(1) For each of the following, prove the statement if it is true, and give a counterexample if it is false:
 - Solutions to the vector ODE $v'(t) = Av(t)$ all converge to zero whenever all eigenvalues λ of A have absolute value less than 1 (i.e. $|\lambda| < 1$).
 - If $v'(t) = Av(t)$ and A has all eigenvalues zero and a full basis of eigenvectors, then $v(t) = v(0)$ for all t. Does the answer change if A only has has characteristic polynomial t^n (i.e. may no longer be diagonalisable)? (Hint: one of the parts of the next question is relevant.)
 - Suppose that $v'(t) = Av(t)$ (which we can solve for negative t as well as positive t). Let $u(t) = v(-t)$. Then $u'(t) = -Au(t)$.
 - Is it possible for the solution of a vector ODE to be periodic? (Hint: one of the parts of the following question is relevant.) What must be true of the eigenvalues of A for this to be possible?

(2) For each of the following matrices A, solve the vector ODE $v'(t) = Av(t)$ in terms of $v(0)$ (the initial condition):
 - \[
 \begin{pmatrix}
 2 & 0 \\
 0 & -1
 \end{pmatrix}
 \]
 - \[
 \begin{pmatrix}
 0 & -1 \\
 1 & 0
 \end{pmatrix}
 \]
 - \[
 \begin{pmatrix}
 0 & 1 \\
 0 & 0
 \end{pmatrix}
 \]
 - \[
 \begin{pmatrix}
 2 & -1 \\
 1 & 2
 \end{pmatrix}
 \]
 In each case state the behaviour of the solution as $t \to \infty$ (does it converge, oscillate finitely, or grow without bound?).

(3) In each of the parts of the previous question, sketch the graph of the trajectory of $v(t) = (x(t), y(t))$.

(4) If A is an $n \times n$ matrix with n linearly independent eigenvectors x_1, x_2, \ldots, x_n, we may assemble these into an invertible matrix S. Then, the solution to $v'(t) = Av(t)$ can be written as $e^{At}v(0)$ or $Se^{Dt}S^{-1}v(0)$ (where D is the diagonal matrix of eigenvalues of A) or
 \[v(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2 + \cdots + c_ne^{\lambda_n t}x_n\]
where \(\lambda_i \) is the eigenvalue associated to the eigenvector \(x_i \). How can you obtain the scalars \(c_i \) from \(v(0) \) and \(S \)?

(5) Let \(A \) be a matrix with eigenvalues \(0.5, -0.5 \), what is the long term behaviour of the system \(v'(t) = Av(t) \), and what is the long term behaviour of the recurrence \(v_{n+1} = Av_n \)? How does your answer change if the eigenvalues are \(-2, -1 \)?

(6) Bill the bilby is trying to solve a vector ODE of the form \(v'(t) = A(t)v(t) \); unlike the cases we have considered so far, the matrix \(A \) now depends on \(t \). Show that this system is solved by

\[
v(t) = e^{\int_0^t A(s)ds} v(0),
\]

(you may have seen this called the integrating factor method, but we are applying it to vector ODEs) and use this to solve the equation in the case

\[
A(t) = \begin{pmatrix}
\cos(t) & -\sin(t) \\
\sin(t) & \cos(t)
\end{pmatrix}.
\]