Even More on Valued Fields (featuring Hensel's lemma)

Siyan Daniel Li-Huerta

September 22, 2020

Let F be a field complete with respect to a discretely valued norm $|\cdot|$. Let e be the smallest value >1 that $|\cdot|$ takes, let v be the normalized valuation, and let π be a uniformizer.

Proposition

The natural map $\mathcal{O} \rightarrow \lim _{m} \mathcal{O} / \pi^{m} \mathcal{O}$ is an isomorphism of topological rings.

Proof.

The kernel is $\bigcap_{m=1}^{\infty} \pi^{m} \mathcal{O}=\{0\}$, so the map is injective. For surjectivity, let $\left(y_{m}\right)_{m=1}^{\infty}$ be in $\lim _{m} \mathcal{O} / \pi^{m} \mathcal{O}$, and choose representatives \widetilde{y}_{m} of y_{m} in \mathcal{O}. For $m^{\prime} \geq m \geq N$, we have $\widetilde{y}_{m} \equiv y_{N} \equiv \widetilde{y}_{m^{\prime}} \bmod \pi^{N}$, so $\left\{\widetilde{y}_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in \mathcal{O}. By completeness, it has a limit y in \mathcal{O}. For sufficiently large M, we have $y \equiv y_{M} \bmod \pi^{M}$, so y maps to $\left(y_{m}\right)_{m=1}^{\infty}$.

To check that the map is continuous and open, it suffices to check that it preserves neighborhoods of 0 . The image of $\left\{x \in \mathcal{O}\left||x| \leq 1 / e^{N}\right\}\right.$ is the intersection of $\lim _{m} \mathcal{O} / \pi^{m} \mathcal{O}$ with $\left(\prod_{m=N+1}^{\infty} \mathcal{O} / \pi^{m} \mathcal{O}\right) \times\{0\}^{N}$, and as N varies, both of these sets form a basis of neighborhoods of 0 .

Let's generalize p-adic expansions to F. Let R be a set of representatives of $\mathcal{O} / \pi \mathcal{O}$ that contains 0 .

Example

As $\mathbb{Z}_{p} / p \mathbb{Z}_{p}=\mathbb{F}_{p}$, here we can take $R=\{0,1, \ldots, p-1\}$.

Proposition

Nonzero elements of F can be uniquely written as

$$
a_{N} \pi^{N}+a_{N+1} \pi^{N+1}+\cdots,
$$

where N is an integer, the a_{N}, a_{N+1}, \ldots lie in R, and $a_{N} \neq 0$.

Proof.

Let x be in F^{\times}, and set $N=v(x)$. Then x / π^{N} lies in \mathcal{O}^{\times}, so its image in $\mathcal{O} / \pi \mathcal{O}$ is nonzero. Thus $x / \pi^{N}-a_{N}=\pi y$ for a unique nonzero a_{N} in R and y in \mathcal{O}. If $y=0$, we're done. Otherwise, we've only found the leading digit of x. Replace x with y and repeat this process to find the next digit.

Definition

Let $f=c_{0}+c_{1} t+\cdots+c_{d} t^{d}$ be in $F[t]$. The Gauss norm of f, denoted by $|f|$, is $\max \left\{\left|c_{0}\right|, \ldots,\left|c_{d}\right|\right\}$. We say f is primitive if $|f|=1$.

The following lemma is extraordinarily useful. Recall that $\mathfrak{m}=\pi \mathcal{O}$ is the unique maximal ideal of \mathcal{O}. We call $\kappa=\mathcal{O} / \mathfrak{m}$ the residue field.

Lemma (Hensel)
Let f in $\mathcal{O}[t]$ be primitive. If $f \equiv g h \bmod \pi$ for some relatively prime g and h in $\kappa[t]$, then there exist \widetilde{g} and \widetilde{h} in $\mathcal{O}[t]$ such that $\widetilde{g} \equiv g \bmod \pi$, $\widetilde{h} \equiv h \bmod \pi, \operatorname{deg} \widetilde{g}=\operatorname{deg} g$, and $f=\widetilde{g} \widetilde{h}$.

Example

Consider $f=t^{2}+5$ in $\mathbb{Z}_{7}[t]$. Then $f \equiv(t-3)(t-4) \bmod 7$, so there exist \widetilde{g} and \widetilde{h} in $\mathbb{Z}_{7}[t]$ such that $\widetilde{g} \equiv t-3 \bmod 7, \widetilde{h} \equiv t-4 \bmod 7$, and $\operatorname{deg} \widetilde{g}=\operatorname{deg} g=1$. Therefore we must have $\operatorname{deg} \widetilde{h}=1$, and we see the leading coefficients of \widetilde{g} and \widetilde{h} lie in \mathbb{Z}_{7}^{\times}. This yields two square roots of -5 in \mathbb{Z}_{7}, which are representatives of 3 and 4 in \mathbb{F}_{7}. Indeed, one can check that their first two digits are $3+2 \cdot 7+\cdots$ and $4+4 \cdot 7+\cdots$.

Lemma (Hensel)

Let f in $\mathcal{O}[t]$ be primitive. If $f \equiv g h \bmod \pi$ for some relatively prime g and h in $\kappa[t]$, then there exist \widetilde{g} and \widetilde{h} in $\mathcal{O}[t]$ such that $\widetilde{g} \equiv g \bmod \pi$, $\widetilde{h} \equiv h \bmod \pi, \operatorname{deg} \widetilde{g}=\operatorname{deg} g$, and $f=\widetilde{g} \widetilde{h}$.

Proof.

Write $d=\operatorname{deg} f$ and $n=\operatorname{deg} g$. So $\operatorname{deg} h \leq d-n$. Choose representatives g_{0} and h_{0} in $\mathcal{O}[t]$ of g and h such that $\operatorname{deg} g_{0}=n$ and $\operatorname{deg} h_{0} \leq d-n$. As g and h are relatively prime, we can find a and b in $\mathcal{O}[t]$ such that $a g+b h \equiv 1 \bmod \pi$.

By inducting on m, we will find in $\mathcal{O}[t]$ elements p_{1}, p_{2}, \ldots of degree $\leq n-1$ and elements q_{1}, q_{2}, \ldots of degree $\leq d-n$ such that
$g_{m-1}=g_{0}+p_{1} \pi+\cdots+p_{m-1} \pi^{m-1}, h_{m-1}=h_{0}+q_{1} \pi+\cdots+q_{m-1} \pi^{m-1}$
satisfy $f \equiv g_{m-1} h_{m-1} \bmod \pi^{m}$. Note the $\left\{g_{m}\right\}_{m=1}^{\infty}$ and $\left\{h_{m}\right\}_{m=1}^{\infty}$ are Cauchy sequences. Thus they have limits \widetilde{g} and \widetilde{h}, which fulfill the desired properties.

Lemma (Hensel)

Let f in $\mathcal{O}[t]$ be primitive. If $f \equiv g h \bmod \pi$ for some relatively prime g and h in $\kappa[t]$, then there exist \widetilde{g} and \widetilde{h} in $\mathcal{O}[t]$ such that $\widetilde{g} \equiv g \bmod \pi$, $\widetilde{h} \equiv h \bmod \pi, \operatorname{deg} \widetilde{g}=\operatorname{deg} g$, and $f=\widetilde{g} \widetilde{h}$.

Proof (continued).
The $m=1$ case holds by assumption. Assuming we found satisfactory p_{1}, \ldots, p_{m-1} and q_{1}, \ldots, q_{m-1}, we want to choose p_{m} and q_{m} such that

$$
\begin{gathered}
f \equiv g_{m} h_{m}=\left(g_{m-1}+p_{m} \pi^{m}\right)\left(h_{m-1}+q_{m} \pi^{m}\right) \bmod \pi^{m+1} \\
f-g_{m-1} h_{m-1} \equiv\left(g_{m-1} q_{m}+h_{m-1} p_{m}\right) \pi^{m} \bmod \pi^{m+1} \\
f_{m} \equiv g_{m-1} q_{m}+h_{m-1} p_{m} \equiv g_{0} q_{m}+h_{0} p_{m} \bmod \pi
\end{gathered}
$$

where $f_{m}=\pi^{-m}\left(f-g_{m-1} h_{m-1}\right)$ lies in $\mathcal{O}[t]$. Note that deg $f_{m} \leq d$. Because $1 \equiv a g_{0}+b h_{0} \bmod \pi$, we have $f_{m} \equiv g_{0} a f_{m}+h_{0} b f_{m} \bmod \pi$. So $q_{m}=a f_{m}$ and $p_{m}=b f_{m}$ look good, except their degrees might be too big.

Lemma (Hensel)

Let f in $\mathcal{O}[t]$ be primitive. If $f \equiv g h \bmod \pi$ for some relatively prime g and h in $\kappa[t]$, then there exist \widetilde{g} and \widetilde{h} in $\mathcal{O}[t]$ such that $\widetilde{g} \equiv g \bmod \pi$, $\widetilde{h} \equiv h \bmod \pi, \operatorname{deg} \widetilde{g}=\operatorname{deg} g$, and $f=\widetilde{g} \widetilde{h}$.

Proof (continued).
What do we do instead? First, note that $g_{0} \equiv g \bmod \pi$ and $\operatorname{deg} g_{0}=\operatorname{deg} g$, so the leading coefficient of g_{0} lies in \mathcal{O}^{\times}. Thus polynomial division yields $b f_{m}=q g_{0}+p_{m}$ for some q and p_{m} in $\mathcal{O}[t]$ with $\operatorname{deg} p_{m} \leq n-1$. Now we have

$$
f_{m} \equiv g_{0} a f_{m}+h_{0} b f_{m}=g_{0}\left(a f_{m}+h_{0} q\right)+h_{0} p_{m} \bmod \pi
$$

Let q_{m} be the element in $\mathcal{O}[t]$ obtained from removing every term in $a f_{m}+h_{0} q$ divisible by π. Then its degree can be checked $\bmod \pi$, and we still have $f_{m} \equiv g_{0} q_{m}+h_{0} p_{m} \bmod \pi$. Since $\operatorname{deg} f_{m} \leq d$, $\operatorname{deg} h_{0} p_{m} \leq(d-n)+(n-1)=d-1$, and $\operatorname{deg} g_{0}=n$, we must have $\operatorname{deg} q_{m} \leq d-n$.

Example

Consider $f=t^{p-1}-1$ in $\mathbb{Z}_{p}[t]$. Then $f \equiv \prod_{i=1}^{p-1}(t-i) \bmod p$, so repeatedly applying Hensel's lemma shows that f completely factors into degree 1 elements of $\mathbb{Z}_{p}[t]$ with leading coefficients in \mathbb{Z}_{p}^{\times}. Hence \mathbb{Z}_{p} contains all $(p-1)$-th roots of unity, and $R=\left\{x \in \mathbb{Z}_{p}^{\times} \mid x^{p-1}=1\right\} \cup\{0\}$ forms a set of representatives of \mathbb{F}_{p} that's closed under multiplication.
These are called Teichmüller representatives.

Corollary

Let $f=c_{0}+\cdots+c_{d} t^{d}$ in $F[t]$ be irreducible, and suppose $c_{d} c_{0} \neq 0$.
Then $|f|=\max \left\{\left|c_{0}\right|,\left|c_{d}\right|\right\}$.

Proof.

By replacing f with a scalar multiple, we may assume $|f|=1$ and f hence lies in $\mathcal{O}[t]$. Let r be the smallest such that $\left|c_{r}\right|=1$. Then $f \equiv t^{r}\left(c_{r}+\cdots+c_{d} t^{d-r}\right) \bmod \pi$, where $c_{r} \not \equiv 0 \bmod \pi$. If $\max \left\{\left|c_{0}\right|,\left|c_{d}\right|\right\}<1$, then we must have $1 \leq r \leq d-1$. Hensel's lemma then provides a nontrivial factorization of f, which cannot exist.

Corollary

Let E / F be a finite extension of degree d. Then $|\cdot|^{\prime}=\left|N m_{E / F} \cdot\right|^{1 / d}$ yields an extension of $|\cdot|$ to an absolute value on E, and it is the unique extension up to isomorphism.

Proof.

Write \mathcal{O}^{\prime} for the integral closure of \mathcal{O}_{F} in E. For nonzero x in E, its characteristic polynomial over F is a power of its minimal polynomial $f=c_{0}+\cdots+t^{m}$ over F. Thus $\operatorname{Nm}_{E / F} x= \pm c_{0}^{d / m}$. If x lies in \mathcal{O}^{\prime}, then c_{0} and hence $\mathrm{Nm}_{E / F} \times$ lies in \mathcal{O}_{F}. Conversely, if $\mathrm{Nm}_{E / F} \times$ lies in \mathcal{O}_{F}, then the previous lemma shows $|f|=\max \left\{\left|c_{0}\right|,|1|\right\}=1$. Thus f lies in $\mathcal{O}_{F}[t]$, so x lies in \mathcal{O}^{\prime}.

When x is in F, we have $\operatorname{Nm}_{E / F} x=x^{d}$, so $|\cdot|^{\prime}$ extends $|\cdot|$. Let's show $|\cdot|^{\prime}$ is a norm. Evidently $|x|^{\prime}=0$ if and only if $x=0$, and $|\cdot|^{\prime}$ also commutes with multiplication. As for the strong triangle inequality, let x and y be in E^{\times}, and say $|x|^{\prime} \leq|y|^{\prime}$ without loss of generality. Then $|x+y|^{\prime} \leq \max \left\{|x|^{\prime},|y|^{\prime}\right\}$ is equivalent to $|x / y+1|^{\prime} \leq \max \left\{|x / y|^{\prime}, 1\right\}=1$.

Corollary

Let E / F be a finite extension of degree d. Then $|\cdot|^{\prime}=\left|N m_{E / F} \cdot\right|^{1 / d}$ yields an extension of $|\cdot|$ to an absolute value on E, and it is the unique extension up to isomorphism.

Proof (continued).

Since $|x / y|^{\prime} \leq 1$, then we have $\left|\operatorname{Nm}_{E / F}(x / y)\right| \leq 1$, i.e. $\operatorname{Nm}_{E / F}(x / y)$ lies in \mathcal{O}_{F}. Hence x / y lies in \mathcal{O}^{\prime}. Because \mathcal{O}^{\prime} is a subring, so does $x / y+1$, which implies $\left|N m_{E / F}(x / y+1)\right| \leq 1$ and hence $|x / y+1|^{\prime} \leq 1$, as desired. So $|\cdot|^{\prime}$ is a nonarchimedean norm on E, and its valuation ring is \mathcal{O}^{\prime}. Write \mathfrak{m}^{\prime} for its maximal ideal.

For uniqueness, let $|\cdot|^{\prime \prime}$ be another norm on E extending $|\cdot|$. Then $|\cdot|^{\prime \prime}$ must be nontrivial and nonarchimedean. Write $\mathcal{O}^{\prime \prime}$ and $\mathfrak{m}^{\prime \prime}$ for its valuation ring and maximal ideal. If we had some x in $\mathcal{O}^{\prime} \backslash \mathcal{O}^{\prime \prime}$, then the coefficients c_{0}, \ldots, c_{m-1} of its minimal polynomial lie in \mathcal{O}_{F} and hence $\mathcal{O}^{\prime \prime}$. Yet x^{-1} must lie in $\mathfrak{m}^{\prime \prime}$, so $1=-c_{m-1} x^{-1}-\cdots-c_{0} x^{-m}$ does too, which is false. Therefore $\mathcal{O}^{\prime} \subseteq \mathcal{O}^{\prime \prime}$, so $|x|^{\prime \prime}>1$ implies $|x|^{\prime}>1$. Taking inverses shows that $|x|^{\prime \prime}<1$ implies $|x|^{\prime}<1$, so $|\cdot|^{\prime \prime}$ and $|\cdot|^{\prime}$ are isomorphic.

