More on Topological Groups (with *p*-adic numbers at the end)

Siyan Daniel Li-Huerta

September 10, 2020

Let G be a topological group, and let H be a subgroup of G. We give G/H the quotient topology via the map $\pi : G \to G/H$, i.e. a subset $S \subseteq G/H$ is open if and only if $\pi^{-1}(S) \subseteq G$ is open. Proposition

- **(**) The coset space G/H is a homogeneous topological space.
- 2 The quotient map $\pi : G \to G/H$ is open.
- The coset space G/H is T_1 if and only if H is closed.
- The coset space G/H is discrete if and only if H is open.
- The closure $\overline{\{1\}}$ is a normal subgroup of *G*.
- **(**) If H is a normal subgroup, then G/H is a topological group.

Proof.

- It suffices to show left multiplication by g on G/H is continuous for all g in G. Now G → G → G/H is continuous and constant on H-cosets, so it descends to a continuous map G/H → G/H.
- 2 Let $U \subseteq G$ be open. Then $\pi^{-1}(\pi(U)) = UH$ is a union of right translates of U, which are open. Hence $\pi(U)$ is open.

- **(**) The coset space G/H is a homogeneous topological space.
- 2 The quotient map $\pi: G \to G/H$ is open.
- The coset space G/H is T_1 if and only if H is closed.
- The coset space G/H is discrete if and only if H is open.
- The closure $\overline{\{1\}}$ is a normal subgroup of G.
- If H is a normal subgroup, then G/H is a topological group.

Proof (continued).

- A point gH in G/H is closed if and only if π⁻¹(gH) = gH is closed. Using left translation, we see this occurs if and only if H is closed.
- Replace "closed" with "open" in the proof of (3).
- Since {1} is a subgroup of G, its closure is also a subgroup. For any g in G, conjugation by g yields a homeomorphism G → G preserving {1}, so ad g preserves {1} too.

- The coset space G/H is a homogeneous topological space.
- **2** The quotient map $\pi : G \to G/H$ is open.
- **③** The coset space G/H is T_1 if and only if H is closed.
- The coset space G/H is discrete if and only if H is open.
- The closure $\overline{\{1\}}$ is a normal subgroup of G.
- If H is a normal subgroup, then G/H is a topological group.

Proof (continued).

() We check $\mu_{G/H}$ is continuous. Consider the commutative diagram

$$\begin{array}{c} G \times G \xrightarrow{\mu_G} G \\ \downarrow^{\pi \times \pi} & \downarrow^{\pi} \\ G/H \times G/H \xrightarrow{\mu_{G/H}} G/H. \end{array}$$

Note that $G/H \times G/H$ has the quotient topology via $\pi \times \pi$. For open $U \subseteq G/H$, we see $\mu_G^{-1}(\pi^{-1}(U)) = (\pi \times \pi)^{-1}(\mu_{G/H}^{-1}(U))$ is open.

An *isomorphism* of topological groups is a group isomorphism that's also a homeomorphism.

Example

- The map $x \mapsto \exp(2\pi i x)$ induces an isomorphism $\mathbb{R}/\mathbb{Z} \xrightarrow{\sim} S^1$,
- **2** The map $(x, y) \mapsto x$ induces an isomorphism $\mathbb{R}^2/(\{0\} \times \mathbb{R}) \xrightarrow{\sim} \mathbb{R}$.

Let's prove some more properties about coset spaces.

Proposition

Let G be a topological group.

- Let $C \subseteq G$ be closed and $K \subseteq G$ be compact. Then CK is closed.
- **2** Let $H \subseteq G$ be a compact subgroup. Then $\pi : G \to G/H$ is closed.

Remark

Compactness is necessary in (2). For instance, in the second example above, the hyperbola $\{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$ is closed in \mathbb{R}^2 , but its image under π is $\mathbb{R} \setminus \{0\}$, which is not closed in \mathbb{R} .

Let G be a topological group.

- **(**) Let $C \subseteq G$ be closed and $K \subseteq G$ be compact. Then CK is closed.
- **2** Let $K \subseteq G$ be a compact subgroup. Then $\pi : G \to G/K$ is closed.

Proof.

Say x is the limit of some net {c_αk_α}_{α∈A} in CK, where c_α lies in C and k_α lies in K. By compactness of K, we have a subnet {k_{α'}}_{α'∈A'} converging to some k in K. I claim that {c_{α'}}_{α'∈A'} converges to xk⁻¹, so x = xk⁻¹ ⋅ k lies in CK.

To see this, let U be a neighborhood of 1. Now U contains a neighborhood V of 1 such that $VV \subseteq U$. By continuity of multiplication, $x^{-1}c_{\alpha'}k_{\alpha'}$ and $k_{\alpha'}^{-1}k$ lie in V for sufficiently large α' in A'. Hence $x^{-1}c_{\alpha'}k_{\alpha'} \cdot k_{\alpha'}^{-1}k = x^{-1}c_{\alpha'}k$ lies in U, so $\{x^{-1}c_{\alpha'}k\}_{\alpha'\in A'}$ converges to 1. Continuity of multiplication implies that $\{c_{\alpha'}\}_{\alpha'\in A'}$ converges to xk^{-1} .

2 Let $C \subseteq G$ be closed. Then $\pi^{-1}(\pi(C)) = CK$ is closed by (1).

Let X be a Hausdorff topological space. Recall that X is *locally compact* if every x in X has a neighborhood U whose closure is compact.

Example

Discrete groups, \mathbb{R} , \mathbb{C}^{\times} , S^1 , and $GL_n(\mathbb{R})$ are all locally compact.

Remark

The topological groups we'll focus on later will be locally compact, but there are many useful topological groups that are *not* locally compact!

Proposition

Let G be a Hausdorff topological group, and let H be a locally compact subgroup. Then H is closed.

In particular, discrete subgroups of G are closed.

Proof.

Let $W \subseteq H$ be a neighborhood of 1 whose closure $cl_H W$ is compact. Now there exists a neighborhood $U \subseteq G$ of 1 such that $W = U \cap H$, and Ucontains a neighborhood $V \subseteq G$ of 1 such that $VV \subseteq U$.

Let G be a Hausdorff topological group, and let H be a locally compact subgroup. Then H is closed.

Proof (continued).

Now suppose x lies in $cl_G H$. As $cl_G H$ is a subgroup, we see x^{-1} lies in $cl_G H$, so Vx^{-1} must intersect H. Say h lies in $Vx^{-1} \cap H$. I claim that hx lies in $cl_G U \cap H$.

To see this, note that $\operatorname{cl}_G U \cap H = \operatorname{cl}_H W$ is compact and G is Hausdorff, so $\operatorname{cl}_G U \cap H$ is closed in G. Thus it's enough to show every neighborhood T of hx in G intersects $\operatorname{cl}_G U \cap H$. We see $h^{-1}T$ and hence $h^{-1}T \cap xV$ is a neighborhood of x in G. Because x lies in $\operatorname{cl}_G H$, there exists z in $(h^{-1}T \cap xV) \cap H$. So hz lies in T and H, and hz also lies in $Vx^{-1}xV = VV \subseteq U$. Altogether hz lies in $T \cap (\operatorname{cl}_G U \cap H)$, making this intersection non-empty, as desired.

Finally, since hx and h both lie in the subgroup H, so does x.

That's enough topological groups for now. Let's pivot to a discussion of *p*-adic numbers, which will also provide new examples of topological groups for us! Let's start with some motivation.

Definition

Let F be a field. An absolute value (or norm) on F is a function $|\cdot|: F \to \mathbb{R}_{\geq 0}$ such that

- For all x in F, we have |x| = 0 if and only if x = 0,
- For all x and y in F, we have |xy| = |x||y|,
- For all x and y in F, we have $|x + y| \le |x| + |y|$.

We say two norms $|\cdot|_1$ and $|\cdot|_2$ on F are *isomorphic* if $|\cdot|_1 = |\cdot|_2^c$ for some c > 0.

Example

 \bullet The classic absolute value $|\cdot|_\infty:\mathbb{Q}\!\rightarrow\!\mathbb{R}_{\geq 0}$ given by

$$x\mapsto egin{cases} x & ext{if } x\geq 0, \ -x & ext{otherwise.} \end{cases}$$

Example

• The classic absolute value $|\cdot|_\infty:\mathbb{Q}\!\rightarrow\!\mathbb{R}_{\geq 0}$ given by

$$x\mapsto egin{cases} x & ext{if } x\geq 0, \ -x & ext{otherwise}. \end{cases}$$

• Let p be a prime number. For any x in \mathbb{Q}^{\times} , write $x = \frac{a}{b}p^r$, where a and b are integers not divisible by p, and r is an integer. One can show that the map $|\cdot|_p : \mathbb{Q} \to \mathbb{R}_{\geq 0}$ given by

$$x\mapsto egin{cases} rac{1}{p^r} & ext{if } x
eq 0,\ 0 & ext{otherwise}, \end{cases}$$

is a well-defined norm on \mathbb{Q} . We call this the *p*-adic norm.

Theorem (Ostrowski)

Every nontrivial norm on \mathbb{Q} is isomorphic to $|\cdot|_{\infty}$ or $|\cdot|_{p}$ for some prime number p.

Example

Let's compute some p-adic norms of 5/7:

•
$$|5/7|_2 = |\frac{5}{7} \cdot 2^0|_2 = 1/2^0 = 1$$
,

•
$$|5/7|_5 = |\frac{1}{7} \cdot 5^1|_5 = 1/5^1$$
,

•
$$|5/7|_7 = |\frac{5}{1} \cdot 7^{-1}|_7 = 1/7^{-1} = 7.$$

Remark

The classic absolute value $|\cdot|_{\infty}$ is archimedean, i.e. $|\mathbb{Z}|_{\infty}$ is unbounded. In contrast, we see $|\mathbb{Z}|_{p}$ is bounded (i.e. $|\cdot|_{p}$ is non-archimedean)! This is related to the fact that $|x + y|_{p} \leq \max\{|x|_{p}, |y|_{p}\}$ for all x and y in \mathbb{Q} .

You've studied $|\cdot|_{\infty}$ already, so we'll focus on $|\cdot|_p$. Recall that \mathbb{R} can be defined as the completion of \mathbb{Q} with respect to $|\cdot|_{\infty}$.

Definition

The *p*-adic numbers (or *p*-adic rationals), denoted by \mathbb{Q}_p , is the completion of \mathbb{Q} with respect to $|\cdot|_p$.