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Fact: corank(A,---Ay) ~log, 7, finite limit fluctuations.



An intriguing random integer

Theorem (VP ‘23, special case)

For each N > 1 take Ay, Ao, ... iid uniform in Maty (Z/pZ). Then
as N — oo,

corank(Ay - -+ A1) —log, v — « 4 L1 p=a/(p—1)

(an explicit Z-valued random variable), for any sequence 75y, N > 1
st. 1< 7y <pV and — log,, Tv converges in R/7Z to some

a€0,1).
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Theorem (VP ‘23, special case)

For each N > 1 take Ay, Ao, ... iid uniform in Maty (Z/pZ). Then
as N — oo,

corank(Ay - -+ A1) —log, v — « 4 L1 p=a/(p—1)

(an explicit Z-valued random variable), for any sequence 75y, N > 1

st. 1< 7y <pV and — log,, Tv converges in R/7Z to some
a€0,1).

Here for any x € R, L1, is the Z-valued r.v. defined by

— _ 1 —xp? % (_1)jp_ (%)
Prls= D = o 2 L)

for any =z € Z.



Random matrices in physics and number theory

symmetric matrix with random coefficients.

Perhaps I am now too courageous when I try to guess the distribution of the
distances between successive levels (of energies of heavy nuclei). Theoretically,
the situation is quite simple if one attacks the problem in a simpleminded fashion.
The question is simply what are the distances of the characteristic values of a

Fugene Wigner on the Wigner surmise, 1956
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(From Bohigas-Giannoni, Chaotic
motion and random matrix theories)

Local spacings since
proven universal for
many different choices
of matrix distribution
(Erdos-Yau, Tao-Vu,
Pastur-Scherbina...)



Some empirical observations in arithmetic statistics

1983: Cohen and Lenstra consider class groups of number fields
Q(+/—d) for many d, and conjecture! that their p-parts follow the
Cohen-Lenstra distribution on finite abelian p-groups defined by

HiZl(l - 1/pi)
[ Aut(G)|

Pr(G) =

1Based on data from D. Buell, C. P. Schnorr, D. Shanks, and H. Williams.



Some empirical observations in arithmetic statistics

1983: Cohen and Lenstra consider class groups of number fields
Q(+/—d) for many d, and conjecture! that their p-parts follow the
Cohen-Lenstra distribution on finite abelian p-groups defined by

HiZl(l - 1/pi)
[ Aut(G)|

Pr(G) =

4. Note. The data which form the output of the group computation currently exist
online on the * omputer Science Department’s VAX computer. The author is willing
to respond to limited requests from interested parties, or to/ provide copies of the
data if supplied with a magnetic tape.

(from D. Buell, Class Groups of Quadratic Fields. Il, 1987)

1Based on data from D. Buell, C. P. Schnorr, D. Shanks, and H. Williams.
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Theorem (Wood 15)

Above limit also holds if AN) have iid entries from any distribution
that is nonconstant modulo p (universality).

y




Groups and singular numbers

Proposition (Smith normal form)

For nonsingular A € Mat(Q),), there are U,V € GLy(Z,) for
which
UAV = diag(p™,...,pV)

for singular numbers \; € 7. (unique).

(Like singular value decomposition, GLy(Z,) replacing
O(N),U(N)).
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Groups and singular numbers

Proposition (Smith normal form)

For nonsingular A € Mat(Q),), there are U,V € GLy(Z,) for
which
UAV = diag(p™,...,pV)

for singular numbers \; € 7. (unique).

(Like singular value decomposition, GLx(Z,) replacing
O(N),U(N)).

If A e Maty(Zy,), then \; > 0 and

coker(A) = EB 7/p M7

Write SN(A) = (SN(A)1,...,SN(A)n) := (A1,..., An) above.



At a probabilistic level things look quite different

Marqhenko—Pastur law
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Histogram of singular values of a single Histogram of singular numbers of a single

10% x 10* Ginibre (iid Gaussian) matrix 100 x 100 iid additive Haar matrix
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Can study singular values of A;A,_1--- A for A; random
real/complex matrices, 7 =1,2,.. ..

Interest from ergodic theory (Furstenberg-Kesten 1960 onward),
statistical physics (Akemann, Burda, Forrester, Ipsen, Kieburg, Liu,
Wang, Wei, and others, 2010s onward), integrable probability (Ahn,
Gorin, Strahov, Sun and others, also 2010s onward).

Question J

How do singular numbers of p-adic matrix products behave?




Dynamical local limits?
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Question

For r € (0,1), does joint evolution of bulk singular numbers
ArN|+i(T), 0 € {...,—1,0,1,...} converge as matrix size N — 00
to some Markov process on

Sigoeo 1= {1 = (-, pe1, o, p1, - ) € ZE¢  pri1 < s }?




The reflecting Poisson sea
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Definition (VP 2023)

The reflecting Poisson sea u(T') = (..., u—1(T), po(T), w1 (T),...),
T > 0 is the continuous-time stochastic process with each p;(T')
increasing by 1 according to rate-t' exponential clock (independent
of each other), donating move if blocked.
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Universal bulk limit
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Theorem (VP 2023, informal version)

The discrete-time evolution of singular numbers of n X n matrix

products Ai"’) ce Agn) in the bulk limits to the reflecting Poisson
sea (witht = 1/p), for any generic GL,,(Z,)-invariant matrix

distributions, provided corank(Agn) (mod p)) is not too large.

Remark: at the right edge, have limit to half-infinite version of
reflecting Poisson sea.



Comparison to dynamical local limits over C

Bulk local limits of log singular values of complex
matrix products: Brownian motions with drift
conditioned never to intersect (highly nonlocal)
[Akemann-Burda-Kieburg ‘20], [Ahn ‘22]

...while p-adic local limits feature
only local interactions at collisions

pi(T)

p-1(T)

po(T')

ui(T)

|’ﬂ

pa(T)




Explicit fixed-time bulk limit

Hope for (SN(A, ---A1); —log, Tnv — a)1<i<k to converge to
random el't of
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Hope for (SN(A, ---A1); —log, Tnv — a)1<i<k to converge to
random el't of

Sigy ::{(Al,...,Ak)EZk:)\l2...2)\k}

Theorem (VP '23)

If T, N > 1 are such that 1 < v < p and — log,, Tv converges
in R/Z to some o € [0,1), and Ay, ..., A, in Maty(Z,) iid with

y L1Tnr
additive Haar entries, then as N — oo

(SN(ATN s Al); — logp ™T™N — Oﬂ)lgigk i ‘Ck,p_o‘/(p—l)v

an explicit Sig,-valued random variable.

Holds also for other ‘nice’ examples, universality likely but harder.




What is

Example
When k = 2 (taking t = 1/p), x € Ry, (L 4+ x, L) € Sig,,
t(g) _tL—m
Pr(Ly, = (L+z,L)) = D e
(t3 t)oo m>0
_1ymyam2+(z—1)m - (_1>:c—7j m +1
x (Z)7 Z (t5t)z—s [ z t
1=0
y (tL—mX)z—l—m N (tL—mX)i—l—m 11(Z +om > 1))
(2 4+ m)! (i +m — 1)!

where

(a: ) = (1—a)(1—ta) - - - (1—t""a) and H — b




But really, what is

Definition (VP 2023)
For (L1,...,Ly) € Sigy,

XtdtZz 1( d)
Pr(Ly, = (L, ..., Ly)) i=
. ;é;;C<t.t)LkCiIIff(t°t)L'l@+1

P I et 1 P

PESIL 1
LiZzp1>Lao>pa>...

t

where again t = 1/p and last term is a Hall-Littlewood polynomial
specialized with o and Plancherel parameters 1 and x(1 — t)t?.




Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials Py(x1,...,x,;q,t) indexed by integer
partitions A = (A1 > ... > A\, > 0) are symmetric polynomials in
x1i,...,Tn With two parameters ¢, t.
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Macdonald polynomials Py(x1,...,x,;q,t) indexed by integer
partitions A = (A1 > ... > A\, > 0) are symmetric polynomials in
x1i,...,Tn With two parameters ¢, t.

Macdonald processes g,t¢€[o 1)

Ruijsenaars-Macdonald system

Representations of Double Affine Hecke Algebras

Hall-Littlewood processes

Random matrices over finite fields

q-Whittaker processes

q-TASEP, 2d dynamics t=0
q-deformed quantum Toda lattice
Representations of 9y, U, ()

Spherical functions for p-adic groups

B2
General RMT 1:9 =1

Random matrices over (R , @) I
Calogero-Sutherland, Jack polynomials
Spherical functions for Riem. symm. sp.

£=0
-1

Kingman partition structures

Cycles of random permutations =0

£=4

Whittaker processes

Directed polymers and their hierarchies
Quantum Toda lattice, repr. of GL(n, /R)

Poisson-Dirichlet distributions

Schur processes 1=f

Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE
Characters of symmetric, unitary groups

(Figure credits: A. Borodin)



The Z, <+ C analogy is actually extremely close

Macdonald measure
[Borodin-Corwin ’11]

P\, g, QAT P gt
- [, (1, ... gn—Lgmontdl o gD-n)

Pr(\)

B e {1,2,4}
t = qﬁ/2

qg—1
A rescaled

eckman-Opdam measure:

singular values of n X m corners
of Haar O(D),U(D), Sp*(D)

matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n x m
corners of Haar GLp(Z,) matrices

[VP °20]
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Macdonald processes are also a key tool in our proofs.
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Conclusion

We've seen structural analogies between random matrices over Z,,
and R, C through Macdonald processes, which belie serious
probabilistic differences.

Basic asymptotic questions inspired by real/complex random matrix
theory yield new universal objects in p-adic random matrix theory.

The end. Thank you alll
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A
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=(...,3,1,1,1,0,...)
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ring!
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Infinitely many clocks ring on any time interval—nontrivial even to
formally define reflecting Poisson sea!l [VP 2023]

However, for ‘nice initial conditions’ 14(0) with lim;_,_ 14;(0) = o0
as in above picture, projections suffice.



Bonus 2: more formal statement of bulk limit

Theorem (VP 2023)
Let r € (0,1), p a ‘nice initial condition’, and for each n > 1, let

) A,En),z' > 1 iid n X n matrices with distribution invariant under
GL,(Z,),

o B™ ¢ Mat,(Z,) fixed ‘initial condition matrix’ with singular
numbers SN(B(M)LMJH — u; for all 1.

o AM(7) = SN(A™ ... 4™ B(m).
Then Lgn) (T) := Apn)+i(ley'T]),i € Z, T > 0 converges to
reflecting Poisson sea (u;(T'));cz with u(0) = u, for
cn = c(r, LaW(SN(AZ(n)))) explicit, provided that

(1) SN(AZ(W’)) is not identically (0,...,0), and

Q@ X, = corank(AZ(n) (mod p)) < rn w.h.p. (formally,
lim,, 00 Pr(X,, > rn — j|X,, > 0) =0 for any j € N).




