_d lie in Frac A. Write $x_i = a_i/b$ for a_i and b in A. Apply the above to obtain a in A satisfying, for $1 \le i \le d$, $v_{\mathfrak{p}_i}(a - a_i) \ge n + \max\{v_{\mathfrak{p}_1}(b), \ldots, v_{\mathfrak{p}_d}(b)\}$, and $v_{\mathfrak{q}}(a) \ge v_{\mathfrak{q}}(b)$ for nonzero prime ideals \mathfrak{q} with $v_{\mathfrak{q}}(b) \ge 1$. Then x = a/b works.

Proposition

The field *F* is discrete in \mathbb{A}_F , and the quotient \mathbb{A}_F/F is compact.

Proof.

Write $n = [F : \mathbb{Q}]$. By choosing a \mathbb{Q} -basis of F, we can identify $F = \mathbb{Q}^n$ as \mathbb{Q} -vector spaces. This identifies $\mathbb{A}_F = \mathbb{A}^n_{\mathbb{Q}}$ by the Proposition, so we get $\mathbb{A}_F/F = (\mathbb{A}_{\mathbb{Q}}/\mathbb{Q})^n$ as topological groups. This it suffices to prove this for $F = \mathbb{Q}$.

Consider $U = \{(x_{\nu})_{\nu} \in \mathbb{A}_{\mathbb{Q}} \mid ||x_{\nu}||_{\nu} \leq 1 \text{ for } \nu \neq \infty \text{ and } ||x_{\nu}||_{\infty} < 1\}$ in $\mathbb{A}_{\mathbb{Q}}$. It's evidently open, and any x in \mathbb{Q} that lies in U must be an integer with $|x|_{\infty} < 1$. Thus x = 0, so \mathbb{Q} is discrete in $\mathbb{A}_{\mathbb{Q}}$.

Next, form $K = \{(x_v)_v \in \mathbb{A}_{\mathbb{Q}} \mid ||x_v||_v \leq 1 \text{ for all } v\}$. It's evidently compact, and it suffices to show that $K + \mathbb{Q} = \mathbb{A}_{\mathbb{Q}}$. Let $(a_v)_v$ be in $\mathbb{A}_{\mathbb{Q}}$. For $v \neq \infty$, if $||a_v||_v \leq 1$, set $b_v = 0$. If $||a_v||_v > 1$, choose a'_v in \mathbb{Q} with $||a_v - a'_v||_v \leq 1$, and use the Proposition to choose b_v in \mathbb{Q} such that $||b_v - a'_v||_v \leq 1$ and and $||b_v||_{v'} \leq 1$ for nontrivial nonarchimedean $v' \neq v$. Finally, set $b' = \sum_{v \neq \infty} b_v$, and let b_∞ be the integer closest to $a_\infty - b'_{v_v}$.

Proposition

The field F is discrete in \mathbb{A}_F , and the quotient \mathbb{A}_F/F is compact.

Proof (continued).

Set $b = b' + b_{\infty}$. Then *b* lies in \mathbb{Q} , and we see that $a_v - b$ lies in *K* for all *v* in $M_{\mathbb{Q}}$.

For any $x = (x_v)_v$ in \mathbb{A}_F , write $||x|| = \prod_{v \in M_F} ||x_v||_v$. This converges since $||x_v||_v \leq 1$ for cofinitely many v. We see $||\cdot||$ yields a continuous group homomorphism $\mathbb{A}_F^{\times} \to \mathbb{R}_{>0}$, and evaluating $||\cdot||$ on F_v^{\times} for $v \mid \infty$ shows it is surjective.

The product formula implies ||x|| = 1 for x in F^{\times} , so we see this induces a continuous surjective group homomorphism $\mathbb{A}_F^{\times}/F^{\times} \to \mathbb{R}_{>0}$. In particular, $\mathbb{A}_F^{\times}/F^{\times}$ is not compact.