Poisson Summation (with number fields at the end)

Siyan Daniel Li-Huerta

October 13, 2020

Example

Let p be a prime number, and let $G = \mathbb{Q}_p$. Let m be the Lebesgue measure on G. By using p-adic expansions, we can identify $\mathbb{Q}_p/\mathbb{Z}_p$ with $\{z \in \mathbb{Q}/\mathbb{Z} \mid p^n z = 0 \text{ for some } n \ge 0\}$ as groups. We take ψ to be the composition

$$\mathbb{Q}_{p} \to \mathbb{Q}_{p}/\mathbb{Z}_{p} \subset \mathbb{Q}/\mathbb{Z} \subset \mathbb{R}/\mathbb{Z} \xrightarrow{\varphi} S^{1}.$$

Since \widehat{m} is a Haar measure on $\widehat{G} \cong G$, it equals c times m for some c > 0. Next, let f be the indicator function on \mathbb{Z}_p . Its Fourier transform is

$$\widehat{f}(a) = \int_{\mathbb{Q}_p} \mathrm{d}x f(x) \psi_a(x)^{-1} = \int_{\mathbb{Z}_p} \mathrm{d}x \, \psi(ax)^{-1}.$$

If a lies in \mathbb{Z}_p , then ax does too for all x in \mathbb{Z}_p . So $\psi_a|_{\mathbb{Z}_p}$ is trivial, making $\widehat{f}(a) = 1$. If a does not lie in \mathbb{Z}_p , then $v_p(a) < 0$, and $\psi_a|_{\mathbb{Z}_p}$ factors through a nontrivial group homomorphism $\mathbb{Z}_p/p^{-v_p(a)}\mathbb{Z}_p \to S^1$.

Example (continued)

Therefore the integral becomes

$$\sum_{\mathbf{x}\in\mathbb{Z}_p/p^{-\nu_p(\mathfrak{a})}\mathbb{Z}_p} m(\mathbf{x})\psi_{\mathfrak{a}}(\mathbf{x})^{-1} = p^{\nu_p(\mathfrak{a})}\sum_{\mathbf{x}\in\mathbb{Z}/p^{-\nu_p(\mathfrak{a})}\mathbb{Z}}\psi_{\mathfrak{a}}(\mathbf{x})^{-1} = 0.$$

Altogether \hat{f} is also the indicator function on \mathbb{Z}_p . Thus c = 1, i.e. the Lebesgue measure on \mathbb{R} is self-dual with respect to this choice of ψ .

We want a handy class of functions we can apply *Poisson summation* to. Definition

Let $f : \mathbb{R}^n \to \mathbb{C}$ be a smooth function. We say it is *Schwartz* if, for all non-negative integers $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n , the function

$$x_1^{\alpha_1}\cdots x_n^{\alpha_n}\frac{\partial^{\beta_1}}{\partial x_1^{\beta_1}}\cdots \frac{\partial^{\beta_n}}{\partial x_n^{\beta_n}}f$$

approaches 0 as $|x| \to \infty$, where $x = (x_1, \ldots, x_n)$.

Write $\mathcal{S}(\mathbb{R}^n)$ for the set of Schwartz functions on \mathbb{R}^n .

Note $S(\mathbb{R}^n)$ is preserved under addition, multiplication, and scaling by \mathbb{C} . Example

- $f(x) = \frac{1}{1+x}$ does not lie in $\mathcal{S}(\mathbb{R})$, since xf(x) does not approach 0 as $|x| \to \infty$,
- $f(x) = e^{-x^2} \sin(e^{x^2})$ does not lie in $\mathcal{S}(\mathbb{R})$, since f'(x) does not approach 0 as $x \to \infty$,
- $f(x) = e^{-x^2}$ lies in $\mathcal{S}(\mathbb{R})$.

For nonarchimedean local fields, we use the following functions. Let X be a totally disconnected topological space.

Definition

- Let $f: X \to \mathbb{C}$ be a function. We say that f is
 - smooth if it is locally constant,
 - *Bruhat–Schwartz* if it is smooth and compactly supported.

Write S(X) for the set of Bruhat–Schwartz functions on X. Note that S(X) is preserved under addition, multiplication, and scaling by \mathbb{C} .

Proposition

Let f be in $S(\mathbb{R})$. Then $F(x) = \sum_{k=-\infty}^{\infty} f(x+k)$ converges uniformly on compact subsets of \mathbb{R} and defines a continuous function $F: S^1 \to \mathbb{C}$.

Proof.

It suffices to consider convergence on [-r, r] for r > 0. There exists B > 0 such that $y^2|f(y)| < 1$ for all |y| > B. Thus for all |k| > B + r, we have $|f(x+k)| < 1/(k-r)^2$ for all x in [-r, r]. The convergence of this series yields our desired uniform convergence, so F yields a continuous function $F : \mathbb{R} \to \mathbb{C}$. For c in \mathbb{Z} , uniform convergence allows us to re-index to see

$$F(x+c) = \sum_{k=-\infty}^{\infty} f(x+c+k) = \sum_{j=-\infty}^{\infty} f(x+j) = F(x),$$

where j = c + k. So F descends to a continuous function $S^1 \rightarrow \mathbb{C}$.

Remark (Fourier inversion)

Let G be an abelian locally compact topological group, and let m be a Haar measure on G. If $f : G \to \mathbb{C}$ is continuous, in $L^1(G)$, and has \widehat{f} in $L^1(G)$, then $f(x) = \widehat{\widehat{f}}(x^{-1})$ for all x in G.

Remark

Let F be a local field, and fix a continuous homomorphism $\psi: F \to S^1$. One can show that the Fourier transform yields a \mathbb{C} -linear isomorphism $\mathcal{S}(F) \xrightarrow{\sim} \mathcal{S}(\widehat{F}) = \mathcal{S}(F)$ (where we identify $\mathbb{R}^2 = \mathbb{C}$ when $F = \mathbb{C}$) and exclusively work with f in $\mathcal{S}(F)$ instead of $L^2(F)$.

Theorem (Poisson summation)

Let f be in
$$\mathcal{S}(\mathbb{R})$$
. Then $\sum_{k=-\infty}^{\infty} f(k) = \sum_{k=-\infty}^{\infty} \widehat{f}(k)$.

Proof.

Let
$$F(x) = \sum_{k=-\infty}^{\infty} f(x+k)$$
, considered as a function $S^1 o \mathbb{C}$.

Theorem (Poisson summation)

Let f be in
$$\mathcal{S}(\mathbb{R})$$
. Then $\sum_{k=-\infty}^{\infty} f(k) = \sum_{k=-\infty}^{\infty} \widehat{f}(k)$.

Proof (continued).

Note that F(1) equals the left-hand side above. First, I claim $\hat{f}(c) = \hat{F}(c)$ for all c in \mathbb{Z} , where we use the Lebesgue measure on \mathbb{R} and the usual measure on S^1 . To see this, note that

$$\widehat{F}(c) = \int_0^1 dx \, F(x) e^{-2\pi c i x} = \int_0^1 dx \sum_{k=-\infty}^\infty f(x+k) e^{-2\pi c i x}$$
$$= \int_0^1 dx \sum_{k=-\infty}^\infty f(x+k) e^{-2\pi c i (x+k)} = \int_{-\infty}^\infty dy \, f(y) e^{-2\pi c i y} = \widehat{f}(c),$$

where y = x + k. Now \widehat{f} lies in $\mathcal{S}(\mathbb{R})$, so $\sum_{c=-\infty}^{\infty} |\widehat{f}(c)| = \sum_{c=-\infty}^{\infty} |\widehat{F}(c)|$ converges. In other words, \widehat{F} lies in $L^1(\mathbb{Z})$, so Fourier inversion applies to F. Hence $F(1) = \sum_{k=-\infty}^{\infty} \widehat{F}(k) 1^k = \sum_{k=-\infty}^{\infty} \widehat{f}(k)$, as desired.

Remark

One can use Poisson summation to prove Minkowski's convex body theorem, which in turn implies fundamental facts on number fields!

Recall that number fields are finite extensions F of \mathbb{Q} . For any number field F, write \mathcal{O}_F for the integral closure of \mathbb{Z} in F. We call \mathcal{O}_F the *ring of integers* of F.

Example

- For $F = \mathbb{Q}$, we have $\mathcal{O}_F = \mathbb{Z}$.
- Let D be a squarefree integer, and let $F = \mathbb{Q}(\sqrt{D})$. Then

$$\mathcal{O}_F = egin{cases} \mathbb{Z}[rac{1+\sqrt{D}}{2}] & ext{if } D \equiv 1 \pmod{4}, \ \mathbb{Z}[\sqrt{D}] & ext{otherwise}. \end{cases}$$

• Let *N* be a positive integer, choose an *N*-th root of unity ζ_N , and let $F = \mathbb{Q}(\zeta_N)$. Then $\mathcal{O}_F = \mathbb{Z}[\zeta_N]$.

Now \mathcal{O}_F is always a free \mathbb{Z} -module of rank $[F : \mathbb{Q}]$, so $\mathcal{O}_F \otimes_{\mathbb{Z}} \mathbb{Q} = F$.

Definition

Let A be a commutative ring. We say A is a *Dedekind domain* if it is integrally closed, noetherian, and every nonzero prime ideal is maximal.

Example

- Every principal ideal domain is also Dedekind,
- Let F be a number field. Then \mathcal{O}_F is a Dedekind domain,
- Let κ be a field of characteristic $\neq 2$. One can show that $\kappa[x, y]/(y^2 x^3 + x)$ is a Dedekind domain.

Definition

Let A be an integral domain. A *fractional ideal* of A is an A-submodule I of Frac A such that $aI \subseteq A$ for some a in A.

Example

Let
$$F = \mathbb{Q}(\sqrt{-5})$$
. Then $\mathfrak{p} = (2, 1 + \sqrt{-5})$ is a prime ideal of \mathcal{O}_F , and
 $\mathfrak{p}^{-1} = \{x \in F \mid x\mathfrak{p} \subseteq \mathcal{O}_F\} = (1, \frac{1}{2} + \frac{\sqrt{-5}}{2})$ is a fractional ideal of \mathcal{O}_F .

Uniquely factorizing elements plays a key role in \mathbb{Z} and \mathbb{Q} . For general Dedekind domains A, we have a weaker version for ideals.

Proposition

Let *I* be a nonzero fractional ideal of *A*. Then *I* can be uniquely written as $\mathfrak{p}_1^{n_1} \cdots \mathfrak{p}_r^{n_r}$ for nonzero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ of *A* and integers n_1, \ldots, n_r .

Thus the set \mathcal{I}_A of nonzero fractional ideals of A forms a group, and it's isomorphic to $\bigoplus_{\mathfrak{p}} \mathbb{Z}$, where \mathfrak{p} runs over nonzero prime ideals of A.

For any nonzero prime ideal \mathfrak{p} of A and x in $(\operatorname{Frac} A)^{\times}$, write $v_{\mathfrak{p}}(x)$ for the exponent of \mathfrak{p} in the unique factorization of (x). We see that $v_{\mathfrak{p}}$: $\operatorname{Frac} A \to \mathbb{Z} \cup \{\infty\}$ yields a discrete valuation on $\operatorname{Frac} A$.