Haar Measures and Pontryagin Duals

Siyan Daniel Li-Huerta

October 1, 2020

Let X be a topological space, and write \mathcal{B} for its Borel σ -algebra. Let m be a measure on \mathcal{B} .

Definition

Let E be in \mathcal{B} . We say that m is

- outer regular on E if $m(E) = \inf\{m(O) \mid O \supseteq E \text{ is open}\},\$
- inner regular on E if $m(U) = \sup\{m(K) \mid K \subseteq E \text{ is compact}\}.$

Example

Let X be \mathbb{R} or a nonarchimedean local field, and let m be the Lebesgue measure. For all E in \mathcal{B} and $\epsilon > 0$, we have an open subset O and a closed subset C such that $m(O \setminus E) < \epsilon/2$ and $m(E \setminus C) < \epsilon/2$. Taking $\epsilon \to 0$ shows m is outer regular on E.

For inner regularity, note that $C = \bigcup_{i=1}^{\infty} C \cap B_c(0, i)$, and the $C \cap B_c(0, i)$ are compact. Thus $m(C) \lim_{i \to \infty} m(C \cap B_c(0, i))$, so using these compact subsets shows m is inner regular on E too.

Next, suppose X is a topological group.

Definition

We say *m* is *left invariant* if, for all *x* in *X* and *E* in \mathcal{B} , we have m(xE) = m(E). We say *m* is *right invariant* if, for all *x* in *X* and *E* in \mathcal{B} , we have m(Ex) = m(E).

Example

In our previous example (with $X = \mathbb{R}$ or a nonarchimedean field), *m* is left (and right) invariant, where we view X as a group under addition as usual.

Definition

We say m is *left Haar* if it is nonzero, left invariant, outer regular on Borel subsets, inner regular on open subsets, and finite on compact subsets.

Theorem (Haar)

Assume X is locally compact. Then X has a left Haar measure, and any two left Haar measures m_1 and m_2 on X satisfy $m_1 = cm_2$ for some c > 0.

Example

- Consider any group G with the discrete topology. Then the counting measure on G is left Haar,
- The pushforward of the Lebesgue measure via $\exp(2\pi i \cdot)$: $[0,1] \rightarrow S^1$ yields a left Haar measure on S^1 ,
- Let F be a local field. Then the Lebesgue measure on F (where we use the product measure when F = C = R × R) is left Haar,
- Let F be a local field, and consider $X = F^{\times}$. The measure given by

$$E\mapsto \int_E \frac{\mathrm{d}x}{\|x\|}$$

for *E* in *B* is left Haar, where the integral is taken with the Lebesgue measure, and ||x|| = |x| (except when $F = \mathbb{C}$, where $||x|| = |x|^2$). This reduces to the fact m(xE) = ||x||m(E), which follows from the case when *E* is a closed ball. We often denote dx / ||x|| as $d^{\times}x$. Example

Let F be a local field, and consider the group
X = GL_n(F) = {A ∈ Mat_{n×n}(F) | det{A} ≠ 0} with the subspace topology of the product topology. The measure given by

$$E \mapsto \int_E \frac{\mathrm{d}x}{\|\det x^n\|}$$

for E in \mathcal{B} is left Haar, where the integral is taken with the Lebesgue product measure.

Definition

Let G be an abelian topological group. Its *Pontryagin dual*, denoted by \widehat{G} , is the set of continuous group homomorphisms $\chi : G \to S^1$. We give \widehat{G} a group structure by setting $(\chi_1\chi_2)(x) = \chi_1(x)\chi_2(x)$ for all χ_1 and χ_2 in \widehat{G} .

We give \widehat{G} a topology by using $W(K, \xi, \epsilon) = \{\chi \in \widehat{G} \mid |\chi - \xi| < \epsilon \text{ on } K\}$ for a basis, where K runs over compact subsets of G, ξ runs over elements of \widehat{G} , and ϵ runs over positive reals.

Remark

Say χ lies in $W(K, \xi, \epsilon)$. The compactness of K implies that $|\chi - \xi|$ attains a maximum $M < \epsilon$ on K. The triangle inequality shows that $W(K, \chi, \epsilon - M)$ is a neighborhood of χ in $W(K, \xi, \epsilon)$, so altogether subsets of the form $W(K, \chi, \epsilon)$ form a basis of neighborhoods of χ .

Proposition

Let G be an abelian topological group. Then \widehat{G} is too.

Proof.

Since elements of \widehat{G} are valued in S^1 , we have $|\chi^{-1} - \xi| = |\xi^{-1} - \chi|$. Thus the inverse in \widehat{G} of $W(K, \xi, \epsilon)$ is $W(K, \xi^{-1}, \epsilon)$, making inversion continuous. Next, let $\{(\chi_{\alpha}, \rho_{\alpha})\}_{\alpha \in A}$ be a net in $\widehat{G} \times \widehat{G}$ converging to (χ, ρ) , and suppose $W(K, \chi, \epsilon)$ is a neighborhood of $\chi\rho$. As $\{\chi_{\alpha}\}_{\alpha \in A}$ converges to χ , we see that χ_{α} lies in $W(K, \chi, \epsilon/2)$ for sufficiently large α . The same holds for ρ_{α} and ρ . Hence $|\chi_{\alpha}\rho_{\alpha} - \chi\rho|$ is bounded by $|\chi_{\alpha}(\rho_{\alpha} - \rho)| + |(\chi_{\alpha} - \chi)\rho| = |\rho_{\alpha} - \rho| + |\chi_{\alpha} - \chi| < \epsilon$ on K, so $\{\chi_{\alpha}\rho_{\alpha}\}_{\alpha \in A}$ converges to $\chi\rho$. This shows that multiplication on \widehat{G} is continuous.

Remark

Suppose G is discrete. Then every compact subset K is finite, so the topology on \widehat{G} is precisely the subspace topology from $\widehat{G} \subseteq \prod_{x \in G} S^1$.

Example

- Let $G = \mathbb{Z}/n\mathbb{Z}$ with the discrete topology. Then $\widehat{G} = \text{Hom}(\mathbb{Z}/n\mathbb{Z}, S^1)$ is identified with $\{\zeta \in \mathbb{C} | \zeta^n = 1\}$ via $\chi \mapsto \chi(1)$. We see \widehat{G} is discrete too, and choosing a primitive *n*-th root of unity yields $G \xrightarrow{\sim} \widehat{G}$.
- Let G = Z with the discrete topology. Then Ĝ = Hom(Z, S¹) is similarly identified with S¹ via χ → χ(1). Under this identification, W({n}, ξ, ε) becomes {z ∈ S¹ | |zⁿ ξ(1)ⁿ| < ε}. Taking all *n*-th roots shows this is a union of n open intervals in S¹. Using n = 1 indicates that the resulting topology is the Euclidean topology on S¹.