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Let A be a Dedekind domain, and write IA for the group of its nonzero
fractional ideals. We have a group homomorphism (·) : (FracA)×→IA
given by x 7→ (x). Since the identity in IA is A, we see ker(·) = A×. We
call an element of im(·) a principal ideal.

Definition

The class group of A, denoted by C̀ (A), is the quotient group IA/ im(·).

When A = OF , we often index everything with F instead of A.

Example

We see A is a principal ideal domain if and only if C̀ (A) = 0,

Let F = Q(
√
−5). Then C̀ (F ) = Z/2Z and is generated by the class

of (2, 1 +
√
−5),

Let κ be an algebraically closed field of characteristic 6= 2. One can
show that the class group of κ[x , y ]/(y2 − x3 + x) bijects with

{(x , y) ∈ κ2 | y2 − x3 + x = 0} ∪ {∞}.

In particular, this class group is infinite. 2 / 8



Let F be a number field. Recall Minkowski’s convex body theorem is used
to prove the following.

Theorem

The abelian group C̀ (F ) is finite.

Another application of Minkowski’s convex body theorem is the following.
Write d for [F : Q]. Let σ1, . . . , σr1 denote the field homomorphisms
F →C whose image lies in R, and index the other field homomorphisms
F →C as σr1+1, . . . , σd such that σk = σk+r2 for all r1 + 1 ≤ k ≤ r1 + r2.
So r1 + 2r2 = d .

Theorem (Dirichlet unit)

The abelian group O×F is finitely generated of rank r1 + r2 − 1.

For any 1 ≤ k ≤ r1 + r2, the composite | · | ◦ σk yields an archimedean
norm | · |k on F . If 1 ≤ k ≤ r1, we see the completion of F with respect to
| · |k is identified with R via σk . If r1 + 1 ≤ k ≤ r1 + r2, we see the
completion of F with respect to | · |k is identified with C via σk .
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Let F be a field, and let | · |v be a norm on F that is discretely valued or
archimedean. We write Fv for the completion of F with respect to | · |v .

Remark

Let Ew/Fv be a finite extension of degree dv . Now | · |w = |NmEw/Fv
·|1/dv

yields an extension of | · |v to an absolute value on Ew , and it is the unique
extension up to isomorphism. We proved this for discretely valued | · |v
using Hensel’s lemma, and for archimedean | · |v it follows from
Ostrowski’s theorem, because then Fv is either R or C.

Let E/F be a finite separable extension, and suppose E = F [t]/f for some
irreducible f in F [t]. Write f = f1 · · · fr for the irreducible factorization of
f in Fv [t]. For 1 ≤ j ≤ r , we get a field homomorphism F [t]/f →Fv [t]/fj .
Now | · |v on Fv extends uniquely to | · |j on Fv [t]/fj , and precomposing
with this homomorphism yields an extension | · |j on E of | · |v on F .

Proposition

Up to isomorphism, every extension of | · |v from F to E arises in this way.
Furthermore, for j1 6= j2, the norms | · |j1 and | · |j2 on E are not isomorphic.
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Proposition

Up to isomorphism, every extension of | · |v from F to E arises in this way.
Furthermore, for j1 6= j2, the norms | · |j1 and | · |j2 on E are not isomorphic.

Proof.

Note that F is dense in Fv , and t in E generates Fv [t]/fj over Fv . Thus E
is dense in Fv [t]/fj , so Fv [t]/fj is the completion of E with respect to | · |j .
If | · |j1 and | · |j2 on E are isomorphic, then the completions Fv [t]/fj1 and
Fv [t]/fj2 are isomorphic over Fv . Hence the image of t in them is a root of
fj1 and fj2 , so j1 = j2.

Next, let | · |w be a norm on E that extends | · |v , and identify Fv with the
closure of F in Ew . Then t generates a finite and hence complete
extension of Fv . But this extension contains the dense subfield E , so Ew is
generated by t over Fv . As t is a zero of f , we see it must be a zero of fj
for some 1 ≤ j ≤ r , and this identifies Ew with Fv [t]/fj .

Let | · |w be a norm on E . We write w |v if E extends | · |v .
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Corollary

We have an isomorphism E ⊗F Fv
∼→
∏

w |v Ew of Fv -algebras.

Proof.

The Chinese remainder theorem gives

E ⊗F Fv = (F [t]/f )⊗F Fv = Fv [t]/(f1 · · · fr ) =
r∏

j=1

Fv [t]/fj =
∏
w |v

Ew .

Corollary

Let F be a number field. Then our | · |1, . . . , | · |r1+r2 are all the
archimedean norms on F .

Proof.

Let | · | be an archimedean norm on F . Its restriction to Q is archimedean
and thus isomorphic to | · |∞ by Ostrowski’s theorem. Applying the
proposition to the extension F/Q and the norm | · |∞ yields the result.
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Let F be a number field, and let | · |v be a nontrivial nonarchimedean norm
on F . Write O(v) for the valuation ring of F with respect to | · |v , and
write m(v) for its maximal ideal.

Proposition

Our | · |v is isomorphic to the absolute value associated with vp, where p is
a nonzero prime ideal of OF .

Proof.

The restriction of | · |v to Q is nontrivial nonarchimedean and thus
isomorphic to | · |p for a prime number p by Ostrowski’s theorem. Now
m(v) ∩ OF is a prime ideal of OF , and it contains p. Thus p = m(v) ∩ OF

is a nonzero prime ideal of OF .

Because | · |v is nonarchimedean, we see that OF ⊆ O(v). Since OF r p

lies in O×(v), we see OF ,p ⊆ O(v). Writing | · |p for the norm associated

with vp, note that its valuation ring equals OF ,p. Hence |x |p ≤ 1 implies
|x |v ≤ 1, so | · |p and | · |v are isomorphic.
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Let F be a number field, and let | · |v be a nontrivial norm on F .
Altogether, we see that Fv is a local field.

If Fv = R, normalize | · |v to be the classic absolute value, and set
‖·‖v = | · |v ,
If Fv = C, normalize | · |v to be the classic absolute value, and set
‖·‖v = | · |2v ,
If Fv is nonarchimedean, write Ov for its ring of integers and mv for
its maximal ideal. Write qv for the cardinality of its residue field,
normalize | · |v such that |π|v = 1

qv
for uniformizers π in Fv , and set

‖·‖v = | · |v .

Proposition (product formula)

Let x be in F×. Then we have
∏

v‖x‖v = 1, where v runs over all
nontrivial norms on F .

Proof.

As F = FracOF , it suffices to take x in OF . Chinese remainder implies∏
v -∞‖x‖v = #(O/x)−1, while we know

∏
v |∞‖x‖v = #(O/x).
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