Lozenge tilings and the Gaussian free field on a cylinder

Roger Van Peski (MIT)

Seminar from a Safe Distance April 29, 2021 Joint work with Andrew Ahn and Marianna Russkikh

- Introduce the basic setup of deterministic limits and Gaussian free field fluctuations around them for random height functions, survey some known results.
- Talk about new work, joint with Andrew Ahn and Marianna Russkikh, on q^{vol} measure on lozenge tilings of cylinder. We see Gaussian free field but also discrete Gaussian corrections.

Tilings, limit shapes, and the Gaussian free field

Lozenge tilings and plane partitions

The height function

The height function of a tiling is determined by its value at any point and its local increments.

(figure borrowed from A. Ahn)

The height function

The height function of a tiling is determined by its value at any point and its local increments.

How does height function of a random tiling behave in the limit?

What do we mean by random tiling?

What do we mean by random tiling?

Some options:

Uniformly random tiling on finite domain.

What do we mean by random tiling?

Some options:

Uniformly random tiling on finite domain.

2 q^{vol} measure: for tiling π set $\Pr(\pi) \propto q^{\operatorname{vol}(\pi)}$, 0 < q < 1.

Useful mental model: simple random walk

Consider a simple random walk $Z_t, 0 \le t \le T$ starting at 0, conditioned to end at X.

(figure from A. Okounkov, *Limit Shapes, Real and Imagined*, http://math.columbia.edu/~okounkov/AMScolloq_revised.pdf)

Deterministic limits of the SRW

As
$$X, T \to \infty$$
, slope $X/T = \gamma$ constant,
 $\frac{Z_{\lfloor sT \rfloor}}{X} \to s$ uniformly over $s \in [0, 1]$ ('limit shape'),
 X
(0,0)

(figure from A. Okounkov, Limit Shapes, Real and Imagined)

Deterministic limits of the SRW

As
$$X, T \to \infty$$
, slope $X/T = \gamma$ constant,
 $\frac{Z_{\lfloor sT \rfloor}}{X} \to s$ uniformly over $s \in [0, 1]$ ('limit shape'),
 X
(0,0)

(figure from A. Okounkov, Limit Shapes, Real and Imagined)

Why? Number of N-step random walks ending at γN is

$$\binom{N}{\frac{1+\gamma}{2}N} \approx e^{N\left(-\frac{1+\gamma}{2}\log\frac{1+\gamma}{2} - \frac{1-\gamma}{2}\log\frac{1-\gamma}{2}\right)}$$

and Shannon entropy $h(\frac{1+\gamma}{2})$ is concave.

Limit shape for lozenge tilings

General setup: sequence of tileable domains $D_N \subset \mathbb{R}^2$ so

$$\frac{1}{N}D_N \xrightarrow{N \to \infty} D \subset \mathbb{R}^2.$$

Show for $(x,y) \in D$, rescaled height function converges

 $h(Nx, Ny)/N \rightarrow h_{\text{limit}}(x, y)$ (deterministic).

Limit shape has *liquid region* (non-extreme slope) and *frozen regions*.

(figure from V. Gorin, Lectures on random lozenge tilings,

based on simulation by L. Petrov.)

Some known results about limit shapes

Limit shape results: show for $(\boldsymbol{x},\boldsymbol{y})\in D$, rescaled height function converges

$$\frac{h(Nx, Ny)}{N} \to h_{\text{limit}}(x, y).$$

- [Cohn-Kenyon-Propp '00] proved a.s. convergence to certain entropy-maximizers for uniformly random domino tilings of simply connected domains in ℝ².
- [Kenyon-Okounkov-Sheffield '03] showed more generally (weighted doubly periodic bipartite dimer models on simply connected planar regions).
- [Cerf-Kenyon '01] Same limit shape for uniform measure on plane partitions of given volume.

Fluctuations for SRW

$$\frac{Z_{\lfloor sT \rfloor} - \mathbb{E}[Z_{\lfloor sT \rfloor}]}{\operatorname{const}(\gamma)\sqrt{T}} \to B_s$$

where $B_s, s \in [0, 1]$ is a standard Brownian bridge. In particular

$$\operatorname{Cov}\left(\frac{Z_{\lfloor sT \rfloor} - \mathbb{E}[Z_{\lfloor sT \rfloor}]}{\operatorname{const}(X/T)\sqrt{T}}, \frac{Z_{\lfloor s'T \rfloor} - \mathbb{E}[Z_{\lfloor s'T \rfloor}]}{\operatorname{const}(X/T)\sqrt{T}}\right) \to \operatorname{Cov}(B_s, B_{s'}).$$

is

Fluctuations for SRW and Green's functions

$$\operatorname{Cov}(B_s, B_{s'}) = \min(s, s')(1 - \max(s, s')) =: G(s, s')$$

the *Green's function* for Laplacian $\Delta = \frac{\partial^2}{\partial s^2}$ on $[0, 1]$ with 0 inicial boundary conditions i.e.

Dirichlet boundary conditions, i.e.

$$\Delta f(s) = g(s) \iff f(s) = -\int_0^1 G(s, s')g(s')ds'$$

for $f \in L^2([0,1])$ with f(0) = f(1) = 0.

The Gaussian free field

On a (simply connected) domain $\mathcal{D} \subset \mathbb{C}$ similarly have Laplacian $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ and Green's function G(z, w).

Example

On upper half-plane \mathbb{H} ,

$$G(z,w) = -\frac{1}{2\pi} \log \left| \frac{z-w}{z-\bar{w}} \right|$$

Note $G(z, w) \approx -\frac{1}{2\pi} \log |z - w|$ blows up as $w \to z$.

The Gaussian free field

On a (simply connected) domain $\mathcal{D} \subset \mathbb{C}$ similarly have Laplacian $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ and Green's function G(z, w).

Example

On upper half-plane \mathbb{H} ,

$$G(z,w) = -\frac{1}{2\pi} \log \left| \frac{z-w}{z-\bar{w}} \right|$$

Note $G(z, w) \approx -\frac{1}{2\pi} \log |z - w|$ blows up as $w \to z$.

"Definition"

Informally, the Gaussian free field Φ on D is the random Gaussian "function" (actually, distribution) with

 $\operatorname{Cov}(\Phi(z),\Phi(w)) = G(z,w).$

The Gaussian free field

"Definition"

Informally, the Gaussian free field Φ on D is the random Gaussian "function" (actually, distribution) with

$$\operatorname{Cov}(\Phi(z), \Phi(w)) = G(z, w).$$

Definition

The Gaussian free field Φ on $\mathcal D$ is the random distribution such that pairings with test functions $\int_{\mathcal D} f\Phi$ are jointly Gaussian with covariance

$$\operatorname{Cov}\left(\int_{\mathcal{D}} f_1 \Phi, \int_{\mathcal{D}} f_2 \Phi\right) = \int_{\mathcal{D} \times \mathcal{D}} f_1(z) G(z, w) f_2(w).$$

Fluctuations for tilings

Conjecture (Kenyon-Okounkov '05)

For tilings of simply connected planar regions, there exists map $\zeta : \mathcal{L} \to \mathbb{H}$ on liquid region so that

$$\sqrt{\pi}(h(Nx,Ny) - \mathbb{E}[h(Nx,Ny)]) \xrightarrow{N \to \infty} \Phi \circ \zeta(x,y)$$

where Φ is the GFF on \mathbb{H} .

At the level of covariances, this means

 $\operatorname{Cov}\left(\bar{h}(Nx_1, Ny_1), \bar{h}(Nx_2, Ny_2)\right) \to G(\zeta(x_1, y_1), \zeta(x_2, y_2)).$

Fluctuations for tilings

Conjecture (Kenyon-Okounkov '05)

For tilings of simply connected planar regions, there exists map $\zeta : \mathcal{L} \to \mathbb{H}$ on liquid region so that

$$\sqrt{\pi}(h(Nx,Ny) - \mathbb{E}[h(Nx,Ny)]) \xrightarrow{N \to \infty} \Phi \circ \zeta(x,y)$$

where Φ is the GFF on \mathbb{H} .

For uniform tilings $\zeta(x,y) = z(x,y)$ is parametrized by limit shape: Near each $(x,y) \in \mathcal{L}$ have local lozenge proportions $p_{\diamondsuit} + p_{\square} + p_{\square} = 1$ which determine z(x,y) via

Known cases

Gaussian free field convergence for tilings is known in some special cases:

- Certain polygonal domains (e.g. [Borodin-Ferrari '08], [Petrov '12]).
- $q^{\rm vol}$ plane partitions ([Ahn '20]).
- Certain domains with no frozen regions (e.g. [Kenyon '01], [Russkikh '18])
- Hexagon with a hole [Bufetov-Gorin '17] (note: not simply connected!).

The cylinder

$q^{\rm vol}$ measure on cylinder

For 0 < q < 1 define measure on ${\bf cylindric}$ partitions π by

 $\Pr(\pi) \propto q^{\operatorname{vol}(\pi)}.$

Regime: Take cylinder width 2N and $q^N=t\in(0,1),$ send $N\to\infty.$

Limit shape

Let $q^N = t \in (0, 1)$ and h_N be the height function of a q^{vol} -distributed cylindric partition of width 2N.

Theorem (Ahn-Russkikh-VP '21) In the above setup $\frac{1}{N}h_N(N\tau, Ny) \rightarrow \begin{cases} 0 & y \le \frac{\log 2}{\log t} \\ \int_{\frac{\log 2}{\log t}}^{y} \frac{2 \arctan\left(\sqrt{4t^{-2u} - 1}\right)}{\pi} du & y \ge \frac{\log 2}{\log t} \end{cases}$

in probability, uniformly on compact vertical intervals.

Note [Borodin '07] showed result on local statistics which also computes the limit shape; our only real input here is showing concentration.

Fluctuations

Let $q^N = t \in (0, 1)$ and h_N be the height function of a q^{vol} -distributed cylindric partition of width 2N.

Theorem (Ahn-Russkikh-VP '21)

The centered height function $\sqrt{\pi}(h(N\tau, Ny) - \mathbb{E}[h(N\tau, Ny)])$ converges on the liquid region to the Gaussian free field $\Phi \circ \zeta$ in the Kenyon-Okounkov complex structure.

Notion of convergence

For any circumference coordinates $\tau_1, \ldots, \tau_n \in (0,1]$ and $k_1, \ldots, k_n \in \mathbb{Z}_{>0}$, the random vector

$$\left(\frac{1}{2N}\sum_{y\in\frac{1}{2N}(\mathbb{Z}+\frac{1}{2})}\left(h_N(\lfloor 2N\tau_i\rfloor,2Ny)-\mathbb{E}[h_N(\lfloor 2N\tau_i\rfloor,2Ny)]\right)t^{k_iy}\right)_{1\leq i\leq n}$$

converges in distribution to the Gaussian random vector

$$\left(\frac{1}{\sqrt{\pi}}\int_{\frac{\log 2}{\log t}}^{\infty} \Phi(\zeta(\tau_i, y)) t^{k_i y} \, dy\right)_{1 \le i \le n}$$

 $\text{ as }N\to\infty.$

A more natural q^{vol} measure

Every tiling which differs from the 'empty room' in finitely many places is a plane partition.

Tilings, limit shapes, and the Gaussian free field

A more natural q^{vol} measure

This is not true on the cylinder.

Tilings, limit shapes, and the Gaussian free field

A more natural $q^{\rm vol}$ measure

This is not true on the cylinder.

Also have vertical shifts of cylindric partitions! In fact,

 $\{\text{tilings* of cylinder}\} \xleftarrow{bijection} \mathbb{Z} \times \{\text{cylindric partitions}\}$ *with boundary condtions matching empty room at $\pm\infty$.

A more natural q^{vol} measure

"Shift-mixed $q^{\rm vol}$ measure" ([Borodin '07]) on this larger set of tilings (π,S) :

$$\Pr(\pi, S) \propto \left(u^S q^{NS^2} \right) q^{\operatorname{vol}(\pi)}.$$

Here $u \in \mathbb{R}_{>0}$ is another parameter. May view as sampling S and π independently.

A more natural q^{vol} measure

"Shift-mixed $q^{\rm vol}$ measure" ([Borodin '07]) on this larger set of tilings (π,S) :

$$\Pr(\pi, S) \propto \left(u^S q^{NS^2} \right) q^{\operatorname{vol}(\pi)}.$$

Here $u \in \mathbb{R}_{>0}$ is another parameter. May view as sampling S and π independently.

Why natural? Comes from local dimer model, and horizontal lozenges form determinantal point process (related).

Figure from Borodin-Petrov https://arxiv.org/pdf/1310.8007

Fluctuations for shift-mixed measure

Let $q^N = t \in (0, 1)$, u > 0 and h_N be the height function of a shift-mixed q^{vol} -distributed cylindric tiling of width 2N.

Theorem (Ahn-Russkikh-VP '21)

The centered height function $\bar{h}(N\tau,Ny)$ converges on the liquid region to

$$\frac{1}{\sqrt{\pi}}\Phi\circ\zeta-S\mathcal{H}'(y)$$

where Φ is the Gaussian free field, \mathcal{H} is the limit shape, and $S \sim \mathcal{N}_{\text{discrete}}\left(\frac{|\log t|}{2}, \frac{\log u}{\log t}\right)$.

Here $\mathcal{N}_{discrete}(C,m)$ is the discrete Gaussian

$$\Pr(x) \propto e^{-C(x-m)^2}$$
 for $x \in \mathbb{Z}$.

A domain topologically equivalent to the cylinder:

Height of hole depends on tiling.

A domain topologically equivalent to the cylinder:

Height of hole depends on tiling. To choose random tiling either

- allow hole height to vary.
- ondition random tiling on fixed hole height.

A domain topologically equivalent to the cylinder:

Height of hole depends on tiling. To choose random tiling either

- allow hole height to vary.
- condition random tiling on fixed hole height. Analogy:
 - unrestricted tilings of cylinder unshifted cylindric partitions
- \leftrightarrow tilings of holey hexagon
 - unshifted cylindric partitions $\ \leftrightarrow \$ tilings w/ fixed hole height

Theorem (Bufetov-Gorin '17)

The uniform measure on tilings of the holey hexagon conditioned on fixed hole height has Gaussian free field fluctuations in Kenyon-Okounkov complex structure.

(figure from V. Gorin, Lectures on random lozenge tilings,

based on simulation by L. Petrov.)

Discrete Gaussian conjecture

Conjecture (Gorin '19)

For a general planar domain with a hole, the limiting fluctuations of the hole height are discrete Gaussian $\mathcal{N}_{discrete}(C,m)$. Furthermore

$$C = \frac{\pi}{2} \int_{\zeta(\mathcal{L})} \|\nabla g\|^2 \, dx \, dy \qquad \text{(Dirichlet energy)}$$

of unique harmonic function g which is 0 on outer boundary, 1 on inner boundary.

Proved for many domains in [Borot-Gorin-Guionnet, in preparation].

Discrete Gaussians on cylinder

For shift-mixed $q^{\rm vol}$ recall independent shift S has

$$\Pr(S=x) \propto u^x q^{Nx^2}.$$

Discrete Gaussians on cylinder

For shift-mixed q^{vol} recall independent shift S has

$$\Pr(S=x) \propto u^x q^{Nx^2}.$$

Equivalently (recall $t = q^N$)

$$S \sim \mathcal{N}_{\text{discrete}}\left(\frac{|\log t|}{2}, \frac{\log u}{\log t}\right)$$

and

$$C = \frac{|\log t|}{2}$$

is exactly the Dirichlet energy in previous conjecture for our case!

A word on proofs

View plane or cylindric partition as sequence of integer partitions:

Schur process

- q^{vol} plane partitions are distributed as a certain *Schur process* [Okounkov-Reshetikhin '01].
- (shift-mixed) q^{vol} cylindric partitions are a certain (shift-mixed) periodic Schur process [Borodin '07].

Schur process

- $q^{\rm vol}$ plane partitions are distributed as a certain *Schur process* [Okounkov-Reshetikhin '01].
- (shift-mixed) q^{vol} cylindric partitions are a certain (shift-mixed) periodic Schur process [Borodin '07].

Yields tractable formulas for joint moments of "Laplace transforms"

$$\frac{1}{2N} \sum_{y \in \frac{1}{2N} (\mathbb{Z} + \frac{1}{2})} \left(h_N(\lfloor 2N\tau_i \rfloor, 2Ny) - \mathbb{E}[h_N(\lfloor 2N\tau_i \rfloor, 2Ny)] \right) t^{k_i y}$$

Schur process

- $q^{\rm vol}$ plane partitions are distributed as a certain *Schur process* [Okounkov-Reshetikhin '01].
- (shift-mixed) q^{vol} cylindric partitions are a certain (shift-mixed) periodic Schur process [Borodin '07].

Yields tractable formulas for joint moments of "Laplace transforms"

$$\frac{1}{2N}\sum_{y\in\frac{1}{2N}(\mathbb{Z}+\frac{1}{2})}\left(h_N(\lfloor 2N\tau_i\rfloor,2Ny)-\mathbb{E}[h_N(\lfloor 2N\tau_i\rfloor,2Ny)]\right)t^{k_iy}$$

Similar methods for Gaussian free field convergence for random matrices and random tilings used in e.g. [Borodin-Gorin '15], [Ahn '20].

- Kenyon-Okounkov conjecture predicts GFF with correlations determined by limit shape/local lozenge proportions.
- Gorin discrete Gaussian conjecture predicts discrete hole height fluctuations using KO complex structure.

- Kenyon-Okounkov conjecture predicts GFF with correlations determined by limit shape/local lozenge proportions.
- Gorin discrete Gaussian conjecture predicts discrete hole height fluctuations using KO complex structure.
- \bullet Unshifted $q^{\rm vol}$ measure on cylindric partitions yields GFF in KO coordinates.
- Shift-mixed $q^{\rm vol}$ measure has built-in discrete Gaussian shift, in limit yields GFF plus this shift.

- Kenyon-Okounkov conjecture predicts GFF with correlations determined by limit shape/local lozenge proportions.
- Gorin discrete Gaussian conjecture predicts discrete hole height fluctuations using KO complex structure.
- \bullet Unshifted $q^{\rm vol}$ measure on cylindric partitions yields GFF in KO coordinates.
- Shift-mixed $q^{\rm vol}$ measure has built-in discrete Gaussian shift, in limit yields GFF plus this shift.
- These show how to interpret/verify above conjectures on example of nonplanar, non simply connected domain.

- Kenyon-Okounkov conjecture predicts GFF with correlations determined by limit shape/local lozenge proportions.
- Gorin discrete Gaussian conjecture predicts discrete hole height fluctuations using KO complex structure.
- \bullet Unshifted $q^{\rm vol}$ measure on cylindric partitions yields GFF in KO coordinates.
- Shift-mixed $q^{\rm vol}$ measure has built-in discrete Gaussian shift, in limit yields GFF plus this shift.
- These show how to interpret/verify above conjectures on example of nonplanar, non simply connected domain.

Thanks for listening!