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Remark

Note that | · |′ makes E a finite-dimensional normed vector space over F .
Analogously to the case F = R, all norms on a given finite-dimensional
vector space over F are equivalent, and since F is complete, so is E .

Example

Let κ be a field. Then the field of formal Laurent series F = κ((t)) has a
discrete valuation given by f 7→ ordt=0 f . Its valuation ring is κ[[t]], with
maximal ideal tκ[[t]]. And F is complete with respect to this norm.

Definition

Let F be a topological field. We say it is local if it is isomorphic to one of
the following:

1 the real numbers R or the complex numbers C,

2 a finite extension of Qp for a prime number p,

3 a finite extension of Fp((t)) for a prime number p.

In (2) and (3), F ’s norm is the extension of the norm on Qp or Fp((t)).
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Note that every local field is complete. Furthermore, case (1) is
archimedean, whereas cases (2) and (3) are nonarchimedean. Cases (1)
and (2) have characteristic 0, whereas case (3) has characteristic p.

Remark

We know cases (1) and (2) are locally compact, and one can prove that
case (3) is also locally compact. In fact, an equivalent definition for local
fields is a nondiscrete locally compact topological field.

Proposition

Let F be a nonarchimedean local field. Then its residue field κ = O/m is
finite.

Proof.

Let L be Qp or Fp((t)), and suppose F/L is a finite extension. Let
x1, . . . , xd be in κ, and let x̃1, . . . , x̃d be any representatives in O. If
λ1x̃1 + · · ·+ λd x̃d = 0 is a linear relation over L, dividing the λi by the one
with smallest valuation yields a linear relation over O that is nontrivial
mod m. This implies [κ : Fp] ≤ [F : L] <∞, so κ must be finite.
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Definition

Let X be a set. An exterior measure (or outer measure) on X is a function
m∗ : 2X →R≥0 ∪ {∞} such that

1 We have m∗(∅) = 0,

2 For all E1 ⊆ E2 ⊆ X , we have m∗(E1) ≤ m∗(E2),

3 For all sequences of subsets {Ei}∞i=1 of X , we have

m∗(
∞⋃
i=1

Ei ) ≤
∞∑
i=1

m∗(Ei ).

Note that (1) and (3) imply finite subadditivity too.

Definition

Let m∗ be an outer measure on X , and let E be a subset of X . We say E
is Carathéodory measurable if, for all subsets A of X , we have
m∗(A) = m∗(E ∩ A) + m∗(E

c ∩ A).

So Carathéodory measurable subsets “separate” arbitrary subsets well.
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Example

Let X = R, and consider the map m∗ : 2X →R≥0 ∪ {∞} sending

E 7→ inf
{Qj}∞j=1

∞∑
j=1

|Qj |,

where {Qj}∞j=1 runs over sequences of closed intervals Qj = [ai , bi ]
covering E , and |Qj | = bi − ai .

Let X = F be a nonarchimedean local field. Write v : X →Z ∪ {∞}
for its normalized valuation, and write q for the cardinality of its
residue field. Consider the map m∗ : 2X →R≥0 ∪ {∞} sending

E 7→ inf
{Qj}∞j=1

∞∑
j=1

|Qj |,

where the {Qj}∞j=1 runs over sequences of closed balls
Qj = {x ∈ X | v(x − cj) ≥ mj} covering E , where cj lies in X and mj

lies in Z, and |Qj | = q−mj . 5 / 9



Let X be a set, and let m∗ be an outer measure on X .

Theorem (Carathéodory)

The set M of Carathéodory measurable subsets of X is a σ-algebra, and
the restriction m of m∗ to M is a measure.

Proof.

Note that ∅ is in M. We also immediately see that M is closed under
complements. Next, let E1 and E2 be in M. For any subset A of X ,
repeatedly applying Carathéodory measurability yields

m∗(A) = m∗(E1 ∩ A) + m∗(E
c
1 ∩ A)

= m∗(E2 ∩ E1 ∩ A) + m∗(E
c
2 ∩ E1 ∩ A)

+ m∗(E2 ∩ E c
1 ∩ A) + m∗(E

c
2 ∩ E c

1 ∩ A)

≥ m∗((E1 ∪ E2) ∩ A) + m∗((E1 ∪ E2)c ∩ A) ≥ m∗(A)

by finite subadditivity. So E1 ∪ E2 is in M. If E1 and E2 are disjoint, then
applying the above to A = E1 ∪E2 shows m∗(E1 ∪E2) = m∗(E1) +m∗(E2).
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Theorem (Carathéodory)

The set M of Carathéodory measurable subsets of X is a σ-algebra, and
the restriction m of m∗ to M is a measure.

Proof (continued).

Finally, let {Ei}∞i=1 be a sequence of disjoint sets in M. Write

Gk =
⋃k

i=1 Ei , and write G =
⋃∞

i=1 Ei . By inducting on k, we obtain

m∗(Gk ∩ A) = m∗(Ek ∩ Gk ∩ A) + m∗(E
c
k ∩ Gk ∩ A)

= m∗(Ek ∩ A) + m∗(Gk−1 ∩ A) =
k∑

i=1

m∗(Ei ∩ A).

Since Gk lies in M, Carathéodory measurability and monotonicity yield

m∗(A) = m∗(Gk ∩ A) + m∗(G
c
k ∩ A) ≥

k∑
i=1

m∗(Ei ∩ A) + m∗(G
c ∩ A).
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Theorem (Carathéodory)

The set M of Carathéodory measurable subsets of X is a σ-algebra, and
the restriction m of m∗ to M is a measure.

Proof (continued).

Taking k →∞ and using countable subadditivity show that

m∗(A) ≥
∞∑
i=1

m∗(Ei ∩ A) + m∗(G
c ∩ A) ≥ m∗(G ∩ A) + m∗(G

c ∩ A).

Finite subadditivity implies these inequalities are equalities, so G lies in
M. Applying this to A = G yields m∗(G ) =

∑∞
i=1m∗(Ei ).

Example

In our previous example (with X = R or a nonarchimedean local field), we
call the resulting measure m = m∗|M the Lebesgue measure on X .
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Suppose that X also has the structure of a topological space. We want
our measure to interact well with this structure. Recall the Borel σ-algebra
on X , denoted by B, is the smallest σ-algebra containing all open subsets.

Definition

Say X is a metric space with metric d : X × X →R≥0, and let m∗ be an
outer measure on X . We say m∗ is metric if, for all subsets A and B of X
with d(A,B) > 0, we have m∗(A ∪ B) = m∗(A) + m∗(B).

Example

In our previous example (with X = R or a nonarchimedean local field), let
A and B be subsets of X with d(A,B) > 0. We can always refine the Qj

to have radius < 1
4d(A,B). After throwing out Qj that do not intersect

the A or B, the resulting coverings of A and B will be disjoint. Hence
taking infimums shows that m∗(A ∪ B) = m∗(A) + m∗(B).

Proposition

If m∗ is metric, then M contains B.
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