p-adic Expansions
 (and more on valued fields)

Siyan Daniel Li-Huerta

September 17, 2020

Base- p expansions give every element of $\mathbb{Z} / p^{m} \mathbb{Z}$ a unique representative in \mathbb{Z} of the form

$$
a_{0}+a_{1} p+\cdots+a_{m-1} p^{m-1}
$$

where the a_{0}, \ldots, a_{m-1} lie in $\{0,1, \ldots, p-1\}$. For $m^{\prime} \geq m$, an element of $\mathbb{Z} / p^{m^{\prime}} \mathbb{Z}$ reduces to an element of $\mathbb{Z} / p^{m} \mathbb{Z}$ if and only if their digits a_{0}, \ldots, a_{m-1} are equal. Hence elements of \mathbb{Z}_{p} can be uniquely written as $a_{0}+a_{1} p+\cdots$, where the a_{0}, a_{1}, \ldots lie in $\{0,1, \ldots, p-1\}$. This is the element's p-adic expansion. Ring operations on p-adic expansions are performed via the classic digit-by-digit algorithm.

Example

- We have $-1=(p-1)+(p-1) p+(p-1) p^{2}+\cdots$. Indeed, one sees that adding 1 to the right-hand side yields 0 .
- We have $\frac{1}{1-p}=1+p+p^{2}+\cdots$. Indeed, one sees that multiplying the right-hand side by $1-p$ yields 1 .

So p-adic integers look like formal power series in the variable p, with coefficients in $\{0,1, \ldots, p-1\}$.

Because $\mathbb{Q}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]$, elements of \mathbb{Q}_{p} can be uniquely written as

$$
a_{N} p^{N}+a_{N+1} p^{N+1}+\cdots,
$$

where N is an integer, the a_{N}, a_{N+1}, \ldots lie in $\{0,1, \ldots, p-1\}$, and $a_{N} \neq 0$. So p-adic numbers look like formal Laurent series in the variable p, with coefficients in $\{0,1, \ldots, p-1\}$.

A topological field is a topological ring F that is a field such that the inverse map $F^{\times} \rightarrow F^{\times}$is continuous.

Corollary
The topological field \mathbb{Q}_{p} is locally compact.

Proof.

We already noted \mathbb{Q}_{p} is Hausdorff. Inverses commute with $|\cdot|_{p}$, so the inverse map is continuous. Now the neighborhood \mathbb{Z}_{p} of 0 is also closed, so it's its own closure. And it's compact.

Note that \mathbb{Q}_{p} and \mathbb{R} are both complete locally compact topological fields!

Let F be a field. We can distinguish absolute values on F as follows:

Proposition

Let $|\cdot|_{1}$ and $|\cdot|_{2}$ be nontrivial norms on F. The following are equivalent:
(1) $|\cdot|_{1}$ and $|\cdot|_{2}$ are isomorphic,
(2) $|\cdot|_{1}$ and $|\cdot|_{2}$ induce the same topology on F,
(3) Let x be in F. If $|x|_{1}<1$, then $|x|_{2}<1$.

Proof.

$(1) \Longrightarrow(2)$: Open balls for $|\cdot|_{1}$ are precisely open balls for $|\cdot|_{2}$.
$(2) \Longrightarrow(3)$: Note that $|x|_{i}<1$ if and only if $x^{n} \rightarrow 0$ in the $|\cdot|$-topology.
$(3) \Longrightarrow(1)$: By nontriviality, choose y in F with $|y|_{1}>1$. Then $\left|y^{-1}\right|_{1}<1$, so $\left|y^{-1}\right|_{2}<1$ and thus $|y|_{2}>1$.

For any x in F^{\times}, we have $|x|_{1}=|y|_{1}^{\alpha}$ for some real α. Let a_{n} / b_{n} be a sequence of rationals converging to α from above with positive b_{n}. Then $|x|_{1}<|y|_{1}^{a_{n} / b_{n}}=\left|y^{a_{n}}\right|_{1}^{1 / b_{n}}$ and hence $\left|x^{b_{n}} / y^{a_{n}}\right|_{1}<1$, so $\left|x^{b_{n}} / y^{a_{n}}\right|_{2}<1$. Unraveling shows that $|x|_{2} \leq|y|_{2}^{\alpha}$. Using a_{n} / b_{n} converging to α from below instead gives us $|x|_{2} \geq|y|_{2}^{\alpha}$. Therefore $|\cdot|_{1}=|\cdot|_{2}^{\log |y|_{1} / \log |y|_{2}}$.

We'll use this to study what happens when F has multiple absolute values. Theorem (Weak approximation)
Let $|\cdot|_{1}, \ldots,|\cdot|_{d}$ be nonisomorphic nontrivial norms on F, let x_{1}, \ldots, x_{d} be in F, and let $\epsilon>0$. Then there exists x in F such that $\left|x-x_{i}\right|_{i}<\epsilon$ for all $1 \leq i \leq d$.

Proof.

It suffices to find θ_{i} in F, for all $1 \leq i \leq d$, such that $\left|\theta_{i}\right|_{i}>1$ and $\left|\theta_{i}\right|_{j}<1$ for all $j \neq i$. To see this, note that $\frac{\theta_{i}^{n}}{1+\theta_{i}^{n}}$ converges to 1 with respect to $|\cdot|_{i}$ and to 0 with respect to $|\cdot|_{j}$. So we can take $x=\frac{x_{1} \theta_{1}^{n}}{1+\theta_{1}^{n}}+\cdots+\frac{x_{d} \theta_{d}^{n}}{1+\theta_{d}^{n}}$ for sufficiently large n.
Without loss of generality, we find θ_{1}. We induct on d. We have ρ and σ in F such that $|\rho|_{1}<1,|\rho|_{d} \geq 1,|\sigma|_{1} \geq 1$, and $|\sigma|_{d}<1$. So when $d=2$, we can set $\theta_{1}=\sigma / \rho$. Inductively, say we found θ_{1}^{\prime} for $d-1$. If $\left|\theta_{1}^{\prime}\right|_{d} \leq 1$, then we can set $\theta_{1}=\theta_{1}^{\prime m} \sigma / \rho$ for sufficiently large m. If $\left|\theta_{1}^{\prime}\right|_{d}>1$, then we can set $\theta_{1}=\frac{\theta_{1}^{\prime m}}{1+\theta_{1}^{\prime \prime \prime}} \sigma / \rho$ for sufficiently large m.

Let $|\cdot|$ be a norm on F, and write \widehat{F} for the completion of F. We'll study the following kind of normed fields.

Definition

We say $|\cdot|$ is discretely valued if the subgroup $\left|F^{\times}\right| \subseteq \mathbb{R}_{>0}$ is isomorphic to \mathbb{Z}.

Example

- For any prime p, the p-adic norm on \mathbb{Q} or \mathbb{Q}_{p} is discretely valued,
- The classic absolute value on \mathbb{Q}, \mathbb{R}, or \mathbb{C} is not discretely valued,
- Let F be any field. Then the trivial norm on F is not discretely valued.

Note that if $|\cdot|$ is discretely valued in F, it remains so on \widehat{F}.
Theorem (Ostrowski)
If $|\cdot|$ is archimedean and F is complete, then they are isomorphic to \mathbb{R} or \mathbb{C} with the classic absolute value.

Because we have a continuous field homomorphism $F \rightarrow \widehat{F}$, we see that if $|\cdot|$ is discretely valued, it must be nonarchimedean.

Now suppose $|\cdot|$ is nonarchimedean.

Definition

The valuation ring (or ring of integers) of F, denoted by \mathcal{O}, is the closed unit ball $\{x \in F||x| \leq 1\}$.

Recall that the open unit ball $\mathfrak{m}=\{x \in F| | x \mid<1\}$ is the unique maximal ideal of \mathcal{O}, i.e. \mathcal{O} is a local ring. So $F=\mathcal{O}\left[\frac{1}{x}\right]$ for any x in \mathfrak{m}.

Example

- For the p-adic norm on \mathbb{Q}_{p}, we saw its valuation ring is \mathbb{Z}_{p}, with maximal ideal $p \mathbb{Z}_{p}$.
- For the p-adic norm on \mathbb{Q}, we see its valuation ring is the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at the prime ideal (p), with maximal ideal $p \mathbb{Z}_{(p)}$.
- For the trivial norm on any field, we see its valuation ring is F, with maximal ideal (0).

Let's also assume $|\cdot|$ is discretely valued, and let e be the smallest value it takes that's >1. Then the associated valuation v takes values in $\mathbb{Z} \cup\{\infty\}$.

Definition

Let π be in F. We say π is a uniformizer if $v(\pi)=1$.

Example

The element p is a uniformizer for \mathbb{Q}_{p} with the p-adic norm. And so is $-p, p+p^{2020}$, and $p+p^{2}+p^{3}+\cdots$.

Choose a uniformizer π of F. Note that $\pi \mathcal{O}=\mathfrak{m}$.
Proposition
The nonzero ideals of \mathcal{O} are all of the form $\pi^{m} \mathcal{O}$ for non-negative m.

Proof.

Let I be a nonzero ideal of \mathcal{O}, and let $m=\min \{v(x) \mid x \in I\}$. As $I \subseteq \mathcal{O}$, we see $m \geq 0$. For y in I attaining $v(y)=m$, we see $v\left(y / \pi^{m}\right)=0$ and hence y / π^{m} lies in \mathcal{O}. So $\pi^{m}=\left(\pi^{m} / y\right) y$ is in I. For any x in I, we have $v(x) \geq m$ and thus $v\left(x / \pi^{m}\right) \geq 0$. So $x=\pi^{m}\left(x / \pi^{m}\right)$ lies in $\pi^{m} \mathcal{O}$.

Proposition

The valuation ring \mathcal{O}_{F} of F is dense in the valuation ring $\mathcal{O}_{\widehat{F}}$ of \widehat{F}.
Therefore $\mathcal{O}_{\widehat{F}}$ is also the completion of \mathcal{O}_{F} with respect to $|\cdot|$.

Proof.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in F representing an element of $\mathcal{O}_{\widehat{F}}$. Then $\left|x_{n}\right|$ is eventually constant with value ≤ 1. Therefore these x_{n} lie in \mathcal{O}_{F}, so every element of $\mathcal{O}_{\widehat{F}}$ is the limit of a sequence in \mathcal{O}_{F}.

Corollary

Inclusion $\mathcal{O}_{F} \rightarrow \mathcal{O}_{\widehat{F}}$ yields an isomorphism $\mathcal{O}_{F} / \pi^{m} \mathcal{O}_{F} \xrightarrow{\sim} \mathcal{O}_{\widehat{F}} / \pi^{m} \mathcal{O}_{\widehat{F}}$.

Proof.

As $\pi^{m} \mathcal{O}_{F}=\{x \in F \mid v(x) \geq m\}$, we have $\pi^{m} \mathcal{O}_{\widehat{F}} \cap \mathcal{O}_{F}=\pi^{m} \mathcal{O}_{F}$. Hence the above map is injective. For surjectivity, let x be in $\mathcal{O}_{\widehat{F}} / \pi^{m} \mathcal{O}_{\widehat{F}}$, and choose a representative \widetilde{x} of x in $\mathcal{O}_{\widehat{F}}$. By the above, there exists y in \mathcal{O}_{F} with $|\widetilde{x}-y|<1 / e^{m}$. Thus the image of y in $\mathcal{O}_{F} / \pi^{m} \mathcal{O}_{F}$ maps to x.

