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Example

Let p be a prime number, and let G = Qp. Let m be the Lebesgue
measure on G . By using p-adic expansions, we can identify Qp/Zp with
{z ∈ Q/Z | pnz = 0 for some n ≥ 0} as groups. We take ψ to be the
composition

Qp→Qp/Zp ⊂ Q/Z ⊂ R/Z ϕ→S1.

Since m̂ is a Haar measure on Ĝ ∼= G , it equals c times m for some c > 0.
Next, let f be the indicator function on Zp. Its Fourier transform is

f̂ (a) =

∫
Qp

dx f (x)ψa(x)−1 =

∫
Zp

dx ψ(ax)−1.

If a lies in Zp, then ax does too for all x in Zp. So ψa|Zp is trivial, making

f̂ (a) = 1. If a does not lie in Zp, then vp(a) < 0, and ψa|Zp factors

through a nontrivial group homomorphism Zp/p
−vp(a)Zp→ S1.
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Example (continued)

Therefore the integral becomes∑
x∈Zp/p−vp(a)Zp

m(x)ψa(x)−1 = pvp(a)
∑

x∈Z/p−vp(a)Z

ψa(x)−1 = 0.

Altogether f̂ is also the indicator function on Zp. Thus c = 1, i.e. the
Lebesgue measure on R is self-dual with respect to this choice of ψ.

We want a handy class of functions we can apply Poisson summation to.

Definition

Let f : Rn→C be a smooth function. We say it is Schwartz if, for all
non-negative integers α1, . . . , αn and β1, . . . , βn, the function

xα1
1 · · · x

αn
n

∂β1

∂xβ11

· · · ∂
βn

∂xβnn

f

approaches 0 as |x | → ∞, where x = (x1, . . . , xn).

Write S(Rn) for the set of Schwartz functions on Rn. 3 / 10



Note S(Rn) is preserved under addition, multiplication, and scaling by C.

Example

f (x) = 1
1+x does not lie in S(R), since xf (x) does not approach 0 as

|x | → ∞,

f (x) = e−x
2

sin(ex
2
) does not lie in S(R), since f ′(x) does not

approach 0 as x →∞,

f (x) = e−x
2

lies in S(R).

For nonarchimedean local fields, we use the following functions. Let X be
a totally disconnected topological space.

Definition

Let f : X →C be a function. We say that f is

smooth if it is locally constant,

Bruhat–Schwartz if it is smooth and compactly supported.

Write S(X ) for the set of Bruhat–Schwartz functions on X . Note that
S(X ) is preserved under addition, multiplication, and scaling by C.
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Proposition

Let f be in S(R). Then F (x) =
∑∞

k=−∞ f (x + k) converges uniformly on
compact subsets of R and defines a continuous function F : S1→C.

Proof.

It suffices to consider convergence on [−r , r ] for r > 0. There exists B > 0
such that y2|f (y)| < 1 for all |y | > B. Thus for all |k | > B + r , we have
|f (x + k)| < 1/(k − r)2 for all x in [−r , r ]. The convergence of this series
yields our desired uniform convergence, so F yields a continuous function
F : R→C. For c in Z, uniform convergence allows us to re-index to see

F (x + c) =
∞∑

k=−∞
f (x + c + k) =

∞∑
j=−∞

f (x + j) = F (x),

where j = c + k . So F descends to a continuous function S1→C.
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Remark (Fourier inversion)

Let G be an abelian locally compact topological group, and let m be a
Haar measure on G . If f : G→C is continuous, in L1(G ), and has f̂ in

L1(G ), then f (x) =
̂̂
f (x−1) for all x in G .

Remark

Let F be a local field, and fix a continuous homomorphism ψ : F →S1.
One can show that the Fourier transform yields a C-linear isomorphism
S(F )

∼→S(F̂ ) = S(F ) (where we identify R2 = C when F = C) and
exclusively work with f in S(F ) instead of L2(F ).

Theorem (Poisson summation)

Let f be in S(R). Then
∑∞

k=−∞ f (k) =
∑∞

k=−∞ f̂ (k).

Proof.

Let F (x) =
∑∞

k=−∞ f (x + k), considered as a function S1→C.
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Theorem (Poisson summation)

Let f be in S(R). Then
∑∞

k=−∞ f (k) =
∑∞

k=−∞ f̂ (k).

Proof (continued).

Note that F (1) equals the left-hand side above. First, I claim f̂ (c) = F̂ (c)
for all c in Z, where we use the Lebesgue measure on R and the usual
measure on S1. To see this, note that

F̂ (c) =

∫ 1

0
dx F (x)e−2πcix =

∫ 1

0
dx

∞∑
k=−∞

f (x + k)e−2πcix

=

∫ 1

0
dx

∞∑
k=−∞

f (x + k)e−2πci(x+k) =

∫ ∞
−∞

dy f (y)e−2πciy = f̂ (c),

where y = x + k . Now f̂ lies in S(R), so
∑∞

c=−∞ |f̂ (c)| =
∑∞

c=−∞ |F̂ (c)|
converges. In other words, F̂ lies in L1(Z), so Fourier inversion applies to
F . Hence F (1) =

∑∞
k=−∞ F̂ (k)1k =

∑∞
k=−∞ f̂ (k), as desired.
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Remark

One can use Poisson summation to prove Minkowski’s convex body
theorem, which in turn implies fundamental facts on number fields!

Recall that number fields are finite extensions F of Q. For any number
field F , write OF for the integral closure of Z in F . We call OF the ring of
integers of F .

Example

For F = Q, we have OF = Z.

Let D be a squarefree integer, and let F = Q(
√
D). Then

OF =

{
Z[1+

√
D

2 ] if D ≡ 1 (mod 4),

Z[
√
D] otherwise.

Let N be a positive integer, choose an N-th root of unity ζN , and let
F = Q(ζN). Then OF = Z[ζN ].

Now OF is always a free Z-module of rank [F : Q], so OF ⊗Z Q = F .
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Definition

Let A be a commutative ring. We say A is a Dedekind domain if it is
integrally closed, noetherian, and every nonzero prime ideal is maximal.

Example

Every principal ideal domain is also Dedekind,

Let F be a number field. Then OF is a Dedekind domain,

Let κ be a field of characteristic 6= 2. One can show that
κ[x , y ]/(y2 − x3 + x) is a Dedekind domain.

Definition

Let A be an integral domain. A fractional ideal of A is an A-submodule I
of FracA such that aI ⊆ A for some a in A.

Example

Let F = Q(
√
−5). Then p = (2, 1 +

√
−5) is a prime ideal of OF , and

p−1 = {x ∈ F | xp ⊆ OF} = (1, 12 +
√
−5
2 ) is a fractional ideal of OF .
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Uniquely factorizing elements plays a key role in Z and Q. For general
Dedekind domains A, we have a weaker version for ideals.

Proposition

Let I be a nonzero fractional ideal of A. Then I can be uniquely written as
pn11 · · · pnrr for nonzero prime ideals p1, . . . , pr of A and integers n1, . . . , nr .

Thus the set IA of nonzero fractional ideals of A forms a group, and it’s
isomorphic to

⊕
p Z, where p runs over nonzero prime ideals of A.

For any nonzero prime ideal p of A and x in (FracA)×, write vp(x) for the
exponent of p in the unique factorization of (x). We see that
vp : FracA→Z ∪ {∞} yields a discrete valuation on FracA.
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