More on Measures
 (with p-adic integration at the end)

Siyan Daniel Li-Huerta

September 29, 2020

Loose ends and recollections:

Remark

Let F be a field complete with respect to a discretely valued norm $|\cdot|$, and write v for its normalized valuation. For any finite extension E / F of degree d, the extended norm $|\cdot|^{\prime}=\left|N m_{E / F} \cdot\right|^{1 / d}$ is also discretely valued. To see this, note that its associated valuation w satisfies $w\left(E^{\times}\right) \subseteq \frac{1}{d} \mathbb{Z}$ but also contains $v\left(F^{\times}\right)=\mathbb{Z}$, so $w\left(E^{\times}\right)$must be isomorphic to \mathbb{Z}.

Recall X is a metric space with metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$, and $m_{*}: 2^{X} \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ is an outer measure on X.

We say m_{*} is metric if, for all subsets A and B of X with $d(A, B)>0$, we have $m_{*}(A \cup B)=m_{*}(A)+m_{*}(B)$.

Proposition

If m_{*} is metric, then \mathcal{M} contains \mathcal{B}.

Proof.

As σ-algebras are closed under complements, it suffices to show that every closed subset C of X is in \mathcal{M}. For any subset A of X, write

$$
A_{k}=\left\{x \in C^{c} \cap A \mid d(x, C) \geq 1 / k\right\} .
$$

Then $A_{1} \subseteq A_{2} \subseteq \cdots$, and the closedness of C implies $\bigcup_{k=1}^{\infty} A_{k}=C^{c} \cap A$. Since $d\left(C \cap A, A_{k}\right) \geq 1 / k$ and m_{*} is metric, monotonicity yields

$$
m_{*}(A) \geq m_{*}\left((C \cap A) \cup A_{k}\right)=m_{*}(C \cap A)+m_{*}\left(A_{k}\right)
$$

Finite subadditivity shows $m_{*}(A) \leq m_{*}(C \cap A)+m_{*}\left(C^{c} \cap A\right)$. If $m_{*}(A)=\infty$, we must have equality. So suppose $m_{*}(A)<\infty$. It suffices to prove that $\lim _{k \rightarrow \infty} m_{*}\left(A_{k}\right)=m_{*}\left(C^{c} \cap A\right)$. To see this, taking $k \rightarrow \infty$ in the above would give $m_{*}(A) \geq m_{*}(C \cup A)+m_{*}\left(C^{c} \cup A\right)$.

Proposition

If m_{*} is metric, then \mathcal{M} contains \mathcal{B}.

Proof (continued).

Write $B_{k}=A_{k+1} \cap A_{k}^{c}$. For x in B_{k+1} and y in X, if $d(x, y)<\frac{1}{k(k+1)}$ then $d(y, C)<d(y, x)+d(x, C)<\frac{1}{k(k+1)}+\frac{1}{k+1}=\frac{1}{k}$, making y not in A_{k}. This shows that $d\left(B_{k+1}, A_{k}\right) \geq \frac{1}{k(k+1)}$. Taking $k=2 j-1$, applying metricness, and noting that $A_{2 j+1}$ contains $B_{2 j} \cup A_{2 j-1}$ give

$$
m_{*}\left(A_{2 j+1}\right) \geq m_{*}\left(B_{2 j} \cup A_{2 j-1}\right)=m_{*}\left(B_{2 j}\right)+m_{*}\left(A_{2 j-1}\right) .
$$

Inducting downwards on j shows $m_{*}\left(A_{2 j+1}\right) \geq \sum_{l=1}^{j} m_{*}\left(B_{2 l}\right)$. Using $k=2 j$ instead yields $m_{*}\left(A_{2 j}\right) \geq \sum_{l=1}^{j} m_{*}\left(B_{2 l-1}\right)$. Letting $j \rightarrow \infty$ and using $m_{*}\left(A_{k}\right) \leq m_{*}(A)<\infty$ imply that $\sum_{l=1}^{\infty} m_{*}\left(B_{l}\right)$ converges. Finally, monotonicity and countable subadditivity tell us $m_{*}\left(A_{k}\right) \leq m_{*}\left(C^{c} \cap A\right) \leq m_{*}\left(A_{k}\right)+\sum_{l=k+1}^{\infty} m_{*}\left(B_{l}\right)$, and taking $k \rightarrow \infty$ makes the sum disappear, as it's the tail of a convergent series.

Now let m be a measure on \mathcal{B}.

Lemma

Suppose m is finite on all closed balls of finite radius. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ be a sequence of closed subsets, and let $\epsilon>0$. Then there exists a closed subset C contained in $C^{*}=\bigcup_{i=1}^{\infty} C_{i}$ such that $m\left(C^{*} \backslash C\right)<\epsilon$.

Proof.

By replacing C_{i} with $\bigcup_{k=1}^{i} C_{k}$, we may assume $C_{1} \subseteq C_{2} \subseteq \cdots$. Choose some x_{0} in X, and note that $\bigcup_{n=1}^{\infty} B_{c}\left(x_{0}, n\right)=X$. Therefore we have

$$
C^{*}=\bigcup_{n=1}^{\infty} C^{*} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)
$$

For every n, we see $C^{*} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)$ equals the increasing union $\bigcup_{i=1}^{\infty} C_{i} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{0}\left(x_{0}, n-1\right)\right)$. Therefore, for sufficiently large $N(n)$, we see that $m\left(C^{*} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)\right)$ is bounded by $m\left(C_{N(n)} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)\right)+\frac{\epsilon}{2^{n}}$.

Lemma

Suppose m is finite on all closed balls of finite radius. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ be a sequence of closed subsets, and let $\epsilon>0$. Then there exists a closed subset C contained in $C^{*}=\bigcup_{i=1}^{\infty} C_{i}$ such that $m\left(C^{*} \backslash C\right)<\epsilon$.

Proof (continued).
As $B_{c}\left(x_{0}, n\right)$ has finite measure, so do the $C_{i} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)$. Thus $m\left(\left(C^{*} \backslash C_{N(n)}\right) \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)\right) \leq \frac{\epsilon}{2^{n}}$.
Now set $C=\bigcup_{n=1}^{\infty} C_{N(n)} \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)$. We have
$m\left(C^{*} \backslash C\right)=\sum_{n=1}^{\infty} m\left(\left(C^{*} \backslash C_{N(n)}\right) \cap\left(B_{c}\left(x_{0}, n\right) \backslash B_{o}\left(x_{0}, n-1\right)\right)\right) \leq \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}$.
We see $C \cap B_{o}\left(x_{0}, n\right)$ is closed in $B_{o}\left(x_{0}, n\right)$, since it's the intersection of $\bigcup_{k=1}^{n} C_{N(k)} \cap\left(B_{c}\left(x_{0}, k\right) \backslash B_{o}\left(x_{0}, k-1\right)\right)$ with $B_{o}\left(x_{0}, n\right)$. Because the $B_{o}\left(x_{0}, n\right)$ form an open cover of X, this implies that C is closed in X.

Proposition

Suppose m is finite on all closed balls of finite radius. Let E be in \mathcal{B}, and let $\epsilon>0$. Then there exists an open subset O and a closed subset C such that $C \subseteq E \subseteq O, m(O \backslash E)<\epsilon$, and $m(E \backslash C)<\epsilon$.

Proof.

Write \mathcal{A} for the collection of subsets satisfying this property. Note that \varnothing is in \mathcal{A}, and we also see \mathcal{A} is closed under complements. For a sequence $\left\{E_{i}\right\}_{i=1}^{\infty}$ in \mathcal{A}, write $E=\bigcup_{i=1}^{\infty} E_{i}$. Then we have open subsets O_{i} and closed subsets C_{i} such that $C_{i} \subseteq E_{i} \subseteq O_{i}, m\left(O_{i} \backslash E_{i}\right)<\frac{\epsilon}{2^{i+1}}$, and $m\left(E_{i} \backslash C_{i}\right)<\frac{\epsilon}{2^{i+1}}$.

Set $O=\bigcup_{i=1}^{\infty} O_{i}$. Then $O \backslash E$ lies in $\bigcup_{i=1}^{\infty} O_{i} \backslash E_{i}$, so we get

$$
m(O \backslash E) \leq \sum_{i=1}^{\infty} m\left(O_{i} \backslash E_{i}\right) \leq \sum_{i=1}^{\infty} \frac{\epsilon}{2^{i+1}}=\frac{\epsilon}{2}
$$

By the lemma, there exists a closed subset C contained in $C^{*}=\bigcup_{i=1}^{\infty} C_{i}$ such that $m\left(C^{*} \backslash C\right)<\epsilon / 2$. Thus $m(E \backslash C)<\epsilon$. Altogether, E lies in \mathcal{A}_{11}

Proposition

Suppose m is finite on all closed balls of finite radius. Let E be in \mathcal{B}, and let $\epsilon>0$. Then there exists an open subset O and a closed subset C such that $C \subseteq E \subseteq O, m(O \backslash E)<\epsilon$, and $m(E \backslash C)<\epsilon$.

Proof (continued).

Hence \mathcal{A} is a σ-algebra. We claim that \mathcal{A} contains all open subsets U of X. To see this, we can take $O=U$. As for C, fix x_{0} in X, and write $C_{i}=\left\{x \in B_{c}\left(x_{0}, i\right) \left\lvert\, d\left(x, U^{c}\right) \geq \frac{1}{i}\right.\right\}$. Then C_{i} is closed, and we see that $U=\bigcup_{i=1}^{\infty} C_{i}$. Hence the lemma yields a closed subset C contained in U such that $m(U \backslash C)<\epsilon$.

Example

Let $X=\mathbb{R}$, and let m be the Lebesgue measure. The closed balls are all closed intervals $Q=[a, b]$, and since Q covers itself, we see $m(Q) \leq|Q|$. So the proposition applies.

Example (continued)

We actually even have equality. To see this, let $\left\{Q_{j}\right\}_{j=1}^{\infty}$ be closed intervals covering Q, and let $\epsilon>0$. We can replace Q_{j} by an open interval $U_{j}=\left(c_{j}, d_{j}\right)$ containing it such that $d_{j}-c_{j} \leq(1+\epsilon)\left|Q_{j}\right|$. As Q_{j} is compact, it is covered by finitely many U_{j} and hence $\overline{U_{j}}=\left[c_{j}, d_{j}\right]$. By refining these finitely many $\overline{U_{j}}$, we see

$$
|Q| \leq \sum_{j=1}^{\infty}\left|U_{j}\right| \leq \sum_{j=1}^{\infty}(1+\epsilon)\left|Q_{j}\right|
$$

Taking infimums over $\left\{Q_{j}\right\}_{j=1}^{\infty}$ shows $|Q| \leq(1+\epsilon) m(Q)$, and taking $\epsilon \rightarrow 0$ yields the desired result.

Example

Let X be a nonarchimedean local field, write v for its normalized valuation, and write q for the cardinality of its residue field. Let m be the Lebesgue measure. The closed balls Q cover themselves, so $m(Q) \leq|Q|$ and hence the proposition applies.

Example (continued)

We also have equality here. By translating and dilating, it suffices to prove this when Q is the ring of integers \mathcal{O}. Let $\left\{Q_{j}\right\}_{j=1}^{\infty}$ be closed balls covering \mathcal{O}. As \mathcal{O} is compact and closed balls are open, we see \mathcal{O} is covered by finitely many $\left\{Q_{j}\right\}_{j=1}^{N}$.
I claim that $|\mathcal{O}| \leq \sum_{j=1}^{N}\left|Q_{j}\right|$. To see this, start by removing the Q_{j} disjoint from \mathcal{O}. Next, if any Q_{j} contains \mathcal{O}, we're done. Otherwise, every $Q_{j}=\left\{x \in X \mid v\left(x-c_{j}\right) \geq m_{j}\right\}$ is contained in \mathcal{O}, so $M=\max \left\{m_{1}, \ldots, m_{j}\right\} \geq 0$. Note the Q_{j} are \mathfrak{m}^{M}-cosets, where \mathfrak{m} is the maximal ideal, and $\left|Q_{j}\right|=q^{-M} \#\left(Q_{j} / \mathfrak{m}^{M}\right)$. Since the Q_{j} / \mathfrak{m}^{M} cover $\mathcal{O} / \mathfrak{m}^{M}$, we have $q^{M}=\#\left(\mathcal{O} / \mathfrak{m}^{M}\right) \leq \sum_{j=1}^{N} \#\left(Q_{j} / \mathfrak{m}^{M}\right)$. Multiplying both sides by q^{-M} yields the desired result.

From here, taking infimums over $\left\{Q_{j}\right\}_{j=1}^{\infty}$ shows that $|Q| \leq m(Q)$.
Let F be a nonarchimedean local field. We normalize its absolute value $|\cdot|$ such that $|\pi|=\frac{1}{q}$ for uniformizers π in F. Note that $|x|=m(x \mathcal{O})$ for all x in F.

Remark

We used that $\#\left(\mathcal{O} / \mathfrak{m}^{M}\right)=q^{M}$. To see this, induct on M and use the short exact sequence

$$
0 \rightarrow \mathcal{O} / \mathfrak{m}^{M-1} \xrightarrow{\pi} \mathcal{O} / \mathfrak{m}^{M} \rightarrow \mathcal{O} / \mathfrak{m} \rightarrow 0
$$

Alternatively, one can use π-adic expansions to see this.

Example

Let z be a complex number with $\operatorname{Re}(z)>-1$. Using the Lebesgue measure m on \mathbb{Q}_{p}, how can we compute $\int_{\mathbb{Z}_{p}} \mathrm{~d} x|x|^{z}$? Note that $|x|^{z}=\frac{1}{p^{1 z}}$ for x in $p^{i} \mathbb{Z}_{p} \backslash p^{i+1} \mathbb{Z}_{p}$, so this integral equals

$$
\begin{align*}
\sum_{i=0}^{\infty} \int_{p^{i} \mathbb{Z}_{p} \backslash p^{i+1} \mathbb{Z}_{p}} \mathrm{~d} x|x|^{z} & =\sum_{i=0}^{\infty} \frac{m\left(p^{i} \mathbb{Z}_{p} \backslash p^{i+1} \mathbb{Z}_{p}\right)}{p^{i z}}=\sum_{i=0}^{\infty}\left(\frac{1}{p^{i}}-\frac{1}{p^{i+1}}\right) \frac{1}{p^{i z}} \\
& =\left(1-\frac{1}{p}\right) \sum_{i=0}^{\infty} \frac{1}{p^{i(z+1)}}=\left(1-\frac{1}{p}\right)\left(\frac{1}{1-p^{-z-1}}\right)
\end{align*}
$$

