p-adic Numbers

Working towards p-adic expansions

Siyan Daniel Li-Huerta

September 15, 2020

Let's start with generalities on absolute values. Let F be a field, and let $|\cdot|$ be a norm on F. Note that $|1|=1$ since $|1| \cdot|1|=\left|1^{2}\right|=|1|$. Also, any m-th root of unity ζ in F has norm 1, because $|\zeta|^{m}=\left|\zeta^{m}\right|=|1|=1$. For all $x \neq 0$ in F, we similarly see that $\left|x^{-1}\right|=|x|^{-1}$.

Proposition

The following are equivalent:
(1) For all x in F, we have $|x+1| \leq \max \{|x|, 1\}$,
(2) For all x and y in F, we have $|x+y| \leq \max \{|x|,|y|\}$,
(3) The set $|\mathbb{Z}|$ lies in $[0,1]$,
(9) The set $|\mathbb{Z}|$ is bounded.

Proof.

$(1) \Longrightarrow(2)$: If $y=0$, this becomes $|x| \leq \max \{|x|, 0\}=|x|$. If $y \neq 0$, dividing by $|y|$ shows this is equivalent to $\left|\frac{x}{y}+1\right| \leq \max \left\{\left|\frac{x}{y}\right|, 1\right\}$.
(2) $\Longrightarrow(3)$: Since $| \pm 1|=1$, this follows from induction via $|n \pm 1| \leq \max \{|n|,| \pm 1|\}$.
$(3) \Longrightarrow(4)$: Immediate, as $[0,1]$ is bounded.

Proposition

The following are equivalent:
(1) For all x in F, we have $|x+1| \leq \max \{|x|, 1\}$,
(2) For all x and y in F, we have $|x+y| \leq \max \{|x|,|y|\}$,
(3) The set $|\mathbb{Z}|$ lies in $[0,1]$,
(9) The set $|\mathbb{Z}|$ is bounded.

Proof (continued).
$(4) \Longrightarrow(1)$: Say $|\mathbb{Z}|$ lies in $[0, B]$ for some $B>0$. For all x in F, we have

$$
\begin{aligned}
|x+1|^{n} & =\left|\sum_{k=0}^{n}\binom{n}{k} x^{k}\right| \leq \sum_{k=0}^{n}\left|\binom{n}{k}\right| \cdot|x|^{k} \leq B \sum_{k=0}^{n}|x|^{k} \\
& \leq B(n+1) \max \left\{|x|^{n}, 1\right\} .
\end{aligned}
$$

Taking n-th roots yields $|x+1| \leq \sqrt[n]{B(n+1)} \max \{|x|, 1\}$, and taking $n \rightarrow \infty$ finishes the proof.

Definition

If $|\cdot|$ satisfies these equivalent conditions, we say $|\cdot|$ is nonarchimedean. Otherwise, we say $|\cdot|$ is archimedean.

Condition (2) is called the strong or ultrametric triangle inequality.

Example

- For any prime p, the p-adic norm $|\cdot|_{p}$ on \mathbb{Q} is nonarchimedean,
- Let F be field of positive characteristic. Then any norm on F is nonarchimedean,
- Let F be any field, and let $|\cdot|_{0}: F \rightarrow \mathbb{R}_{\geq 0}$ be the indicator function on F^{\times}. This is the trivial norm, and it's always nonarchimedean.

Remark

These are sometimes called "rank-1" norms, since it's useful to let $\left|F^{\times}\right|$ take values in other totally ordered groups, like $\mathbb{R}_{>0}^{r}$ with the lexicographical order. This case would be "rank-r" norms. We will only work with rank-1 norms in this course.

We have an order-preserving bijection log : $\mathbb{R}_{>0} \xrightarrow{\sim} \mathbb{R}$, so we can interpret nonarchimedean norms as follows.

Definition

Let F be a field. A valuation on F is a function $v: F \rightarrow \mathbb{R} \cup\{\infty\}$ such that

- For all x in F, we have $v(x)=\infty$ if and only if $x=0$,
- For all x and y in F, we have $v(x y)=v(x)+v(y)$,
- For all x and y in F, we have $v(x+y) \geq \min \{v(x), v(y)\}$.

Two valuations v_{1} and v_{2} on F are isomorphic if $v_{1}=c v_{2}$ for some $c>0$.
Choose $e>1$. We see that valuations v and nonarchimedean norms are equivalent concepts via setting $v(x)=-\log _{e}|x|$ and $|x|=e^{-v(x)}$. Different choices of e yield isomorphic valuations and norms.

Example

For any x in \mathbb{Q}^{\times}, write $x=\frac{a}{b} p^{r}$, where a and b are integers not divisible by p, and r is an integer. Then the map $v_{p}: \mathbb{Q} \rightarrow \mathbb{R} \cup\{\infty\}$ sending $0 \mapsto \infty$ and $x \mapsto r$ is a valuation. We call this the p-adic valuation.

Let F be a field, and let $|\cdot|$ be a norm on F. Recall this induces a metric on F given by $(x, y) \mapsto|x-y|$, and the induced topological space structure on F makes it a topological ring, i.e. the addition and multiplication maps are continuous.

Proposition

Suppose $|\cdot|$ is nonarchimedean.
(1) The unit closed ball $\mathcal{O}=\{x \in F| | x \mid \leq 1\}$ is a subring, and the unit open ball $\mathfrak{m}=\{x \in F| | x \mid<1\}$ is the unique maximal ideal of \mathcal{O}.
(2) A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in F is Cauchy if and only if $\left|x_{n}-x_{n+1}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Proof.

(1) Homework problem.
(2) Cauchy immediately implies $\left|x_{n}-x_{n+1}\right| \rightarrow 0$ as $n \rightarrow \infty$. Conversely, let $\epsilon>0$, and suppose $\left|x_{n}-x_{n+1}\right|<\epsilon$ for all $n \geq N$. Then, for all $m^{\prime} \geq m \geq N$, we have

$$
\left|x_{m}-x_{m^{\prime}}\right| \leq \max \left\{\left|x_{m}-x_{m+1}\right|, \ldots,\left|x_{m^{\prime}-1}-x_{m^{\prime}}\right|\right\}<\epsilon .
$$

Remark

Let $r>0$. Your argument for (1) will also show that $B_{c}(0, r)=\{x \in F| | x \mid \leq r\}$ and $B_{o}(0, r)=\{x \in F| | x \mid<r\}$ are subgroups. Because $B_{o}(0, r)$ lies in $B_{c}(0, r)$, the latter is a union of $B_{o}(0, r)$-cosets, so this implies $B_{c}(0, r)$ is also open! As $r \rightarrow 0$, note that the $B_{c}(0, r)$ forms a basis of open and closed neighborhoods of 0 . So F is totally disconnected.

Recall we defined the p-adic numbers \mathbb{Q}_{p} as the completion of \mathbb{Q} with respect to $|\cdot|_{p}$. Our $|\cdot|_{p}$ extends uniquely to \mathbb{Q}_{p}, and by continuity it continues to take values in $\{0\} \cup\left\{p^{r} \mid r \in \mathbb{Z}\right\}$.

Definition

The p-adic integers, denoted by \mathbb{Z}_{p}, is the completion of \mathbb{Z} with respect to the metric induced by $|\cdot|_{p}$.

Recall that this is also the closure of \mathbb{Z} in \mathbb{Q}_{p}. Also observe that, for x in \mathbb{Z} and any non-negative integer r, we have $v_{p}(x) \geq r$ if and only if p^{r} divides x. Hence "small" in the p-adic norm means divisible by a large power of p.

Let's find a hands-on way to describe elements of \mathbb{Z}_{p}. Form the projective system $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)_{m=1}^{\infty}$, where $\mathbb{Z} / p^{m} \mathbb{Z}$ has the discrete topology, and the $\operatorname{maps} \mathbb{Z} / p^{m^{\prime}} \mathbb{Z} \rightarrow \mathbb{Z} / p^{m} \mathbb{Z}$ are given by reduction $\bmod p^{m}$ for $m^{\prime} \geq m$.
Proposition
We have an isomorphism of topological rings $\mathbb{Z}_{p} \xrightarrow{\widetilde{ }} \lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$.

Proof.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{Z}. Then the image of $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $\mathbb{Z} / p^{m} \mathbb{Z}$ is eventually constant. Call it c_{m}. The Cauchyness of $\left\{x_{n}\right\}_{n=1}^{\infty}$ implies that $\left(c_{m}\right)_{m=1}^{\infty}$ is an element of $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$. If $x_{n} \rightarrow 0$, we see that $c_{m}=0$, so the assignment $\left\{x_{n}\right\}_{n=1}^{\infty} \mapsto\left(c_{m}\right)_{m=1}^{\infty}$ yields a well-defined map $\mathbb{Z}_{p} \rightarrow \lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$. Since reduction $\bmod p^{m}$ is a ring homomorphism, so is this map.
In the other direction, let $\left(y_{m}\right)_{m=1}^{\infty}$ be in $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$, and choose representatives \widetilde{y}_{m} of y_{m} in \mathbb{Z}. For $m^{\prime} \geq m \geq N$, we have $\widetilde{y}_{m} \equiv y_{N} \equiv \widetilde{y}_{m^{\prime}}$ $\bmod p^{N}$, so $\left\{\widetilde{y}_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in \mathbb{Z}. Any other choice of representatives differs from $\left\{\widetilde{y}_{m}\right\}_{m=1}^{\infty}$ by a sequence converging to 0 , so the assignment $\left(y_{m}\right)_{m=1}^{\infty} \mapsto\left\{\widetilde{y}_{m}\right\}_{m=1}^{\infty}$ gives a well-defined map.

Proposition

We have an isomorphism of topological rings $\mathbb{Z}_{p} \xrightarrow{\widetilde{ }}{\underset{\mathrm{lim}}{m}}^{\mathbb{Z}} / p^{m} \mathbb{Z}$.

Proof (continued).

We immediately see $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z} \rightarrow \mathbb{Z}_{p} \rightarrow \varliminf_{m} \mathbb{Z} / p^{m} \mathbb{Z}$ is the identity. For the other composition, let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{Z}, form $\left(c_{m}\right)_{m=1}^{\infty}$ in $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$ as before, and choose representatives \widetilde{c}_{m} of c_{m} in \mathbb{Z}. We see that the image of $\left\{x_{n}-\widetilde{c}_{n}\right\}_{n=1}^{\infty}$ in $\mathbb{Z} / p^{m} \mathbb{Z}$ stabilizes to 0 as soon as the image of $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $\mathbb{Z} / p^{m} \mathbb{Z}$ stabilizes to c_{m}, so $\left\{x_{n}-\widetilde{c}_{n}\right\}_{n=1}^{\infty}$ converges to 0 .
Note $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$ is compact and \mathbb{Z}_{p} is Hausdorff. Therefore to check that this bijection is a homeomorphism, it suffices to check that $\mathbb{Z}_{p} \rightarrow \varliminf_{m} \mathbb{Z} / p^{m} \mathbb{Z}$ is open. We can check this on neighborhoods of 0 , and the image of $\left\{\left.x \in \mathbb{Z}_{p}| | x\right|_{p} \leq 1 / p^{N}\right\}$ is the intersection of $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$ with $\left(\prod_{m=N+1}^{\infty} \mathbb{Z} / p^{m} \mathbb{Z}\right) \times\{0\}^{N}$, which is open.

In particular, note that \mathbb{Z}_{p} is compact.

Corollary

(1) Let a be an integer not divisible by p. Then a is invertible in \mathbb{Z}_{p}.
(2) The subset $\mathbb{Z}_{p} \subseteq \mathbb{Q}_{p}$ equals the closed unit ball $\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}$.

Proof.

(1) The image of a is invertible in $\mathbb{Z} / p^{m} \mathbb{Z}$ and hence in $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z}$.
(2) As $|\mathbb{Z}|_{p}$ lies in $[0,1]$, we see \mathbb{Z}_{p} lies in the closed unit ball. Conversely, let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{Q} representing an element of the closed unit ball. Then $\left|x_{n}\right|_{p}$ is eventually constant with value ≤ 1. Therefore these x_{n} can be written as $\frac{a}{b} p^{r}$, where a and b are integers not divisible by p, and r is a non-negative integer. By (1), x_{n} lies in \mathbb{Z}_{p}, so its limit x also lies in \mathbb{Z}_{p}.

As $|\cdot|_{p}$ takes values in $\{0\} \cup\left\{p^{r} \mid r \in \mathbb{Z}\right\}$, we see the open unit ball in \mathbb{Q}_{p} is $p \mathbb{Z}_{p}$. We have $\mathbb{Q}_{p}=\operatorname{Frac} \mathbb{Z}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]$. For integers $N \geq 0$, note that $p^{N} \mathbb{Z}_{p}$ is the kernel of $\lim _{m} \mathbb{Z} / p^{m} \mathbb{Z} \rightarrow \mathbb{Z} / p^{N} \mathbb{Z}$, so we have $\mathbb{Z}_{p} / p^{N} \mathbb{Z}_{p} \xrightarrow{\sim} \mathbb{Z} / p^{N} \mathbb{Z}$.

