More on Pontryagin Duals

Siyan Daniel Li-Huerta

October 6, 2020

Let G be an abelian topological group. Write $\varphi : \mathbb{R} \to S^1$ for the map $x \mapsto \exp(2\pi i x)$. Note φ realizes \mathbb{R} as the universal cover of S^1 , sending the base-point 0 to 1.

Example

Let $G = S^1$. Let $\chi : S^1 \to S^1$ be in \widehat{G} . Because \mathbb{R} is simply connected, we can lift $\chi \circ \varphi : \mathbb{R} \to S^1$ uniquely to a continuous map $\widetilde{\chi} : \mathbb{R} \to \mathbb{R}$ satisfying $\widetilde{\chi}(0) = 0$. Thus we have a commutative diagram

One can use the fact that $\chi \circ \varphi$ is a homomorphism to show $\tilde{\chi}$ is too, and $\tilde{\chi}$ preserves $\varphi^{-1}(0) = \mathbb{Z}$. Thus $\tilde{\chi}$ equals multiplication-by-k for some k in \mathbb{Z} , so χ equals $z \mapsto z^k$. This identifies \widehat{G} with \mathbb{Z} as a group. The neighborhoods $W(G, 1, \epsilon)$ show that \widehat{G} is discrete.

Let t be in (0, 1], and write N(t) for $\varphi((-\frac{t}{3}, \frac{t}{3}))$. As $t \to 0$, note the N(t) form a basis of neighborhoods of 1. Write $U^{(m)}$ for $\underbrace{U \cdots U}_{m \text{ times}}$, where $U \subseteq G$.

Lemma

Let z be in S¹, and suppose z, z^2, \ldots, z^m lie in N(1). Then z lies in N($\frac{1}{m}$).

In particular, let $\chi : G \to S^1$ be a group homomorphism, and let U be a subset of G containing 1. If $\chi(U^{(m)}) \subseteq N(1)$, then $\chi(U) \subseteq N(\frac{1}{m})$.

Proof.

We induct on *m*, where the m = 1 case is immediate. Assume now that z, \ldots, z^{m+1} lie in N(1). By induction, we know *z* lies in $N(\frac{1}{m})$. Since z^{m+1} lies in N(1), there exists *y* in $N(\frac{1}{m+1})$ such that $y^{m+1} = z^{m+1}$. This that implies z/y is an (m+1)-th root of unity, so $z = y \cdot (z/y)$ lies in $N(\frac{1}{m+1})\varphi(\frac{q}{m+1})$ for an integer $0 \le q \le m$.

I claim that $N(\frac{1}{m})$ and $N(\frac{1}{m+1})\varphi(\frac{q}{m+1})$ intersect if and only if q = 0. To see this, note that $N(\frac{1}{m})$ and $N(\frac{1}{m+1})\varphi(\frac{q}{m+1})$ are the homeomorphic images of $(-\frac{1}{3m}, \frac{1}{3m})$ and $(\frac{3q-1}{3(m+1)}, \frac{3q+1}{3(m+1)})$, respectively.

Lemma

Let z be in S^1 , and suppose z, z^2, \ldots, z^m lie in N(1). Then z lies in $N(\frac{1}{m})$.

Proof (continued).

These images intersect if and only if

$$\frac{1}{3m} > \frac{3q-1}{3(m+1)} \iff m+1 > 3qm-m \iff 2r+1 > 3qr \iff q=0.$$

Because z lies in $N(\frac{1}{m})$, we have q = 0 and hence z lies in $N(\frac{1}{m+1})$.

Drawing a picture and using the law of cosines shows that

$$N(t) = \{z \in S^1 \mid |z - 1| < \sqrt{2 - 2\cos(2\pi t/3)}\}.$$

Therefore $W(K, 1, \sqrt{2 - 2\cos(2\pi t/3)})$ equals the set of χ in \widehat{G} such that $\chi(K) \subseteq N(t)$. As $t \to 0$, we see $\sqrt{2 - 2\cos(2\pi t/3)} \to 0$, so these form a basis of neighborhoods of 1.

Let G be an abelian topological group.

- Let $\chi: G \to S^1$ be a group homomorphism. Then χ is continuous if and only if $\chi^{-1}(N(1))$ is open.
- S As K ranges over compact subsets of G, the W(K, 1, √3) form a basis of neighborhoods of 1.
- If G is discrete, then \widehat{G} is compact.
- If G is compact, then \widehat{G} is discrete.

Proof.

If χ is continuous, then χ⁻¹(N(1)) is open since N(1) is. Conversely, suppose χ⁻¹(N(1)) is open. Let x be in G, and consider the neighborhood N(t)χ(x) of χ(x). There exists an integer m ≥ 1 such that ¹/_m ≤ t, and χ⁻¹(N(1)) contains a neighborhood V of 1 such that V^(m) ⊆ χ⁻¹(N(1)). Therefore χ(V)^(m) ⊆ N(1), so χ(V) ⊆ N(¹/_m). Hence V ⊆ χ⁻¹(N(¹/_m)), so the image of Vx under χ lies in N(t)χ(x).

Let G be an abelian topological group.

- Let $\chi: G \to S^1$ be a group homomorphism. Then χ is continuous if and only if $\chi^{-1}(N(1))$ is open.
- S As K ranges over compact subsets of G, the W(K, 1, √3) form a basis of neighborhoods of 1.
- **③** If G is discrete, then \widehat{G} is compact.
- If G is compact, then \widehat{G} is discrete.

Proof (continued).

- Consider a neighborhood W(K', 1, $\sqrt{2 2\cos(2\pi/3m)}$) of 1. Let K = K'^(m), which is compact. If χ lies in W(K, 1, $\sqrt{3}$), then $\chi(K')^{(m)} \subseteq N(1)$ and thus $\chi(K') \subseteq N(\frac{1}{m})$. Thus we see W(K, 1, $\sqrt{3}$) is a neighborhood of 1 contained in W(K', 1, $\sqrt{2 - 2\cos(2\pi/3m)})$.
- Homework problem.
- Let \(\chi\) be in \(\hightarrow G\). Then \(\chi(G)\) is a subgroup of \(S^1\), but \(N(1)\) contains no nontrivial subgroups. Thus \(W(G,1,\sqrt{3}) = \{1\}\).

If G is locally compact, then \widehat{G} is too.

Proof.

Suppose χ in \widehat{G} is nontrivial. Then $\chi(g) \neq 1$ for some g in G, so the open subset $W(\{g\}, \chi, \frac{1}{2}|\chi(g) - 1|)$ does not contain 1. Taking unions over all such χ shows that $\{1\}$ is closed in \widehat{G} .

Next, we have a neighborhood O of 1 whose closure is compact. I claim that $W(\overline{O}, 1, \sqrt{2 - 2\cos(2\pi/12)})$ has compact closure. To see this, note it suffices to prove

$$W = \{\chi \in \widehat{G} \mid \chi(\overline{O}) \subseteq \overline{N(\frac{1}{4})}\}$$

is compact. Write G_0 for the group G with the discrete topology. Then \widehat{G}_0 is compact, and we view \widehat{G} as a subgroup of $Hom(G, S^1) = \widehat{G}_0$.

If G is locally compact, then \widehat{G} is too.

Proof (continued).

Write $W_0 = \{\chi \in \widehat{G_0} \mid \chi(\overline{O}) \subseteq \overline{N(\frac{1}{4})}\}$. Then W_0 is an intersection of closed subsets of $\widehat{G_0}$ and hence is closed in $\widehat{G_0}$. Thus W_0 is compact. Next, we immediately have $W \subseteq W_0$, and because O is a neighborhood of 1 and $\overline{N(\frac{1}{4})} \subseteq N(1)$, we have $W_0 \subseteq W$.

So we just have to show the topology on W_0 from $\widehat{G_0}$ is finer than the topology on W from \widehat{G} . Let χ be in W, and consider $U = W \cap W(K, \chi, \sqrt{2-2\cos(2\pi/3m)})$. Now O contains a neighborhood V of 1 such that $V^{(2m)} \subseteq O$. As K is compact, we have $K \subseteq FV$ for some finite subset F of G.

Form
$$U_0 = W_0 \cap W_0(F, \chi, \sqrt{2 - 2\cos(2\pi/6m)})$$
, and suppose ρ lies in U_0 .
Since $\overline{N(\frac{1}{4})}^{-1} = \overline{N(\frac{1}{4})}$, we see $\xi = \chi^{-1}\rho$ sends \overline{O} to $\overline{N(\frac{1}{2})} \subseteq N(1)$.

If G is locally compact, then \widehat{G} is too.

Proof (continued).

Therefore ξ is continuous, and since $V^{(2m)} \subseteq O$, we get $\xi(V) \subseteq N(\frac{1}{2m})$. Because we translated by χ^{-1} , we also see that ξ lies in $W_0(F, 1, \sqrt{2 - 2\cos(2\pi/6m)})$, so $\xi(F) \subseteq N(\frac{1}{2m})$. Hence $\xi(K) \subseteq \xi(F)\xi(O) \subseteq N(\frac{1}{m})$, so ξ lies in $W(K, 1, \sqrt{2 - 2\cos(2\pi/3m)})$. Multiplying by χ shows ρ lies in U, so altogether U_0 is a neighborhood of χ in W_0 contained in U. Hence we obtain the desired fineness statement.