Pontryagin Duality

(and Fourier inversion and the Plancherel theorem, oh my!)

Siyan Daniel Li-Huerta

October 8, 2020

Let G be an abelian locally compact topological group. Let m be a Haar measure on G. For any measurable $f: G \to \mathbb{C}$ and $1 \le p < \infty$, define the L^p -norm

$$\|f\|_p = \left(\int_G \mathrm{d}x \, |f(x)|^p\right)^{1/p} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$$

This gives $C_c(G)$ the structure of a pre-Banach space over \mathbb{C} .

Write $L^{p}(G)$ for the completion of $C_{c}(G)$ with respect to $\|\cdot\|_{p}$. Then $L^{p}(G)$ is a Banach space over \mathbb{C} , and recall we can identify it with

$$\{f: G
ightarrow \mathbb{C} \mid f \text{ is measurable, and } \|f\|_p < \infty\}/\sim,$$

where $f \sim g$ if and only if f = g outside a subset of measure zero, i.e. *almost everywhere*.

Definition

Let $f : G \to \mathbb{C}$ be in $L^1(G)$. Its Fourier transform is the function $\hat{f} : \hat{G} \to \mathbb{C}$ given by $\chi \mapsto \int_G \mathrm{d}x f(x)\chi^{-1}(x)$.

Note that the triangle inequality yields

$$|\widehat{f}(\chi)| = \left| \int_{\mathcal{G}} \mathrm{d}x \, f(x) \chi^{-1}(x) \right| \leq \int_{\mathcal{G}} \mathrm{d}x \, |f(x)| = \|f\|_1.$$

Example

- Let G = Z/nZ with the discrete topology, and let m be the counting measure. Then every function f : G → C lies in L¹(G), and f
 f(ζ) = ∑_{k=1}ⁿ f(k)ζ^{-k} for any n-th root of unity ζ.
- Let $G = \mathbb{Z}$ with the discrete topology, and let m be the counting measure. Then $f : G \to \mathbb{C}$ lies in $L^1(G)$ if and only if $\sum_{k=-\infty}^{\infty} |f(k)|$ is finite, and in that case $\widehat{f}(z) = \sum_{k=-\infty}^{\infty} f(k)z^{-k}$ for any z in S^1 .
- Let $G = S^1$, and let *m* be the pushforward of the Lebesgue measure via $\varphi : [0,1] \rightarrow S^1$. Let $f : G \rightarrow \mathbb{C}$ be in $L^1(G)$. Then

$$\widehat{f}(k) = \int_{S^1} \mathrm{d}z \, f(z) z^{-k} = \int_0^1 \mathrm{d}x \, f(\varphi(x)) e^{-2\pi k i x},$$

i.e. $\widehat{f}(k)$ is the k-th Fourier coefficient of the periodic function $f \circ g_{21}$

Theorem (Plancherel)

There exists a Haar measure \widehat{m} on \widehat{G} such that, for all f in $L^1(G) \cap L^2(G)$, its Fourier transform \widehat{f} lies in $L^2(\widehat{G})$ and satisfies $||f||_2 = ||\widehat{f}||_2$. Furthermore, the set of all such \widehat{f} is dense in $L^2(\widehat{G})$.

We call \widehat{m} the *dual* measure on \widehat{G} . Note this implies that $f \mapsto \widehat{f}$ extends to an isometry $L^2(G) \xrightarrow{\sim} L^2(\widehat{G})$, which we also denote using $\widehat{\cdot}$.

Next, let x be in G. Consider the group homomorphism $ev_x : \widehat{G} \to S^1$ given by $\chi \mapsto \chi(x)$.

Proposition

The homomorphism ev_x is continuous.

Proof.

We have to show $ev_x^{-1}(N(1)) = \{\chi \in \widehat{G} \mid \chi(x) \subseteq N(1)\}$ is open. But this equals $W(\{x\}, 1, \sqrt{3})$, so it's open.

Hence we get a map ev : $G \to \widehat{\widehat{G}}$, which we see is a group homomorphism.

Theorem (Pontryagin duality)

The map ev is an isomorphism of topological groups.

Example

- Let G = Z/nZ with the discrete topology. Recall we identified *G* → {ζ ∈ C | ζⁿ = 1} via χ ↦ χ(1). By choosing a primitive *n*-th root of unity, we see that Z/nZ → *G* under this identification via *k* ↦ (ζ ↦ ζ^k). As χ(1)^k = χ(k), this shows ev is an isomorphism of groups. Since *G* is discrete, it's a homeomorphism.
- Let G = Z with the discrete topology. Similarly, we have G̃ → S¹ via *χ* → *χ*(1). Recalling also that Z → Ĝ via *k* → (*z* → *z^k*), the observation *χ*(1)^{*k*} = *χ*(*k*) shows that ev is an isomorphism of topological groups here too.

We use ev to identify $\widehat{\widehat{G}}$ with G. Thus m yields a Haar measure on $\widehat{\widehat{G}}$.

Theorem (Fourier inversion)

Let f be in $L^2(G)$. Then $f(x) = \widehat{\widehat{f}}(x^{-1})$ almost everywhere on G.

Example

Let $G = S^1$ with the usual measure m, and let f be in $L^2(G)$. Since \widehat{m} is a Haar measure on $\widehat{G} = \mathbb{Z}$, it equals c times the counting measure for some c > 0. Taking f = 1 in the Fourier inversion formula yields

$$1 = c \sum_{k=-\infty}^{\infty} \widehat{f}(k)(z^{-1})^{-k} = c,$$

since \hat{f} equals the indicator function on 0. Thus \hat{m} equals the counting measure. For general f in $L^2(G)$, Fourier inversion then becomes

$$f(\varphi(x)) = f(z) = \sum_{k=-\infty}^{\infty} \widehat{f}(k)(z^{-1})^{-k} = \sum_{k=-\infty}^{\infty} \widehat{f}(k)e^{2\pi k i x},$$

where we set $z = \varphi(x)$. This is precisely the Fourier expansion of $f \circ \varphi$.

Next, let's discuss Pontryagin duality relates to closed subgroups.

Proposition

- Let H be a closed subgroup of G.
 - H is an abelian locally compact topological group.
 - **2** G/H is an abelian locally compact topological group.

Proof.

- Now H is immediately an abelian Hausdorff topological group. For any open subset U of G with compact closure, W = U ∩ H is open in H, and cl_H W = cl_G U ∩ H is a closed subset of cl_G U, thus compact.
- Since H is closed, we see G/H is an abelian Hausdorff topological group. Let U be a neighborhood of 1 in G with compact closure. Because the quotient map π : G → G/H is open, we see π(U) is a neighborhood of 1 in G/H. Now π(U) is compact and hence closed, as G/H is Hausdorff. Thus π(U) ⊆ π(U) is also compact.

Note that we can identify $\widehat{G/H}$ with $\{\chi \in \widehat{G} \mid \chi(H) = 1\}$ as groups.

Proposition

This identifies $\widehat{G/H}$ as a closed subgroup of \widehat{G} , and we have a short exact sequence of topological groups $1 \to \widehat{G/H} \to \widehat{G} \to \widehat{H} \to 1$, where $\widehat{G} \to \widehat{H}$ is given by restriction.

Example

Let G = F be a local field, and let $\psi : G \to S^1$ be a nontrivial continuous homomorphism. For any *a* in *G*, the homomorphism $\psi_a : G \to S^1$ given by $x \mapsto \psi(ax)$ is continuous, since multiplication by *a* is continuous. I claim this yields an isomorphism $\psi_{\cdot} : G \to \widehat{G}$ of topological groups.

It is injective because if $\psi(ax) = 1$ for all x in G, the nontriviality of ψ implies that a = 0. Next, consider the closed subgroup $H = \overline{\psi.(G)}$ of \widehat{G} . We can identify $\widehat{G/H}$ with the group $\{\chi \in \widehat{G} \mid \chi(H) = 1\}$. This group is trivial, since $H \supseteq \psi.(G)$, and if $\psi(ax) = 1$ for all a in G, then x = 0 as before. Thus the proposition shows $\widehat{G} \xrightarrow{\sim} \widehat{H}$, and Pontryagin duality gives $H = \widehat{G}$.

Example (continued)

If we could show ψ is a homeomorphism onto its image, we'd be done, because $\psi_{\cdot}(G)$ would be locally compact and hence closed. For continuity, let *a* be in *G*, and consider the neighborhood $W(B_c(0, r), 1, \sqrt{3})\psi_a$ of ψ_a . As ψ is continuous, we see $\psi(VB_c(0, r))$ lies in N(1) for a small enough neighborhood *V* of 1. Thus $\psi_{\cdot}(V)$ lies in $W(B_c(0, r), 1, \sqrt{3})$, implying that ψ_{\cdot} sends V + a to $W(B_c(0, r), 1, \sqrt{3})\psi_a$.

For openness, let $x_0 \neq 0$ in G satisfy $\psi(x_0) \neq 1$, and consider the neighborhood $B_o(a, \epsilon)$ of a. Any ψ_b in $W(B_c(0, |x_0|/\epsilon), 1, |\psi(x_0) - 1|)$ must not have x_0 in $bB_c(0, |x_0|/\epsilon)$. Therefore $|x_0| > |b|(|x_0|/\epsilon)$ and hence $\epsilon > |b|$, implying that ψ_{\cdot}^{-1} sends $W(B_c(0, |x_0|/\epsilon), 1, |\psi(x_0) - 1|)$ to $B_o(a, \epsilon)$.

Our flexibility in choosing ψ for this isomorphism is convenient for making calculations.

Example

Let $G = \mathbb{R}$, and let *m* be the Lebesgue measure on *G*. Choose $\psi = \varphi$, and let *f* be in $L^1(G)$. Under the above identification, the Fourier transform of *f* is given by

$$\widehat{f}(a) = \int_{\mathbb{R}} \mathrm{d}x \, f(x) \psi_{a}(x)^{-1} = \int_{-\infty}^{\infty} \mathrm{d}x \, f(x) e^{-2\pi a i x},$$

i.e. it's the usual Fourier transform. Since \widehat{m} is a Haar measure on $\widehat{G} \cong G$, it equals c times m for some c > 0. Taking $f(x) = e^{-\pi x^2}$ in the above yields $\widehat{f}(a) = e^{-\pi a^2}$. Thus c = 1, i.e. the Lebesgue measure on \mathbb{R} is *self-dual* with respect to this choice of ψ .

Suppose now that f lies in $L^1(G) \cap L^2(G)$. Fourier inversion then becomes

$$f(x) = \int_{\mathbb{R}} \mathrm{d}a \,\widehat{f}(a) \psi_{a}(-x)^{-1} = \int_{-\infty}^{\infty} \mathrm{d}a \,\widehat{f}(a) e^{2\pi a i x},$$

i.e. it's the classic Fourier inversion formula.