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Let F be a field complete with respect to a discretely valued norm | · |. Let
e be the smallest value > 1 that | · | takes, let v be the normalized
valuation, and let π be a uniformizer.

Proposition

The natural map O→ lim←−m
O/πmO is an isomorphism of topological rings.

Proof.

The kernel is
⋂∞

m=1 π
mO = {0}, so the map is injective. For surjectivity,

let (ym)∞m=1 be in lim←−m
O/πmO, and choose representatives ỹm of ym in

O. For m′ ≥ m ≥ N, we have ỹm ≡ yN ≡ ỹm′ mod πN , so {ỹm}∞m=1 is a
Cauchy sequence in O. By completeness, it has a limit y in O. For
sufficiently large M, we have y ≡ yM mod πM , so y maps to (ym)∞m=1.

To check that the map is continuous and open, it suffices to check that it
preserves neighborhoods of 0. The image of {x ∈ O | |x | ≤ 1/eN} is the
intersection of lim←−m

O/πmO with (
∏∞

m=N+1O/πmO)× {0}N , and as N
varies, both of these sets form a basis of neighborhoods of 0.
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Let’s generalize p-adic expansions to F . Let R be a set of representatives
of O/πO that contains 0.

Example

As Zp/pZp = Fp, here we can take R = {0, 1, . . . , p − 1}.

Proposition

Nonzero elements of F can be uniquely written as

aNπ
N + aN+1π

N+1 + · · · ,

where N is an integer, the aN , aN+1, . . . lie in R, and aN 6= 0.

Proof.

Let x be in F×, and set N = v(x). Then x/πN lies in O×, so its image in
O/πO is nonzero. Thus x/πN − aN = πy for a unique nonzero aN in R
and y in O. If y = 0, we’re done. Otherwise, we’ve only found the leading
digit of x . Replace x with y and repeat this process to find the next
digit.

3 / 10



Definition

Let f = c0 + c1t + · · ·+ cd t
d be in F [t]. The Gauss norm of f , denoted

by |f |, is max{|c0|, . . . , |cd |}. We say f is primitive if |f | = 1.

The following lemma is extraordinarily useful. Recall that m = πO is the
unique maximal ideal of O. We call κ = O/m the residue field.

Lemma (Hensel)

Let f in O[t] be primitive. If f ≡ gh mod π for some relatively prime g
and h in κ[t], then there exist g̃ and h̃ in O[t] such that g̃ ≡ g mod π,
h̃ ≡ h mod π, deg g̃ = deg g, and f = g̃ h̃.

Example

Consider f = t2 + 5 in Z7[t]. Then f ≡ (t − 3)(t − 4) mod 7, so there
exist g̃ and h̃ in Z7[t] such that g̃ ≡ t − 3 mod 7, h̃ ≡ t − 4 mod 7, and
deg g̃ = deg g = 1. Therefore we must have deg h̃ = 1, and we see the
leading coefficients of g̃ and h̃ lie in Z×7 . This yields two square roots of
−5 in Z7, which are representatives of 3 and 4 in F7. Indeed, one can
check that their first two digits are 3 + 2 · 7 + · · · and 4 + 4 · 7 + · · · . 4 / 10



Lemma (Hensel)

Let f in O[t] be primitive. If f ≡ gh mod π for some relatively prime g
and h in κ[t], then there exist g̃ and h̃ in O[t] such that g̃ ≡ g mod π,
h̃ ≡ h mod π, deg g̃ = deg g, and f = g̃ h̃.

Proof.

Write d = deg f and n = deg g . So deg h ≤ d − n. Choose representatives
g0 and h0 in O[t] of g and h such that deg g0 = n and deg h0 ≤ d − n. As
g and h are relatively prime, we can find a and b in O[t] such that
ag + bh ≡ 1 mod π.

By inducting on m, we will find in O[t] elements p1, p2, . . . of degree
≤ n − 1 and elements q1, q2, . . . of degree ≤ d − n such that

gm−1 = g0 + p1π + · · ·+ pm−1π
m−1, hm−1 = h0 + q1π + · · ·+ qm−1π

m−1

satisfy f ≡ gm−1hm−1 mod πm. Note the {gm}∞m=1 and {hm}∞m=1 are

Cauchy sequences. Thus they have limits g̃ and h̃, which fulfill the desired
properties.
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Lemma (Hensel)

Let f in O[t] be primitive. If f ≡ gh mod π for some relatively prime g
and h in κ[t], then there exist g̃ and h̃ in O[t] such that g̃ ≡ g mod π,
h̃ ≡ h mod π, deg g̃ = deg g, and f = g̃ h̃.

Proof (continued).

The m = 1 case holds by assumption. Assuming we found satisfactory
p1, . . . , pm−1 and q1, . . . , qm−1, we want to choose pm and qm such that

f ≡ gmhm = (gm−1 + pmπ
m)(hm−1 + qmπ

m) mod πm+1 ⇐⇒
f − gm−1hm−1 ≡ (gm−1qm + hm−1pm)πm mod πm+1 ⇐⇒
fm ≡ gm−1qm + hm−1pm ≡ g0qm + h0pm mod π,

where fm = π−m(f − gm−1hm−1) lies in O[t]. Note that deg fm ≤ d .
Because 1 ≡ ag0 + bh0 mod π, we have fm ≡ g0afm + h0bfm mod π. So
qm = afm and pm = bfm look good, except their degrees might be too big.
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Lemma (Hensel)

Let f in O[t] be primitive. If f ≡ gh mod π for some relatively prime g
and h in κ[t], then there exist g̃ and h̃ in O[t] such that g̃ ≡ g mod π,
h̃ ≡ h mod π, deg g̃ = deg g, and f = g̃ h̃.

Proof (continued).

What do we do instead? First, note that g0 ≡ g mod π and
deg g0 = deg g , so the leading coefficient of g0 lies in O×. Thus
polynomial division yields bfm = qg0 + pm for some q and pm in O[t] with
deg pm ≤ n − 1. Now we have

fm ≡ g0afm + h0bfm = g0(afm + h0q) + h0pm mod π.

Let qm be the element in O[t] obtained from removing every term in
afm + h0q divisible by π. Then its degree can be checked mod π, and we
still have fm ≡ g0qm + h0pm mod π. Since deg fm ≤ d ,
deg h0pm ≤ (d − n) + (n − 1) = d − 1, and deg g0 = n, we must have
deg qm ≤ d − n.
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Example

Consider f = tp−1 − 1 in Zp[t]. Then f ≡
∏p−1

i=1 (t − i) mod p, so
repeatedly applying Hensel’s lemma shows that f completely factors into
degree 1 elements of Zp[t] with leading coefficients in Z×p . Hence Zp

contains all (p − 1)-th roots of unity, and R = {x ∈ Z×p | xp−1 = 1} ∪ {0}
forms a set of representatives of Fp that’s closed under multiplication.
These are called Teichmüller representatives.

Corollary

Let f = c0 + · · ·+ cd t
d in F [t] be irreducible, and suppose cdc0 6= 0.

Then |f | = max{|c0|, |cd |}.

Proof.

By replacing f with a scalar multiple, we may assume |f | = 1 and f hence
lies in O[t]. Let r be the smallest such that |cr | = 1. Then
f ≡ tr (cr + · · ·+ cd t

d−r ) mod π, where cr 6≡ 0 mod π. If
max{|c0|, |cd |} < 1, then we must have 1 ≤ r ≤ d − 1. Hensel’s lemma
then provides a nontrivial factorization of f , which cannot exist. 8 / 10



Corollary

Let E/F be a finite extension of degree d. Then | · |′ = |NmE/F ·|1/d
yields an extension of | · | to an absolute value on E, and it is the unique
extension up to isomorphism.

Proof.

Write O′ for the integral closure of OF in E . For nonzero x in E , its
characteristic polynomial over F is a power of its minimal polynomial

f = c0 + · · ·+ tm over F . Thus NmE/F x = ±cd/m0 . If x lies in O′, then
c0 and hence NmE/F x lies in OF . Conversely, if NmE/F x lies in OF , then
the previous lemma shows |f | = max{|c0|, |1|} = 1. Thus f lies in OF [t],
so x lies in O′.

When x is in F , we have NmE/F x = xd , so | · |′ extends | · |. Let’s show
| · |′ is a norm. Evidently |x |′ = 0 if and only if x = 0, and | · |′ also
commutes with multiplication. As for the strong triangle inequality, let x
and y be in E×, and say |x |′ ≤ |y |′ without loss of generality. Then
|x + y |′ ≤ max{|x |′, |y |′} is equivalent to |x/y + 1|′ ≤ max{|x/y |′, 1} = 1.
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Corollary

Let E/F be a finite extension of degree d. Then | · |′ = |NmE/F ·|1/d
yields an extension of | · | to an absolute value on E, and it is the unique
extension up to isomorphism.

Proof (continued).

Since |x/y |′ ≤ 1, then we have |NmE/F (x/y)| ≤ 1, i.e. NmE/F (x/y) lies
in OF . Hence x/y lies in O′. Because O′ is a subring, so does x/y + 1,
which implies |NmE/F (x/y + 1)| ≤ 1 and hence |x/y + 1|′ ≤ 1, as desired.
So | · |′ is a nonarchimedean norm on E , and its valuation ring is O′. Write
m′ for its maximal ideal.

For uniqueness, let | · |′′ be another norm on E extending | · |. Then | · |′′
must be nontrivial and nonarchimedean. Write O′′ and m′′ for its valuation
ring and maximal ideal. If we had some x in O′ rO′′, then the coefficients
c0, . . . , cm−1 of its minimal polynomial lie in OF and hence O′′. Yet x−1

must lie in m′′, so 1 = −cm−1x−1 − · · · − c0x
−m does too, which is false.

Therefore O′ ⊆ O′′, so |x |′′ > 1 implies |x |′ > 1. Taking inverses shows
that |x |′′ < 1 implies |x |′ < 1, so | · |′′ and | · |′ are isomorphic. 10 / 10


