Poisson Summation
 (with number fields at the end)

Siyan Daniel Li-Huerta

October 13, 2020

Example

Let p be a prime number, and let $G=\mathbb{Q}_{p}$. Let m be the Lebesgue measure on G. By using p-adic expansions, we can identify $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ with $\left\{z \in \mathbb{Q} / \mathbb{Z} \mid p^{n} z=0\right.$ for some $\left.n \geq 0\right\}$ as groups. We take ψ to be the composition

$$
\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \subset \mathbb{Q} / \mathbb{Z} \subset \mathbb{R} / \mathbb{Z} \xrightarrow{\varphi} S^{1}
$$

Since \widehat{m} is a Haar measure on $\widehat{G} \cong G$, it equals c times m for some $c>0$. Next, let f be the indicator function on \mathbb{Z}_{p}. Its Fourier transform is

$$
\widehat{f}(a)=\int_{\mathbb{Q}_{p}} \mathrm{~d} x f(x) \psi_{a}(x)^{-1}=\int_{\mathbb{Z}_{p}} \mathrm{~d} x \psi(a x)^{-1}
$$

If a lies in \mathbb{Z}_{p}, then ax does too for all x in \mathbb{Z}_{p}. So $\left.\psi_{a}\right|_{\mathbb{Z}_{p}}$ is trivial, making $\widehat{f}(a)=1$. If a does not lie in \mathbb{Z}_{p}, then $v_{p}(a)<0$, and $\left.\psi_{a}\right|_{\mathbb{Z}_{p}}$ factors through a nontrivial group homomorphism $\mathbb{Z}_{p} / p^{-v_{p}(a)} \mathbb{Z}_{p} \rightarrow S^{1}$.

Example (continued)

Therefore the integral becomes

$$
\sum_{v_{p} / p^{-v_{p}(a)} \mathbb{Z}_{p}} m(x) \psi_{a}(x)^{-1}=p^{v_{p}(a)} \sum_{x \in \mathbb{Z} / p^{-v_{p}(a)} \mathbb{Z}} \psi_{a}(x)^{-1}=0 .
$$

Altogether \widehat{f} is also the indicator function on \mathbb{Z}_{p}. Thus $c=1$, i.e. the Lebesgue measure on \mathbb{R} is self-dual with respect to this choice of ψ.

We want a handy class of functions we can apply Poisson summation to.

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a smooth function. We say it is Schwartz if, for all non-negative integers $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$, the function

$$
x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \frac{\partial^{\beta_{1}}}{\partial x_{1}^{\beta_{1}}} \cdots \frac{\partial^{\beta_{n}}}{\partial x_{n}^{\beta_{n}}} f
$$

approaches 0 as $|x| \rightarrow \infty$, where $x=\left(x_{1}, \ldots, x_{n}\right)$.
Write $\mathcal{S}\left(\mathbb{R}^{n}\right)$ for the set of Schwartz functions on \mathbb{R}^{n}.

Note $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is preserved under addition, multiplication, and scaling by \mathbb{C}. Example

- $f(x)=\frac{1}{1+x}$ does not lie in $\mathcal{S}(\mathbb{R})$, since $x f(x)$ does not approach 0 as $|x| \rightarrow \infty$,
- $f(x)=e^{-x^{2}} \sin \left(e^{x^{2}}\right)$ does not lie in $\mathcal{S}(\mathbb{R})$, since $f^{\prime}(x)$ does not approach 0 as $x \rightarrow \infty$,
- $f(x)=e^{-x^{2}}$ lies in $\mathcal{S}(\mathbb{R})$.

For nonarchimedean local fields, we use the following functions. Let X be a totally disconnected topological space.

Definition

Let $f: X \rightarrow \mathbb{C}$ be a function. We say that f is

- smooth if it is locally constant,
- Bruhat-Schwartz if it is smooth and compactly supported.

Write $\mathcal{S}(X)$ for the set of Bruhat-Schwartz functions on X. Note that $\mathcal{S}(X)$ is preserved under addition, multiplication, and scaling by \mathbb{C}.

Proposition

Let f be in $\mathcal{S}(\mathbb{R})$. Then $F(x)=\sum_{k=-\infty}^{\infty} f(x+k)$ converges uniformly on compact subsets of \mathbb{R} and defines a continuous function $F: S^{1} \rightarrow \mathbb{C}$.

Proof.

It suffices to consider convergence on $[-r, r]$ for $r>0$. There exists $B>0$ such that $y^{2}|f(y)|<1$ for all $|y|>B$. Thus for all $|k|>B+r$, we have $|f(x+k)|<1 /(k-r)^{2}$ for all x in $[-r, r]$. The convergence of this series yields our desired uniform convergence, so F yields a continuous function $F: \mathbb{R} \rightarrow \mathbb{C}$. For c in \mathbb{Z}, uniform convergence allows us to re-index to see

$$
F(x+c)=\sum_{k=-\infty}^{\infty} f(x+c+k)=\sum_{j=-\infty}^{\infty} f(x+j)=F(x)
$$

where $j=c+k$. So F descends to a continuous function $S^{1} \rightarrow \mathbb{C}$.

Remark (Fourier inversion)

Let G be an abelian locally compact topological group, and let m be a Haar measure on G. If $f: G \rightarrow \mathbb{C}$ is continuous, in $L^{1}(G)$, and has \widehat{f} in $L^{1}(G)$, then $f(x)=\widehat{\hat{f}}\left(x^{-1}\right)$ for all x in G.

Remark

Let F be a local field, and fix a continuous homomorphism $\psi: F \rightarrow S^{1}$. One can show that the Fourier transform yields a \mathbb{C}-linear isomorphism $\mathcal{S}(F) \xrightarrow{\sim} \mathcal{S}(\widehat{F})=\mathcal{S}(F)$ (where we identify $\mathbb{R}^{2}=\mathbb{C}$ when $F=\mathbb{C}$) and exclusively work with f in $\mathcal{S}(F)$ instead of $L^{2}(F)$.

Theorem (Poisson summation)
Let f be in $\mathcal{S}(\mathbb{R})$. Then $\sum_{k=-\infty}^{\infty} f(k)=\sum_{k=-\infty}^{\infty} \widehat{f}(k)$.
Proof.
Let $F(x)=\sum_{k=-\infty}^{\infty} f(x+k)$, considered as a function $S^{1} \rightarrow \mathbb{C}$.

Theorem (Poisson summation)

Let f be in $\mathcal{S}(\mathbb{R})$. Then $\sum_{k=-\infty}^{\infty} f(k)=\sum_{k=-\infty}^{\infty} \widehat{f}(k)$.
Proof (continued).
Note that $F(1)$ equals the left-hand side above. First, I claim $\widehat{f}(c)=\widehat{F}(c)$ for all c in \mathbb{Z}, where we use the Lebesgue measure on \mathbb{R} and the usual measure on S^{1}. To see this, note that

$$
\begin{aligned}
\widehat{F}(c) & =\int_{0}^{1} \mathrm{~d} x F(x) e^{-2 \pi c i x}=\int_{0}^{1} \mathrm{~d} x \sum_{k=-\infty}^{\infty} f(x+k) e^{-2 \pi c i x} \\
& =\int_{0}^{1} \mathrm{~d} x \sum_{k=-\infty}^{\infty} f(x+k) e^{-2 \pi c i(x+k)}=\int_{-\infty}^{\infty} \mathrm{d} y f(y) e^{-2 \pi c i y}=\widehat{f}(c),
\end{aligned}
$$

where $y=x+k$. Now \widehat{f} lies in $\mathcal{S}(\mathbb{R})$, so $\sum_{c=-\infty}^{\infty}|\widehat{f}(c)|=\sum_{c=-\infty}^{\infty}|\widehat{F}(c)|$ converges. In other words, \widehat{F} lies in $L^{1}(\mathbb{Z})$, so Fourier inversion applies to F. Hence $F(1)=\sum_{k=-\infty}^{\infty} \widehat{F}(k) 1^{k}=\sum_{k=-\infty}^{\infty} \widehat{f}(k)$, as desired.

Remark

One can use Poisson summation to prove Minkowski's convex body theorem, which in turn implies fundamental facts on number fields!

Recall that number fields are finite extensions F of \mathbb{Q}. For any number field F, write \mathcal{O}_{F} for the integral closure of \mathbb{Z} in F. We call \mathcal{O}_{F} the ring of integers of F.

Example

- For $F=\mathbb{Q}$, we have $\mathcal{O}_{F}=\mathbb{Z}$.
- Let D be a squarefree integer, and let $F=\mathbb{Q}(\sqrt{D})$. Then

$$
\mathcal{O}_{F}= \begin{cases}\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text { if } D \equiv 1(\bmod 4) \\ \mathbb{Z}[\sqrt{D}] & \text { otherwise }\end{cases}
$$

- Let N be a positive integer, choose an N-th root of unity ζ_{N}, and let $F=\mathbb{Q}\left(\zeta_{N}\right)$. Then $\mathcal{O}_{F}=\mathbb{Z}\left[\zeta_{N}\right]$.

Now \mathcal{O}_{F} is always a free \mathbb{Z}-module of rank $[F: \mathbb{Q}]$, so $\mathcal{O}_{F} \otimes_{\mathbb{Z}} \mathbb{Q}=F$.

Definition

Let A be a commutative ring. We say A is a Dedekind domain if it is integrally closed, noetherian, and every nonzero prime ideal is maximal.

Example

- Every principal ideal domain is also Dedekind,
- Let F be a number field. Then \mathcal{O}_{F} is a Dedekind domain,
- Let κ be a field of characteristic $\neq 2$. One can show that $\kappa[x, y] /\left(y^{2}-x^{3}+x\right)$ is a Dedekind domain.

Definition

Let A be an integral domain. A fractional ideal of A is an A-submodule I of Frac A such that al $\subseteq A$ for some a in A.

Example

Let $F=\mathbb{Q}(\sqrt{-5})$. Then $\mathfrak{p}=(2,1+\sqrt{-5})$ is a prime ideal of \mathcal{O}_{F}, and $\mathfrak{p}^{-1}=\left\{x \in F \mid x \mathfrak{p} \subseteq \mathcal{O}_{F}\right\}=\left(1, \frac{1}{2}+\frac{\sqrt{-5}}{2}\right)$ is a fractional ideal of \mathcal{O}_{F}.

Uniquely factorizing elements plays a key role in \mathbb{Z} and \mathbb{Q}. For general Dedekind domains A, we have a weaker version for ideals.

Proposition

Let $/$ be a nonzero fractional ideal of A. Then I can be uniquely written as $\mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{r}^{n_{r}}$ for nonzero prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ of A and integers n_{1}, \ldots, n_{r}.

Thus the set \mathcal{I}_{A} of nonzero fractional ideals of A forms a group, and it's isomorphic to $\bigoplus_{\mathfrak{p}} \mathbb{Z}$, where \mathfrak{p} runs over nonzero prime ideals of A.

For any nonzero prime ideal \mathfrak{p} of A and x in $(\operatorname{Frac} A)^{\times}$, write $v_{\mathfrak{p}}(x)$ for the exponent of \mathfrak{p} in the unique factorization of (x). We see that $v_{\mathfrak{p}}: \operatorname{Frac} A \rightarrow \mathbb{Z} \cup\{\infty\}$ yields a discrete valuation on Frac A.

