Haar Measures and Pontryagin Duals

Siyan Daniel Li-Huerta

October 1, 2020

Let X be a topological space, and write \mathcal{B} for its Borel σ-algebra. Let m be a measure on \mathcal{B}.

Definition

Let E be in \mathcal{B}. We say that m is

- outer regular on E if $m(E)=\inf \{m(O) \mid O \supseteq E$ is open $\}$,
- inner regular on E if $m(U)=\sup \{m(K) \mid K \subseteq E$ is compact $\}$.

Example

Let X be \mathbb{R} or a nonarchimedean local field, and let m be the Lebesgue measure. For all E in \mathcal{B} and $\epsilon>0$, we have an open subset O and a closed subset C such that $m(O \backslash E)<\epsilon / 2$ and $m(E \backslash C)<\epsilon / 2$. Taking $\epsilon \rightarrow 0$ shows m is outer regular on E.

For inner regularity, note that $C=\bigcup_{i=1}^{\infty} C \cap B_{c}(0, i)$, and the $C \cap B_{c}(0, i)$ are compact. Thus $m(C) \lim _{i \rightarrow \infty} m\left(C \cap B_{c}(0, i)\right)$, so using these compact subsets shows m is inner regular on E too.

Next, suppose X is a topological group.

Definition

We say m is left invariant if, for all x in X and E in \mathcal{B}, we have $m(x E)=m(E)$. We say m is right invariant if, for all x in X and E in \mathcal{B}, we have $m(E x)=m(E)$.

Example

In our previous example (with $X=\mathbb{R}$ or a nonarchimedean field), m is left (and right) invariant, where we view X as a group under addition as usual.

Definition

We say m is left Haar if it is nonzero, left invariant, outer regular on Borel subsets, inner regular on open subsets, and finite on compact subsets.

Theorem (Haar)
Assume X is locally compact. Then X has a left Haar measure, and any two left Haar measures m_{1} and m_{2} on X satisfy $m_{1}=c m_{2}$ for some $c>0$.

Example

- Consider any group G with the discrete topology. Then the counting measure on G is left Haar,
- The pushforward of the Lebesgue measure via $\exp (2 \pi i \cdot):[0,1] \rightarrow S^{1}$ yields a left Haar measure on S^{1},
- Let F be a local field. Then the Lebesgue measure on F (where we use the product measure when $F=\mathbb{C}=\mathbb{R} \times \mathbb{R}$) is left Haar,
- Let F be a local field, and consider $X=F^{\times}$. The measure given by

$$
E \mapsto \int_{E} \frac{\mathrm{~d} x}{\|x\|}
$$

for E in \mathcal{B} is left Haar, where the integral is taken with the Lebesgue measure, and $\|x\|=|x|$ (except when $F=\mathbb{C}$, where $\left.\|x\|=|x|^{2}\right)$.
This reduces to the fact $m(x E)=\|x\| m(E)$, which follows from the case when E is a closed ball.
We often denote $\mathrm{d} x /\|x\|$ as $\mathrm{d}^{\times} x$.

Example

- Let F be a local field, and consider the group $X=\mathrm{GL}_{n}(F)=\left\{A \in \operatorname{Mat}_{n \times n}(F) \mid \operatorname{det}\{A\} \neq 0\right\}$ with the subspace topology of the product topology. The measure given by

$$
E \mapsto \int_{E} \frac{\mathrm{~d} x}{\left\|\operatorname{det} x^{n}\right\|}
$$

for E in \mathcal{B} is left Haar, where the integral is taken with the Lebesgue product measure.

Definition

Let G be an abelian topological group. Its Pontryagin dual, denoted by \widehat{G}, is the set of continuous group homomorphisms $\chi: G \rightarrow S^{1}$. We give \widehat{G} a group structure by setting $\left(\chi_{1} \chi_{2}\right)(x)=\chi_{1}(x) \chi_{2}(x)$ for all χ_{1} and χ_{2} in \widehat{G}. We give \widehat{G} a topology by using $W(K, \xi, \epsilon)=\{\chi \in \widehat{G}| | \chi-\xi \mid<\epsilon$ on $K\}$ for a basis, where K runs over compact subsets of G, ξ runs over elements of \widehat{G}, and ϵ runs over positive reals.

Remark

Say χ lies in $W(K, \xi, \epsilon)$. The compactness of K implies that $|\chi-\xi|$ attains a maximum $M<\epsilon$ on K. The triangle inequality shows that $W(K, \chi, \epsilon-M)$ is a neighborhood of χ in $W(K, \xi, \epsilon)$, so altogether subsets of the form $W(K, \chi, \epsilon)$ form a basis of neighborhoods of χ.

Proposition

Let G be an abelian topological group. Then \widehat{G} is too.

Proof.

Since elements of \widehat{G} are valued in S^{1}, we have $\left|\chi^{-1}-\xi\right|=\left|\xi^{-1}-\chi\right|$. Thus the inverse in \widehat{G} of $W(K, \xi, \epsilon)$ is $W\left(K, \xi^{-1}, \epsilon\right)$, making inversion continuous. Next, let $\left\{\left(\chi_{\alpha}, \rho_{\alpha}\right)\right\}_{\alpha \in A}$ be a net in $\widehat{G} \times \widehat{G}$ converging to (χ, ρ), and suppose $W(K, \chi, \epsilon)$ is a neighborhood of $\chi \rho$. As $\left\{\chi_{\alpha}\right\}_{\alpha \in A}$ converges to χ, we see that χ_{α} lies in $W(K, \chi, \epsilon / 2)$ for sufficiently large α. The same holds for ρ_{α} and ρ. Hence $\left|\chi_{\alpha} \rho_{\alpha}-\chi \rho\right|$ is bounded by $\left|\chi_{\alpha}\left(\rho_{\alpha}-\rho\right)\right|+\left|\left(\chi_{\alpha}-\chi\right) \rho\right|=\left|\rho_{\alpha}-\rho\right|+\left|\chi_{\alpha}-\chi\right|<\epsilon$ on K, so $\left\{\chi_{\alpha} \rho_{\alpha}\right\}_{\alpha \in A}$ converges to $\chi \rho$. This shows that multiplication on \widehat{G} is continuous.

Remark

Suppose G is discrete. Then every compact subset K is finite, so the topology on \widehat{G} is precisely the subspace topology from $\widehat{G} \subseteq \prod_{x \in G} S^{1}$.

Example

- Let $G=\mathbb{Z} / n \mathbb{Z}$ with the discrete topology. Then $\widehat{G}=\operatorname{Hom}\left(\mathbb{Z} / n \mathbb{Z}, S^{1}\right)$ is identified with $\left\{\zeta \in \mathbb{C} \mid \zeta^{n}=1\right\}$ via $\chi \mapsto \chi(1)$. We see \widehat{G} is discrete too, and choosing a primitive n-th root of unity yields $G \xrightarrow{\sim} \widehat{G}$.
- Let $G=\mathbb{Z}$ with the discrete topology. Then $\widehat{G}=\operatorname{Hom}\left(\mathbb{Z}, S^{1}\right)$ is similarly identified with S^{1} via $\chi \mapsto \chi(1)$. Under this identification, $W(\{n\}, \xi, \epsilon)$ becomes $\left\{z \in S^{1}| | z^{n}-\xi(1)^{n} \mid<\epsilon\right\}$. Taking all n-th roots shows this is a union of n open intervals in S^{1}. Using $n=1$ indicates that the resulting topology is the Euclidean topology on S^{1}.

