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Example

Let p be a prime number, and let G = Q,. Let m be the Lebesgue
measure on G. By using p-adic expansions, we can identify Q,/Z, with
{z€ Q/Z | p"z =0 for some n > 0} as groups. We take 7 to be the
composition

Qp—Qp/Z, C Q/Z CR/Z5 S

Since m is a Haar measure on G = G, it equals ¢ times m for some ¢ > 0.
Next, let f be the indicator function on Z,. Its Fourier transform is

)= | ELOTORE / (o)

If a lies in Zp, then ax does too for all x in Z,. So T/Ja\zp is trivial, making
f(a) = 1. If a does not lie in Zp, then vp(a) <0, and v,|z, factors
through a nontrivial group homomorphism Zp/p_vp(a)Zp—>Sl.

)
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Example (continued)
Therefore the integral becomes

ST mee() =% S 0 =0,

x€ZLp/p~ A7, x€Z/p~ (A7,

Altogether f is also the indicator function on Zp. Thus c =1, i.e. the
Lebesgue measure on R is self-dual with respect to this choice of 1.

We want a handy class of functions we can apply Poisson summation to.

Definition
Let f : R" — C be a smooth function. We say it is Schwartz if, for all
non-negative integers as,...,a, and 31,..., 8,, the function
o o ob HPn
X]_ .. Xn —_— e e e ——
ox;t 0xy"
approaches 0 as |x| — oo, where x = (x1,...,Xp).

Write S(R") for the set of Schwartz functions on R". 3
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Note S(IR") is preserved under addition, multiplication, and scaling by C.

Example
o f(x)= H% does not lie in S(R), since xf(x) does not approach 0 as
|x| = oo,
o f(x) = e sin(e*") does not lie in S(R), since f/(x) does not
approach 0 as x — oo,
o f(x) = e lies in S(R).

For nonarchimedean local fields, we use the following functions. Let X be
a totally disconnected topological space.
Definition
Let f : X — C be a function. We say that f is
@ smooth if it is locally constant,

@ Bruhat—Schwartz if it is smooth and compactly supported.

Write S(X) for the set of Bruhat-Schwartz functions on X. Note that
S(X) is preserved under addition, multiplication, and scaling by C.



Proposition

Let f be in S(R). Then F(x) = >";2 __ f(x + k) converges uniformly on
compact subsets of R and defines a continuous function F : ST — C.

Proof.

It suffices to consider convergence on [—r, r] for r > 0. There exists B > 0
such that y2|f(y)| < 1 for all |y| > B. Thus for all |k| > B + r, we have
|f(x + k)| < 1/(k —r)? for all x in [—r, r]. The convergence of this series
yields our desired uniform convergence, so F yields a continuous function
F :R—C. For c in Z, uniform convergence allows us to re-index to see

F(x+c)= Zf(x+c—|—k if(x—i—j):F(x),

k=—o00 j=—00

where j = ¢ + k. So F descends to a continuous function S! — C. Ol
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Remark (Fourier inversion)

Let G be an abelian locally compact topological group, and let m be a
Haar measure on G. If f : G — C is continuous, in L}(G), and has f in

~

L1(G), then f(x) = f(x1) for all x in G.

Remark

Let F be a local field, and fix a continuous homomorphism 1 : F— St

One can show that the Fourier transform yields a C-linear isomorphism
S(F) = S(F) = S(F) (where we identify R> = C when F = C) and
exclusively work with f in S(F) instead of L2(F).

Theorem (Poisson summation)

~

Let f be in S(R). Theny 3> f(k)=> 72 f(k).

Proof.
Let F(x) = >_%2 __ f(x + k), considered as a function S* — C.

k=—00
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Theorem (Poisson summation)

Let f be in S(R). Then S22 f(k) = Y222 __ f(k).

Proof (continued).

~

Note that F(1) equals the left-hand side above. First, | claim f(c) = F(c)
for all ¢ in Z, where we use the Lebesgue measure on R and the usual
measure on S1. To see this, note that

1 . 1 S .
Flc) = / dx F(x)e~2meix — / dx S F(x + ke 2
0 0

k=—00

1 x 00 . R
= [Cax 3 flcer e — [T dy (e 2 — ),
0

k=—o00 -

where y = x + k. Now f lies in S(R), so -2 ___|f(c)| = 32 __ |F(<)|
converges. In other words, E lies in LY(Z), so Fourier inversion applies to
F. Hence F(1) =332 F(k)1k =3"%2 _ f(k), as desired. O
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Remark

One can use Poisson summation to prove Minkowski's convex body
theorem, which in turn implies fundamental facts on number fields!

Recall that number fields are finite extensions F of QQ. For any number
field F, write OF for the integral closure of Z in F. We call Of the ring of
integers of F.
Example

@ For F =Q, we have O = Z.

o Let D be a squarefree integer, and let F = Q(v/D). Then

on _ ZIYP] if D=1 (mod 4),
- Z[VD]  otherwise.

@ Let N be a positive integer, choose an N-th root of unity (y, and let
F = Q(CN) Then OF = Z[CN]-

Now OF is always a free Z-module of rank [F : Q], so O ®7 Q = F.
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Definition
Let A be a commutative ring. We say A is a Dedekind domain if it is
integrally closed, noetherian, and every nonzero prime ideal is maximal.

Example
@ Every principal ideal domain is also Dedekind,
@ Let F be a number field. Then Of is a Dedekind domain,

@ Let x be a field of characteristic # 2. One can show that
k[x,y]/(y® — x3 + x) is a Dedekind domain.

Definition
Let A be an integral domain. A fractional ideal of A is an A-submodule /
of Frac A such that al C A for some a in A.

Example

Let F = Q(+v/=5). Then p = (2,1 ++/=5) is a prime ideal of Of, and
—{x € F|xp C O} = (1,1 +Y53) is a fractional ideal of OF.




Uniquely factorizing elements plays a key role in Z and Q. For general
Dedekind domains A, we have a weaker version for ideals.

Proposition
Let / be a nonzero fractional ideal of A. Then [ can be uniquely written as
pit -+ pyr for nonzero prime ideals p1,...,p, of A and integers ny,...,n,.

Thus the set 74 of nonzero fractional ideals of A forms a group, and it's
isomorphic to @p Z, where p runs over nonzero prime ideals of A.

For any nonzero prime ideal p of A and x in (Frac A)*, write v,(x) for the
exponent of p in the unique factorization of (x). We see that
vp : FracA—Z U {oo} yields a discrete valuation on Frac A.
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