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Let G be a topological group, and let H be a subgroup of G . We give
G/H the quotient topology via the map π : G → G/H, i.e. a subset
S ⊆ G/H is open if and only if π−1(S) ⊆ G is open.

Proposition

1 The coset space G/H is a homogeneous topological space.

2 The quotient map π : G→G/H is open.

3 The coset space G/H is T1 if and only if H is closed.

4 The coset space G/H is discrete if and only if H is open.

5 The closure {1} is a normal subgroup of G .

6 If H is a normal subgroup, then G/H is a topological group.

Proof.

1 It suffices to show left multiplication by g on G/H is continuous for

all g in G . Now G
g ·→G

π→G/H is continuous and constant on

H-cosets, so it descends to a continuous map G/H
g ·→G/H.

2 Let U ⊆ G be open. Then π−1(π(U)) = UH is a union of right
translates of U, which are open. Hence π(U) is open. 2 / 11
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Proof (continued).

3 A point gH in G/H is closed if and only if π−1(gH) = gH is closed.
Using left translation, we see this occurs if and only if H is closed.

4 Replace “closed” with “open” in the proof of (3).

5 Since {1} is a subgroup of G , its closure is also a subgroup. For any

g in G , conjugation by g yields a homeomorphism G
ad g−→G preserving

{1}, so ad g preserves {1} too.
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Proof (continued).

6 We check µG/H is continuous. Consider the commutative diagram

G × G
µG //

π×π
��

G

π

��

G/H × G/H
µG/H

// G/H.

Note that G/H ×G/H has the quotient topology via π× π. For open
U ⊆ G/H, we see µ−1G (π−1(U)) = (π × π)−1(µ−1G/H(U)) is open.
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An isomorphism of topological groups is a group isomorphism that’s also a
homeomorphism.

Example

1 The map x 7→ exp(2πix) induces an isomorphism R/Z ∼→S1,

2 The map (x , y) 7→ x induces an isomorphism R2/({0} × R)
∼→R.

Let’s prove some more properties about coset spaces.

Proposition

Let G be a topological group.

1 Let C ⊆ G be closed and K ⊆ G be compact. Then CK is closed.

2 Let H ⊆ G be a compact subgroup. Then π : G→G/H is closed.

Remark

Compactness is necessary in (2). For instance, in the second example
above, the hyperbola {(x , y) ∈ R2 | xy = 1} is closed in R2, but its image
under π is Rr {0}, which is not closed in R.
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Proposition

Let G be a topological group.

1 Let C ⊆ G be closed and K ⊆ G be compact. Then CK is closed.

2 Let K ⊆ G be a compact subgroup. Then π : G→G/K is closed.

Proof.

1 Say x is the limit of some net {cαkα}α∈A in CK , where cα lies in C
and kα lies in K . By compactness of K , we have a subnet {kα′}α′∈A′

converging to some k in K . I claim that {cα′}α′∈A′ converges to
xk−1, so x = xk−1 · k lies in CK .

To see this, let U be a neighborhood of 1. Now U contains a
neighborhood V of 1 such that VV ⊆ U. By continuity of
multiplication, x−1cα′kα′ and k−1α′ k lie in V for sufficiently large α′ in
A′. Hence x−1cα′kα′ · k−1α′ k = x−1cα′k lies in U, so {x−1cα′k}α′∈A′

converges to 1. Continuity of multiplication implies that {cα′}α′∈A′

converges to xk−1.

2 Let C ⊆ G be closed. Then π−1(π(C )) = CK is closed by (1).
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Let X be a Hausdorff topological space. Recall that X is locally compact
if every x in X has a neighborhood U whose closure is compact.

Example

Discrete groups, R, C×, S1, and GLn(R) are all locally compact.

Remark

The topological groups we’ll focus on later will be locally compact, but
there are many useful topological groups that are not locally compact!

Proposition

Let G be a Hausdorff topological group, and let H be a locally compact
subgroup. Then H is closed.

In particular, discrete subgroups of G are closed.

Proof.

Let W ⊆ H be a neighborhood of 1 whose closure clH W is compact. Now
there exists a neighborhood U ⊆ G of 1 such that W = U ∩ H, and U
contains a neighborhood V ⊆ G of 1 such that VV ⊆ U. 7 / 11



Proposition

Let G be a Hausdorff topological group, and let H be a locally compact
subgroup. Then H is closed.

Proof (continued).

Now suppose x lies in clG H. As clG H is a subgroup, we see x−1 lies in
clG H, so Vx−1 must intersect H. Say h lies in Vx−1 ∩ H. I claim that hx
lies in clG U ∩ H.

To see this, note that clG U ∩ H = clH W is compact and G is Hausdorff,
so clG U ∩ H is closed in G . Thus it’s enough to show every neighborhood
T of hx in G intersects clG U ∩ H. We see h−1T and hence h−1T ∩ xV is
a neighborhood of x in G . Because x lies in clG H, there exists z in
(h−1T ∩ xV ) ∩ H. So hz lies in T and H, and hz also lies in
Vx−1xV = VV ⊆ U. Altogether hz lies in T ∩ (clG U ∩ H), making this
intersection non-empty, as desired.

Finally, since hx and h both lie in the subgroup H, so does x .
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That’s enough topological groups for now. Let’s pivot to a discussion of
p-adic numbers, which will also provide new examples of topological
groups for us! Let’s start with some motivation.

Definition

Let F be a field. An absolute value (or norm) on F is a function
| · | : F →R≥0 such that

For all x in F , we have |x | = 0 if and only if x = 0,

For all x and y in F , we have |xy | = |x ||y |,
For all x and y in F , we have |x + y | ≤ |x |+ |y |.

We say two norms | · |1 and | · |2 on F are isomorphic if | · |1 = | · |c2 for
some c > 0.

Example

The classic absolute value | · |∞ : Q→R≥0 given by

x 7→

{
x if x ≥ 0,

−x otherwise.
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Example

The classic absolute value | · |∞ : Q→R≥0 given by

x 7→

{
x if x ≥ 0,

−x otherwise.

Let p be a prime number. For any x in Q×, write x = a
bp

r , where a
and b are integers not divisible by p, and r is an integer. One can
show that the map | · |p : Q→R≥0 given by

x 7→

{
1
pr if x 6= 0,

0 otherwise,

is a well-defined norm on Q. We call this the p-adic norm.

Theorem (Ostrowski)

Every nontrivial norm on Q is isomorphic to | · |∞ or | · |p for some prime
number p.
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Example

Let’s compute some p-adic norms of 5/7:

|5/7|2 = |57 · 2
0|2 = 1/20 = 1,

|5/7|5 = |17 · 5
1|5 = 1/51,

|5/7|7 = |51 · 7
−1|7 = 1/7−1 = 7.

Remark

The classic absolute value | · |∞ is archimedean, i.e. |Z|∞ is unbounded. In
contrast, we see |Z|p is bounded (i.e. | · |p is non-archimedean)! This is
related to the fact that |x + y |p ≤ max{|x |p, |y |p} for all x and y in Q.

You’ve studied | · |∞ already, so we’ll focus on | · |p. Recall that R can be
defined as the completion of Q with respect to | · |∞.

Definition

The p-adic numbers (or p-adic rationals), denoted by Qp, is the
completion of Q with respect to | · |p.
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