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Let’s start with generalities on absolute values. Let F be a field, and let
| · | be a norm on F . Note that |1| = 1 since |1| · |1| = |12| = |1|. Also, any
m-th root of unity ζ in F has norm 1, because |ζ|m = |ζm| = |1| = 1. For
all x 6= 0 in F , we similarly see that |x−1| = |x |−1.

Proposition

The following are equivalent:

1 For all x in F , we have |x + 1| ≤ max{|x |, 1},
2 For all x and y in F , we have |x + y | ≤ max{|x |, |y |},
3 The set |Z| lies in [0, 1],

4 The set |Z| is bounded.

Proof.

(1) =⇒ (2): If y = 0, this becomes |x | ≤ max{|x |, 0} = |x |. If y 6= 0,
dividing by |y | shows this is equivalent to | xy + 1| ≤ max{| xy |, 1}.
(2) =⇒ (3): Since | ± 1| = 1, this follows from induction via
|n ± 1| ≤ max{|n|, | ± 1|}.
(3) =⇒ (4): Immediate, as [0, 1] is bounded.
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Proposition

The following are equivalent:

1 For all x in F , we have |x + 1| ≤ max{|x |, 1},
2 For all x and y in F , we have |x + y | ≤ max{|x |, |y |},
3 The set |Z| lies in [0, 1],

4 The set |Z| is bounded.

Proof (continued).

(4) =⇒ (1): Say |Z| lies in [0,B] for some B > 0. For all x in F , we have

|x + 1|n =

∣∣∣∣∣
n∑

k=0

(
n

k

)
xk

∣∣∣∣∣ ≤
n∑

k=0

∣∣∣∣(nk
)∣∣∣∣ · |x |k ≤ B

n∑
k=0

|x |k

≤ B(n + 1) max{|x |n, 1}.

Taking n-th roots yields |x + 1| ≤ n
√
B(n + 1) max{|x |, 1}, and taking

n→∞ finishes the proof.
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Definition

If | · | satisfies these equivalent conditions, we say | · | is nonarchimedean.
Otherwise, we say | · | is archimedean.

Condition (2) is called the strong or ultrametric triangle inequality.

Example

For any prime p, the p-adic norm | · |p on Q is nonarchimedean,

Let F be field of positive characteristic. Then any norm on F is
nonarchimedean,

Let F be any field, and let | · |0 : F →R≥0 be the indicator function
on F×. This is the trivial norm, and it’s always nonarchimedean.

Remark

These are sometimes called “rank-1” norms, since it’s useful to let |F×|
take values in other totally ordered groups, like Rr

>0 with the
lexicographical order. This case would be “rank-r” norms. We will only
work with rank-1 norms in this course.
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We have an order-preserving bijection log : R>0
∼→R, so we can interpret

nonarchimedean norms as follows.

Definition

Let F be a field. A valuation on F is a function v : F →R ∪ {∞} such
that

For all x in F , we have v(x) =∞ if and only if x = 0,

For all x and y in F , we have v(xy) = v(x) + v(y),

For all x and y in F , we have v(x + y) ≥ min{v(x), v(y)}.
Two valuations v1 and v2 on F are isomorphic if v1 = cv2 for some c > 0.

Choose e > 1. We see that valuations v and nonarchimedean norms | · |
are equivalent concepts via setting v(x) = − loge |x | and |x | = e−v(x).
Different choices of e yield isomorphic valuations and norms.

Example

For any x in Q×, write x = a
bp

r , where a and b are integers not divisible
by p, and r is an integer. Then the map vp : Q→R ∪ {∞} sending
0 7→ ∞ and x 7→ r is a valuation. We call this the p-adic valuation.
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Let F be a field, and let | · | be a norm on F . Recall this induces a metric
on F given by (x , y) 7→ |x − y |, and the induced topological space
structure on F makes it a topological ring, i.e. the addition and
multiplication maps are continuous.

Proposition

Suppose | · | is nonarchimedean.

1 The unit closed ball O = {x ∈ F | |x | ≤ 1} is a subring, and the unit
open ball m = {x ∈ F | |x | < 1} is the unique maximal ideal of O.

2 A sequence {xn}∞n=1 in F is Cauchy if and only if |xn − xn+1| → 0 as
n→∞.

Proof.

1 Homework problem.

2 Cauchy immediately implies |xn − xn+1| → 0 as n→∞. Conversely,
let ε > 0, and suppose |xn − xn+1| < ε for all n ≥ N. Then, for all
m′ ≥ m ≥ N, we have

|xm − xm′ | ≤ max{|xm − xm+1|, . . . , |xm′−1 − xm′ |} < ε.
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Remark

Let r > 0. Your argument for (1) will also show that
Bc(0, r) = {x ∈ F | |x | ≤ r} and Bo(0, r) = {x ∈ F | |x | < r} are
subgroups. Because Bo(0, r) lies in Bc(0, r), the latter is a union of
Bo(0, r)-cosets, so this implies Bc(0, r) is also open! As r → 0, note that
the Bc(0, r) forms a basis of open and closed neighborhoods of 0. So F
is totally disconnected.

Recall we defined the p-adic numbers Qp as the completion of Q with
respect to | · |p. Our | · |p extends uniquely to Qp, and by continuity it
continues to take values in {0} ∪ {pr | r ∈ Z}.

Definition

The p-adic integers, denoted by Zp, is the completion of Z with respect to
the metric induced by | · |p.

Recall that this is also the closure of Z in Qp. Also observe that, for x in Z
and any non-negative integer r , we have vp(x) ≥ r if and only if pr divides
x . Hence “small” in the p-adic norm means divisible by a large power of p.
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Let’s find a hands-on way to describe elements of Zp. Form the projective
system (Z/pmZ)∞m=1, where Z/pmZ has the discrete topology, and the
maps Z/pm′Z→Z/pmZ are given by reduction mod pm for m′ ≥ m.

Proposition

We have an isomorphism of topological rings Zp
∼→ lim←−m

Z/pmZ.

Proof.

Let {xn}∞n=1 be a Cauchy sequence in Z. Then the image of {xn}∞n=1 in
Z/pmZ is eventually constant. Call it cm. The Cauchyness of {xn}∞n=1

implies that (cm)∞m=1 is an element of lim←−m
Z/pmZ. If xn → 0, we see that

cm = 0, so the assignment {xn}∞n=1 7→ (cm)∞m=1 yields a well-defined map
Zp→ lim←−m

Z/pmZ. Since reduction mod pm is a ring homomorphism, so is
this map.

In the other direction, let (ym)∞m=1 be in lim←−m
Z/pmZ, and choose

representatives ỹm of ym in Z. For m′ ≥ m ≥ N, we have ỹm ≡ yN ≡ ỹm′

mod pN , so {ỹm}∞m=1 is a Cauchy sequence in Z. Any other choice of
representatives differs from {ỹm}∞m=1 by a sequence converging to 0, so
the assignment (ym)∞m=1 7→ {ỹm}∞m=1 gives a well-defined map. 8 / 10



Proposition

We have an isomorphism of topological rings Zp
∼→ lim←−m

Z/pmZ.

Proof (continued).

We immediately see lim←−m
Z/pmZ→Zp→ lim←−m

Z/pmZ is the identity. For
the other composition, let {xn}∞n=1 be a Cauchy sequence in Z, form
(cm)∞m=1 in lim←−m

Z/pmZ as before, and choose representatives c̃m of cm in
Z. We see that the image of {xn − c̃n}∞n=1 in Z/pmZ stabilizes to 0 as
soon as the image of {xn}∞n=1 in Z/pmZ stabilizes to cm, so {xn − c̃n}∞n=1

converges to 0.

Note lim←−m
Z/pmZ is compact and Zp is Hausdorff. Therefore to check

that this bijection is a homeomorphism, it suffices to check that
Zp→ lim←−m

Z/pmZ is open. We can check this on neighborhoods of 0, and

the image of {x ∈ Zp | |x |p ≤ 1/pN} is the intersection of lim←−m
Z/pmZ

with (
∏∞

m=N+1 Z/pmZ)× {0}N , which is open.

In particular, note that Zp is compact.
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Corollary

1 Let a be an integer not divisible by p. Then a is invertible in Zp.

2 The subset Zp ⊆ Qp equals the closed unit ball {x ∈ Qp | |x |p ≤ 1}.

Proof.

1 The image of a is invertible in Z/pmZ and hence in lim←−m
Z/pmZ.

2 As |Z|p lies in [0, 1], we see Zp lies in the closed unit ball. Conversely,
let {xn}∞n=1 be a Cauchy sequence in Q representing an element of
the closed unit ball. Then |xn|p is eventually constant with value ≤ 1.
Therefore these xn can be written as a

bp
r , where a and b are integers

not divisible by p, and r is a non-negative integer. By (1), xn lies in
Zp, so its limit x also lies in Zp.

As | · |p takes values in {0} ∪ {pr | r ∈ Z}, we see the open unit ball in Qp

is pZp. We have Qp = FracZp = Zp[ 1p ]. For integers N ≥ 0, note that

pNZp is the kernel of lim←−m
Z/pmZ→Z/pNZ, so we have

Zp/p
NZp

∼→Z/pNZ.
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