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Loose ends and recollections:

Remark

Let F be a field complete with respect to a discretely valued norm | · |, and
write v for its normalized valuation. For any finite extension E/F of
degree d , the extended norm | · |′ = |NmE/F ·|1/d is also discretely valued.

To see this, note that its associated valuation w satisfies w(E×) ⊆ 1
dZ but

also contains v(F×) = Z, so w(E×) must be isomorphic to Z.

Recall X is a metric space with metric d : X × X →R≥0, and
m∗ : 2X →R≥0 ∪ {∞} is an outer measure on X .

We say m∗ is metric if, for all subsets A and B of X with d(A,B) > 0, we
have m∗(A ∪ B) = m∗(A) + m∗(B).
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Proposition

If m∗ is metric, then M contains B.

Proof.

As σ-algebras are closed under complements, it suffices to show that every
closed subset C of X is in M. For any subset A of X , write

Ak = {x ∈ C c ∩ A | d(x ,C ) ≥ 1/k}.

Then A1 ⊆ A2 ⊆ · · · , and the closedness of C implies
⋃∞

k=1 Ak = C c ∩ A.
Since d(C ∩ A,Ak) ≥ 1/k and m∗ is metric, monotonicity yields

m∗(A) ≥ m∗((C ∩ A) ∪ Ak) = m∗(C ∩ A) + m∗(Ak).

Finite subadditivity shows m∗(A) ≤ m∗(C ∩ A) + m∗(C
c ∩ A). If

m∗(A) =∞, we must have equality. So suppose m∗(A) <∞. It suffices
to prove that limk→∞m∗(Ak) = m∗(C

c ∩ A). To see this, taking k →∞
in the above would give m∗(A) ≥ m∗(C ∪ A) + m∗(C

c ∪ A).
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Proposition

If m∗ is metric, then M contains B.

Proof (continued).

Write Bk = Ak+1 ∩ Ac
k . For x in Bk+1 and y in X , if d(x , y) < 1

k(k+1)

then d(y ,C ) < d(y , x) + d(x ,C ) < 1
k(k+1) + 1

k+1 = 1
k , making y not in

Ak . This shows that d(Bk+1,Ak) ≥ 1
k(k+1) . Taking k = 2j − 1, applying

metricness, and noting that A2j+1 contains B2j ∪ A2j−1 give

m∗(A2j+1) ≥ m∗(B2j ∪ A2j−1) = m∗(B2j) + m∗(A2j−1).

Inducting downwards on j shows m∗(A2j+1) ≥
∑j

l=1m∗(B2l). Using

k = 2j instead yields m∗(A2j) ≥
∑j

l=1m∗(B2l−1). Letting j →∞ and
using m∗(Ak) ≤ m∗(A) <∞ imply that

∑∞
l=1m∗(Bl) converges. Finally,

monotonicity and countable subadditivity tell us
m∗(Ak) ≤ m∗(C

c ∩ A) ≤ m∗(Ak) +
∑∞

l=k+1m∗(Bl), and taking k →∞
makes the sum disappear, as it’s the tail of a convergent series.
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Now let m be a measure on B.

Lemma

Suppose m is finite on all closed balls of finite radius. Let {Ci}∞i=1 be a
sequence of closed subsets, and let ε > 0. Then there exists a closed
subset C contained in C ∗ =

⋃∞
i=1 Ci such that m(C ∗ r C ) < ε.

Proof.

By replacing Ci with
⋃i

k=1 Ck , we may assume C1 ⊆ C2 ⊆ · · · . Choose
some x0 in X , and note that

⋃∞
n=1 Bc(x0, n) = X . Therefore we have

C ∗ =
∞⋃
n=1

C ∗ ∩ (Bc(x0, n) r Bo(x0, n − 1)).

For every n, we see C ∗ ∩ (Bc(x0, n) r Bo(x0, n − 1)) equals the increasing
union

⋃∞
i=1 Ci ∩ (Bc(x0, n) r Bo(x0, n − 1)). Therefore, for sufficiently

large N(n), we see that m(C ∗ ∩ (Bc(x0, n) r Bo(x0, n− 1))) is bounded by
m(CN(n) ∩ (Bc(x0, n) r Bo(x0, n − 1))) + ε

2n .
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Lemma

Suppose m is finite on all closed balls of finite radius. Let {Ci}∞i=1 be a
sequence of closed subsets, and let ε > 0. Then there exists a closed
subset C contained in C ∗ =

⋃∞
i=1 Ci such that m(C ∗ r C ) < ε.

Proof (continued).

As Bc(x0, n) has finite measure, so do the Ci ∩ (Bc(x0, n) rBo(x0, n− 1)).
Thus m((C ∗ r CN(n)) ∩ (Bc(x0, n) r Bo(x0, n − 1))) ≤ ε

2n .

Now set C =
⋃∞

n=1 CN(n) ∩ (Bc(x0, n) r Bo(x0, n − 1)). We have

m(C ∗ r C ) =
∞∑
n=1

m((C ∗ r CN(n)) ∩ (Bc(x0, n) r Bo(x0, n − 1))) ≤
∞∑
n=1

ε

2n
.

We see C ∩ Bo(x0, n) is closed in Bo(x0, n), since it’s the intersection of⋃n
k=1 CN(k) ∩ (Bc(x0, k) r Bo(x0, k − 1)) with Bo(x0, n). Because the

Bo(x0, n) form an open cover of X , this implies that C is closed in X .
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Proposition

Suppose m is finite on all closed balls of finite radius. Let E be in B, and
let ε > 0. Then there exists an open subset O and a closed subset C such
that C ⊆ E ⊆ O, m(O r E ) < ε, and m(E r C ) < ε.

Proof.

Write A for the collection of subsets satisfying this property. Note that ∅
is in A, and we also see A is closed under complements. For a sequence
{Ei}∞i=1 in A, write E =

⋃∞
i=1 Ei . Then we have open subsets Oi and

closed subsets Ci such that Ci ⊆ Ei ⊆ Oi , m(Oi r Ei ) <
ε

2i+1 , and
m(Ei r Ci ) <

ε
2i+1 .

Set O =
⋃∞

i=1Oi . Then O r E lies in
⋃∞

i=1Oi r Ei , so we get

m(O r E ) ≤
∞∑
i=1

m(Oi r Ei ) ≤
∞∑
i=1

ε

2i+1
=
ε

2
.

By the lemma, there exists a closed subset C contained in C ∗ =
⋃∞

i=1 Ci

such that m(C ∗ r C ) < ε/2. Thus m(E r C ) < ε. Altogether, E lies in A.7 / 11



Proposition

Suppose m is finite on all closed balls of finite radius. Let E be in B, and
let ε > 0. Then there exists an open subset O and a closed subset C such
that C ⊆ E ⊆ O, m(O r E ) < ε, and m(E r C ) < ε.

Proof (continued).

Hence A is a σ-algebra. We claim that A contains all open subsets U of
X . To see this, we can take O = U. As for C , fix x0 in X , and write
Ci = {x ∈ Bc(x0, i) | d(x ,Uc) ≥ 1

i }. Then Ci is closed, and we see that
U =

⋃∞
i=1 Ci . Hence the lemma yields a closed subset C contained in U

such that m(U r C ) < ε.

Example

Let X = R, and let m be the Lebesgue measure. The closed balls are all
closed intervals Q = [a, b], and since Q covers itself, we see m(Q) ≤ |Q|.
So the proposition applies.
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Example (continued)

We actually even have equality. To see this, let {Qj}∞j=1 be closed intervals
covering Q, and let ε > 0. We can replace Qj by an open interval
Uj = (cj , dj) containing it such that dj − cj ≤ (1 + ε)|Qj |. As Qj is
compact, it is covered by finitely many Uj and hence Uj = [cj , dj ]. By
refining these finitely many Uj , we see

|Q| ≤
∞∑
j=1

|Uj | ≤
∞∑
j=1

(1 + ε)|Qj |.

Taking infimums over {Qj}∞j=1 shows |Q| ≤ (1 + ε)m(Q), and taking
ε→ 0 yields the desired result.

Example

Let X be a nonarchimedean local field, write v for its normalized
valuation, and write q for the cardinality of its residue field. Let m be the
Lebesgue measure. The closed balls Q cover themselves, so m(Q) ≤ |Q|
and hence the proposition applies.
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Example (continued)

We also have equality here. By translating and dilating, it suffices to prove
this when Q is the ring of integers O. Let {Qj}∞j=1 be closed balls covering
O. As O is compact and closed balls are open, we see O is covered by
finitely many {Qj}Nj=1.

I claim that |O| ≤
∑N

j=1 |Qj |. To see this, start by removing the Qj

disjoint from O. Next, if any Qj contains O, we’re done. Otherwise, every
Qj = {x ∈ X | v(x − cj) ≥ mj} is contained in O, so
M = max{m1, . . . ,mj} ≥ 0. Note the Qj are mM -cosets, where m is the
maximal ideal, and |Qj | = q−M#(Qj/m

M). Since the Qj/m
M cover

O/mM , we have qM = #(O/mM) ≤
∑N

j=1 #(Qj/m
M). Multiplying both

sides by q−M yields the desired result.

From here, taking infimums over {Qj}∞j=1 shows that |Q| ≤ m(Q).

Let F be a nonarchimedean local field. We normalize its absolute value | · |
such that |π| = 1

q for uniformizers π in F . Note that |x | = m(xO) for all x
in F . 10 / 11



Remark

We used that #(O/mM) = qM . To see this, induct on M and use the
short exact sequence

0→O/mM−1 π→O/mM→O/m→ 0.

Alternatively, one can use π-adic expansions to see this.

Example

Let z be a complex number with Re(z) > −1. Using the Lebesgue
measure m on Qp, how can we compute

∫
Zp

dx |x |z? Note that |x |z = 1
piz

for x in piZp r pi+1Zp, so this integral equals

∞∑
i=0

∫
piZprpi+1Zp

dx |x |z =
∞∑
i=0

m(piZp r pi+1Zp)

piz
=
∞∑
i=0

(
1

pi
− 1

pi+1

)
1

piz

=

(
1− 1

p

) ∞∑
i=0

1

pi(z+1)
=

(
1− 1

p

)(
1

1− p−z−1

)
.
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