
Restricted Products

Siyan Daniel Li-Huerta

October 20, 2020



Let X be a set, and let Xi be a collection of subsets such that X =
⋃

i Xi .
Suppose each Xi has a topological space structure such that, if Xi ⊆ Xj ,
then Xi has the subspace topology from Xj .

Definition

The coherent (or direct limit) topology on X with respect to the Xi is given
by defining U ⊆ X to be open if and only if U ∩ Xi is open in Xi for all U.

Now let {Gv}v∈M be a collection of locally compact topological groups.
Let M∞ be a finite subset of M, and for all v in M rM∞, let Kv be a
compact open subgroup of Gv .

Example

Let F be a number field, write MF for the set of isomorphism classes of
nontrivial norms on F , and write MF ,∞ for the subset of archimedean
norms. Take M = MF and M∞ = MF ,∞.

1 We can take Gv = Fv for all v in M, and Kv = Ov for v not in M∞.

2 We can take Gv = F×v for all v in M, and Kv = O×v for v not in M∞.
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For any finite subset S ⊇ M∞ of M, set GS =
∏

v∈S Gv ×
∏

v /∈S Kv . Note
that GS is a locally compact topological group. For S ⊆ S ′, we see GS is
an open and closed subgroup of GS ′ .

Definition

The restricted product of the Gv with respect to the Kv is the group

∏′

v∈M
Gv =

{
(xv )v ∈

∏
v∈M

Gv

∣∣∣∣∣ xv ∈ Kv for cofinitely many v

}
.

We give
∏′

v∈M Gv the coherent topology with respect to the GS , as S
runs through finite subsets of M containing M∞.

Write G =
∏′

v∈M Gv . Because all the GS are topological groups, we see G
is also a topological group. And since Gv is a closed subgroup of GS for all
S containing v , we identify Gv with a closed subgroup of G .

Example

In our previous example, we call G from (1) the adeles of F , and we call G
from (2) the ideles of F . 3 / 11



Proposition

1 The topological group G is locally compact.

2 Let Y be a closed subset of G . Then Y is compact if and only if
Y ⊆

∏
v∈M Cv , where the Cv are compact subsets of Gv such that

Cv = Kv for cofinitely many v .

Proof.

1 Let x 6= y be in G . Then x and y both lie in GS for some S , and GS

is both Hausdorff as well as open in G . Thus G is Hausdorff. As for
compact neighborhoods of 1, they follow from the local compactness
of GS and the fact that GS is open and closed in G .

2 Any such Y ⊆
∏

v∈M Cv is evidently compact, because
∏

v∈M Cv is.
Conversely, suppose Y is compact. Then the open cover {GS}S of Y
has a finite subcover {GSi}ni=1. In particular, Y lies in GS for
S =

⋃n
i=1 Si . For all v in S , the projection map πv : GS→Gv is

continuous, so πv (Y ) is compact. Thus we can take Cv = πv (Y ) for
v in S and Cv = Kv otherwise.
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Let’s study continuous homomorphisms G→C×.

Lemma

For all v ∈ M, let χv : Gv→C× be a continuous homomorphism. If
χv |Kv = 1 for cofinitely many v , then the map χ : G→C× sending
(xv )v 7→

∏
v∈M χv (xv ) is a continuous homomorphism.

Proof.

We immediately see χ is a well-defined homomorphism. Let S ⊇ M∞ be a
finite subset of M such that χv |Kv = 1 for v not in S , and write m = #S .
By the homogeneity of G , it suffices to check the continuity of χ at 1. Let
U be a neighborhood of 1 in C×, and let V be a neighborhood of 1 in C×
such that V (m) ⊆ U. The continuity of the χv implies that∏

v∈S χ
−1
v (V )×

∏
v /∈S Kv is a neighborhood of 1 in χ−1(U).

Lemma

Every continuous homomorphism χ : G→C× is of the above form.
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Lemma

Every continuous homomorphism χ : G→C× is of the above form.

Proof.

Let U be a neighborhood of 1 in C× containing no nontrivial subgroups of
C×. As χ−1(U) is a neighborhood of 1 in G , it contains

∏
v∈M Nv , where

the Nv are neighborhoods of 1 in Gv such that Nv = Kv for v not in some
finite subset S ⊇ M∞ of M. Now

∏
v /∈S Nv and hence χ(

∏
v /∈S Nv ) are

subgroups, so we see
∏

v /∈S Nv ⊆ kerχ. By setting χv (xv ) = χ(xv ) for all
v and xv in Gv , we obtain the desired result.

Assume now that each of the Gv is abelian. Thus G is locally compact
abelian, so we can form Ĝ . How is it related to the Ĝv?

For v in M rM∞, write Wv for the subgroup {χ ∈ Ĝv | χ(Kv ) = 1} of

Ĝv . Since N(1) contains no nontrivial subgroups of S1, we see Wv equals
W (Kv , 1,

√
3) and hence is open. As Kv is open, we see Gv/Kv is discrete,

and the compactness of Kv implies that Wv is homeomorphic to Ĝv/Kv .
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Now Ĝv/Kv is compact, so altogether Wv is a compact open subgroup of

Gv . Write
∏′

v∈M Ĝv for the restricted product of the Ĝv with respect to
the Wv .

Proposition

The map χ 7→ (χv )v yields an isomorphism Ĝ
∼→
∏′

v∈M Ĝv of topological
groups.

Proof.

Our previous two Lemmas imply this is an isomorphism of groups. By
homogeneity, it suffices to check continuity and openness at 1. Let∏

v∈M W (Cv , 1,
√

3) be a neighborhood of 1 in
∏′

v∈M Ĝv , where the Cv

are compact subsets of Gv such that Cv = Kv for cofinitely many v . Then
any χ in W (

∏
v∈M Cv , 1,

√
3) has (χv )v in

∏
v∈M W (Cv , 1,

√
3), which

proves continuity. For openness, let Y be a compact subset of G . Then
Y ⊆

∏
v∈M Qv , where the Qv are compact subsets of Gv such that

Qv = Kv for v not in some finite subset S ⊇ M∞ of M. Write m = #S .
We see any (χv )v in

∏
v∈S W (Qv , 1,

√
2− 2 cos(2π/3m))×

∏
v /∈S Wv has∏

v∈M χv in W (Y , 1,
√

3), which proves openness. 7 / 11



Relax our assumption that the Gv are abelian. We want to relate left Haar
measures on G with those on the Gv . We first need the following fact.

Lemma

Let G be a locally compact topological group, and let m be a left Haar
measure on G . For any nonempty open subset U of G , we have m(U) > 0.

Thus if H is an open subgroup of G , then m|H is a left Haar measure on H.

Proof.

Homework problem.

For all v in M, let mv be a left Haar measure on Gv such that mv (Kv ) = 1
for cofinitely many v .

Example

In our previous example, in (1) we can take mv to be the Lebesgue
measure on Fv , and in (2) we can take mv to be the (1− q−1v )−1 times
the E 7→

∫
E dx /‖x‖ measure on F×v for nonarchimedean v and any

positive multiple of this measure for archimedean v .
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Proposition

There is a unique left Haar measure m on G such that, for all finite
subsets S ⊇ M∞ of M, the restriction m|GS

equals the product measure∏
v∈S mv ×

∏
v /∈S mv on GS .

Proof.

Since m(Kv ) = 1 for cofinitely many v , we see that
∏

v /∈S mv gives∏
v /∈S Kv nonzero finite measure, so

∏
v /∈S mv yields a left Haar measure

on
∏

v /∈S Kv . Therefore
∏

v∈S mv ×
∏

v /∈S mv is a left Haar measure on
GS , and for S ⊆ S ′ we immediately see it is the restriction of∏

v∈S ′ mv ×
∏

v /∈S ′ mv to GS . By Haar’s theorem, G has a left Haar
measure, and its restriction to GS must be a positive multiple of∏

v∈S mv ×
∏

v /∈S mv . The uniqueness in Haar’s theorem provides the
desired result.

We write m =
∏

v∈M mv , and when integrating we write dx =
∏

v∈M dxv .
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Lemma

Let f : G→C be continuous. Then
∫
G dx f (x) = limS→∞

∫
GS

dx f (x).

Proof.

The inner regularity of m implies
∫
G dx f (x) = limY→∞

∫
Y dx f (x), where

Y runs over compact subsets of G . But every Y lies in GS for some S .

Let S ⊇ M∞ ∪ {v ∈ M rM∞ | mv (Kv ) 6= 1} be a finite subset of M.

Proposition

For all v in M, let fv : Gv→C be a continuous function in L1(Gv ). If
fv |Kv = 1 for v not in S , then the map f : G→C sending
(xv )v 7→

∏
v∈M fv (xv ) is continuous, and we have∫

GS

dx f (x) =
∏
v∈S

∫
Gv

dxv fv (xv ).
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Proposition

For all v in M, let fv : Gv→C be a continuous function in L1(Gv ). If
fv |Kv = 1 for v not in S , then the map f : G→C sending
(xv )v 7→

∏
v∈M fv (xv ) is continuous, and we have∫

GS

dx f (x) =
∏
v∈S

∫
Gv

dxv fv (xv ).

Proof.

We immediately see f is a well-defined function. As f is evidently
continuous on GS and the GS form an open cover G , we see f is
continuous. Finally, since mv (Kv ) = 1 and fv |Kv = 1 for v not in S , we
obtain the equality of integrals.

The Lemma and the Proposition imply
∫
G dx f (x) =

∏
v∈M

∫
Gv

dxv fv (xv ).

Hence if the right-hand side converges, then f lies in L1(G ).
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