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I
Let X be a set, and let X; be a collection of subsets such that X = [J; X;.

Suppose each X; has a topological space structure such that, if X; C Xj,
then X; has the subspace topology from X;.

Definition
The coherent (or direct limit) topology on X with respect to the X; is given
by defining U C X to be open if and only if UN X; is open in X; for all U.

Now let {G, },em be a collection of locally compact topological groups.
Let My, be a finite subset of M, and for all v in M ~ My, let K, be a
compact open subgroup of G,.

Example

Let F be a number field, write Mg for the set of isomorphism classes of
nontrivial norms on F, and write Mg o, for the subset of archimedean
norms. Take M = Mg and My, = MF .

@ We can take G, = F, for all vin M, and K, = O, for v not in M.
@ We can take G, = F* for all vin M, and K, = O for v not in M.
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For any finite subset S O M., of M, set Gs =[], Gv X vazs K,. Note
that Gs is a locally compact topological group. For S C S’, we see Gs is
an open and closed subgroup of Ggs.
Definition
The restricted product of the G, with respect to the K, is the group

16 = {(xv)v e[l e

veM veM

x, € K, for cofinitely many v} .

We give H/\/GM G, the coherent topology with respect to the Gg, as S
runs through finite subsets of M containing M.

v

Write G = H'\/GM G,. Because all the Gs are topological groups, we see G
is also a topological group. And since G, is a closed subgroup of Gs for all
S containing v, we identify G, with a closed subgroup of G.

Example

In our previous example, we call G from (1) the adeles of F, and we call G
from (2) the ideles of F. 31



Proposition
@ The topological group G is locally compact.

@ Let Y be a closed subset of G. Then Y is compact if and only if
Y C HveM C,, where the C, are compact subsets of G, such that
C, = K, for cofinitely many v.

Proof.
©Q Let x # y bein G. Then x and y both lie in Gs for some S, and Gg
is both Hausdorff as well as open in G. Thus G is Hausdorff. As for
compact neighborhoods of 1, they follow from the local compactness
of Gs and the fact that Gs is open and closed in G.

@ Any such Y CJ] cp G is evidently compact, because [] .y, C, is.
Conversely, suppose Y is compact. Then the open cover {Gs}s of Y
has a finite subcover {Gs, }"_,. In particular, Y lies in Gs for
S=U, S Forall vin§, the projection map 7, : Gs — G, is
continuous, so 7,(Y) is compact. Thus we can take C, = 7, (Y) for
vin S and C, = K, otherwise. O
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Let’s study continuous homomorphisms G — C*.

Lemma

For all v € M, let x, : G, — C* be a continuous homomorphism. If
Xv|k, = 1 for cofinitely many v, then the map x : G — C* sending
(xv)v =TI, em xv(xv) is a continuous homomorphism.

Proof.

We immediately see x is a well-defined homomorphism. Let S O M, be a
finite subset of M such that x|k, = 1 for v not in S, and write m = #S.
By the homogeneity of G, it suffices to check the continuity of y at 1. Let
U be a neighborhood of 1 in C*, and let V be a neighborhood of 1 in C*
such that V(™ C U. The continuity of the y, implies that

[Toes Xy H(V) x [1,¢s Kv is a neighborhood of 1 in X 1(U). O

v

Lemma

Every continuous homomorphism y : G — C* is of the above form.




Lemma

Every continuous homomorphism y : G — C* is of the above form.

Proof.

Let U be a neighborhood of 1 in C* containing no nontrivial subgroups of
C*. As x"1(U) is a neighborhood of 1 in G, it contains ] cp Ny, where
the N, are neighborhoods of 1 in G, such that N, = K, for v not in some
finite subset 5 2 My of M. Now J],4¢ Ny and hence X([],¢s Nv) are
subgroups, so we see HV¢5 N, C ker x. By setting x,(x,) = x(x,) for all
v and x, in G,, we obtain the desired result. ]

v

Assume now that each of the G, is abelian. Thus G is locally compact
abelian, so we can form G. How is it related to the G ?

For v in M\ My, write W, for the subgroup {x € G, | x(Ky) =1} of
G,. Since N(1) contains no nontrivial subgroups of S1, we see W, equals
W(K,,1, ﬁ) and hence is open. As K, is open, we see G, /K, is discrete,
and the compactness of K, implies that W, is homeomorphic to GT/?V
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Now G, /K, is compact, so altogether W, is a compact open subgroup of
G,. Write [T,y Gy for the restricted product of the G, with respect to
the W,.

Proposition

The map x — (xv)v yields an isomorphism e ITem G, of topological
groups.

Proof.

Our previous two Lemmas imply this is an isomorphism of groups. By
homogeneity, it suffices to check continuity and openness at 1. Let

[Tvem W(C,,1,/3) be a neighborhood of 1 in [],,cp Gy, where the C,
are compact subsets of G, such that C, = K, for cofinitely many v. Then
any x in W([T,em Cv,1,V3) has (xv)v in [T,ep W(Cy, 1,v/3), which
proves continuity. For openness, let Y be a compact subset of G. Then

Y C [I,cnm Qv. where the @, are compact subsets of G, such that

Q, = K, for v not in some finite subset S D M., of M. Write m = #S.
We see any (xv)v in [T,es W(Qv, 1, /2 — 2cos(2m/3m)) x [Togs Wy has
II,em xv in W(Y, 1, v/3), which proves openness. 14




Relax our assumption that the G, are abelian. We want to relate left Haar
measures on G with those on the G,. We first need the following fact.
Lemma

Let G be a locally compact topological group, and let m be a left Haar
measure on G. For any nonempty open subset U of G, we have m(U) > 0.

Thus if H is an open subgroup of G, then m|y is a left Haar measure on H.

Proof.
Homework problem. DJ

For all v in M, let m, be a left Haar measure on G, such that m,(K,) =1
for cofinitely many v.

Example

In our previous example, in (1) we can take m, to be the Lebesgue
measure on F,, and in (2) we can take m, to be the (1 — g;!)~! times
the E — [ dx /| x|| measure on F* for nonarchimedean v and any
positive multiple of this measure for archimedean v.




Proposition

There is a unique left Haar measure m on G such that, for all finite
subsets S O My, of M, the restriction m|g. equals the product measure

[Tves mv x [1,¢s myv on Gs.

Proof.

Since m(Ky) =1 for cofinitely many v, we see that [] s my gives
Hv¢s K, nonzero finite measure, so Hv¢5 m, yields a left Haar measure
on [[,¢s Ky. Therefore [],cs my x [],¢g my is a left Haar measure on
Gs, and for S C S’ we immediately see it is the restriction of

[I,esr mv % vas' m, to Gs. By Haar's theorem, G has a left Haar
measure, and its restriction to Gs must be a positive multiple of

[I,es mv x Hv¢5 m,. The uniqueness in Haar's theorem provides the

desired result. O

v

We write m = [, <5 my, and when integrating we write dx =[],y dx..
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Lemma
Let f : G — C be continuous. Then [ dx f(x) = lims_o [¢, dx f(x).

Proof.

The inner regularity of m implies [, dx f(x) = limy_ [, dx f(x), where
Y runs over compact subsets of G. But every Y lies in Gs for some S. [

v

Let SO Moo U{v e M\ My | m/(K,) # 1} be a finite subset of M.

Proposition

For all v in M, let f, : G, — C be a continuous function in L1(G,). If
fulk, =1 for v not in S, then the map f : G — C sending
(xv)v = [I,epm fv(xv) is continuous, and we have

/Gsdxf H/ dx, f,(x,).

veS
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Proposition

For all vin M, let f, : G, — C be a continuous function in L}(G,). If
fulk, =1 for v not in S, then the map f : G — C sending
(xv)v = II,em fv(xv) is continuous, and we have

dx f(x H dxv (xv)-
Gs veS

Proof.

We immediately see f is a well-defined function. As f is evidently
continuous on Gs and the Gs form an open cover G, we see f is
continuous. Finally, since m,(K,) =1 and f, |, =1 for v not in S, we
obtain the equality of integrals.

O

v

The Lemma and the Proposition imply [ dx f(x) = [,epm [q, dxv fu(x)-

Hence if the right-hand side converges, then f lies in L1(G).
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