
Asymptotics, exact results, and analogies in
p-adic random matrix theory

Roger Van Peski

PhD defense talk
June 8, 2023






























































Aperitif

Let A1, . . . , A⌧ be iid uniform in MatN (Z/pZ). What does the

distribution of

rank(A⌧ · · ·A2A1)

look like for large N and ⌧?

⌧

corank(A⌧ · · ·A1)

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5

· · ·

Fact: corank(A⌧ · · ·A1) ⇡ logp ⌧ , finite limit fluctuations.
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An intriguing random integer

Theorem (VP ‘23, special case)

For each N � 1 take A1, A2, . . . iid uniform in MatN (Z/pZ). Then

as N ! 1,

corank(A⌧N · · ·A1)� logp ⌧N � ↵
d�! L1,p�↵/(p�1)

(an explicit Z-valued random variable), for any sequence ⌧N , N � 1
s.t. 1 ⌧ ⌧N ⌧ p

N
and � logp ⌧N converges in R/Z to some

↵ 2 [0, 1).

Here for any � 2 R>0, L1,� is the Z-valued r.v. defined by

Pr(L1,� = x) =
1Q

i�1(1� p�i)

X

j�0

e
��pj�x (�1)jp�(

j
2)

Qj
i=1(1� p�i)

for any x 2 Z.
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Random matrices in physics and number theory

Local spacings since

proven universal for

many different choices

of matrix distribution

(Erdos-Yau, Tao-Vu,

Pastur-Scherbina...)
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(From Bohigas-Giannoni, Chaotic 
motion and random matrix theories)




Some empirical observations in arithmetic statistics

1983: Cohen and Lenstra consider class groups of number fields

Q(
p
�d) for many d, and conjecture

1
that their p-parts follow the

Cohen-Lenstra distribution on finite abelian p-groups defined by

Pr(G) =

Q
i�1(1� 1/pi)

|Aut(G)| .

(from D. Buell, Class Groups of Quadratic Fields. II, 1987)

1
Based on data from D. Buell, C. P. Schnorr, D. Shanks, and H. Williams.
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A random matrix explanation?

A 2 MatN (Z) is a linear map A : ZN ! ZN
,

coker(A) := ZN
/AZN

.

For random A, coker(A) is a random abelian group. Simpler: take

A 2 MatN (Zp) so coker(A) is an abelian p-group.

Theorem (Friedman-Washington ’87)

Let A
(N) 2 MatN (Zp) be random with iid entries drawn from the

additive Haar measure on Zp. Then as N ! 1, coker(A(N)) limits

to Cohen-Lenstra distribution Pr(G) =
Q

i�1(1� p
�i)/|Aut(G)|.

Theorem (Wood ‘15)

Above limit also holds if A
(N)

have iid entries from any distribution

that is nonconstant modulo p (universality).
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Groups and singular numbers

Proposition (Smith normal form)

For nonsingular A 2 MatN (Qp), there are U, V 2 GLN (Zp) for

which

UAV = diag(p�1 , . . . , p
�N )

for singular numbers �i 2 Z (unique).

(Like singular value decomposition, GLN (Zp) replacing

O(N), U(N)).

If A 2 MatN (Zp), then �i � 0 and

coker(A) ⇠=
M

i

Z/p�iZ

Write SN(A) = (SN(A)1, . . . , SN(A)N ) := (�1, . . . ,�N ) above.
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At a probabilistic level things look quite different



























The real/complex product process

Can study singular values of A⌧A⌧�1 · · ·A1 for Ai random

real/complex matrices, ⌧ = 1, 2, . . ..

Interest from ergodic theory (Furstenberg-Kesten 1960 onward),

statistical physics (Akemann, Burda, Forrester, Ipsen, Kieburg, Liu,

Wang, Wei, and others, 2010s onward), integrable probability (Ahn,

Gorin, Strahov, Sun and others, also 2010s onward).

Question

How do singular numbers of p-adic matrix products behave?
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Dynamical local limits?

. . .

. . .

µ0µ
−1 µ1 µ2 µ3 µ4µ

−2. . . . . .
0
1

2

3
(. . . , µ

−2, µ−1, µ0, µ1, µ2, . . .)
= (. . . , 3, 1, 1, 1, 0, . . .)

44

Question

For r 2 (0, 1), does joint evolution of bulk singular numbers

�brNc+i(⌧), i 2 {. . . ,�1, 0, 1, . . .} converge as matrix size N ! 1
to some Markov process on

Sig21 := {µ = (. . . , µ�1, µ0, µ1, . . .) 2 ZZ
�0 : µi+1  µi}?






























































The reflecting Poisson sea

. . .

. . .

µ0µ
−1 µ1 µ2 µ3 µ4µ

−2. . . . . .
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Definition (VP 2023)

The reflecting Poisson sea µ(T ) = (. . . , µ�1(T ), µ0(T ), µ1(T ), . . .),
T � 0 is the continuous-time stochastic process with each µi(T )
increasing by 1 according to rate-t

i
exponential clock (independent

of each other), donating move if blocked.
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Universal bulk limit

Theorem (VP 2023, informal version)

The discrete-time evolution of singular numbers of n⇥ n matrix

products A
(n)
⌧ · · ·A(n)

1 in the bulk limits to the reflecting Poisson

sea (with t = 1/p), for any generic GLn(Zp)-invariant matrix

distributions, provided corank(A(n)
i (mod p)) is not too large.

Remark: at the right edge, have limit to half-infinite version of

reflecting Poisson sea.
































































Comparison to dynamical local limits over C





















Explicit fixed-time bulk limit

Hope for (SN(A⌧N · · ·A1)0i � logp ⌧N � ↵)1ik to converge to

random el’t of

Sigk := {(�1, . . . ,�k) 2 Zk : �1 � . . . � �k}

Theorem (VP ‘23)

If ⌧N , N � 1 are such that 1 ⌧ ⌧N ⌧ p
N

and � logp ⌧N converges

in R/Z to some ↵ 2 [0, 1), and A1, . . . , A⌧N in MatN (Zp) iid with

additive Haar entries, then as N ! 1

(SN(A⌧N · · ·A1)
0
i � logp ⌧N � ↵)1ik

d�! Lk,p�↵/(p�1),

an explicit Sigk-valued random variable.

Holds also for other ‘nice’ examples, universality likely but harder.
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What is Lk,�?

Example

When k = 2 (taking t = 1/p), � 2 R>0, (L+ x, L) 2 Sig2,

Pr(L2,� = (L+ x, L)) =
t
(x2)

(t; t)1

X

m�0

e
�tL�m�

⇥ (�1)mt
m2+(x�1)m

xX

i=0

(�1)x�i

(t; t)x�i


m+ i

i

�

t

⇥
✓
(tL�m

�)i+m

(i+m)!
+

(tL�m
�)i+m�11(i+m � 1)

(i+m� 1)!

◆

where

(a; t)n := (1�a)(1�ta) · · · (1�t
n�1

a) and


a

b

�

t

:=
(t; t)a

(t; t)b(t; t)a�b
.



But really, what is Lk,�?

Definition (VP 2023)

For (L1, . . . , Lk) 2 Sigk,

Pr(Lk,� = (L1, . . . , Lk)) :=
X

dLk

e
��td

t

Pk
i=1 (

Li�d
2 )

(t; t)Lk�d
Qk�1

i=1 (t; t)Li�Li+1

⇥ 1

(t; t)1

X

µ2Sigk�1
L1�µ1�L2�µ2�...

(�1)
Pk

i=1 Li�
Pk�1

i=1 µi�d
k�1Y

i=1


Li � Li+1

Li � µi

�

t

⇥Q(µ1�d,...,µk�1�d)0(�(�(1� t)td),↵(1); 0, t)

where again t = 1/p and last term is a Hall-Littlewood polynomial

specialized with ↵ and Plancherel parameters 1 and �(1� t)td.



Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials P�(x1, . . . , xn; q, t) indexed by integer

partitions � = (�1 � . . . � �n � 0) are symmetric polynomials in

x1, . . . , xn with two parameters q, t.

(Figure credits: A. Borodin)
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Macdonald processes
Ruijsenaars-Macdonald system
Representations of Double Affine Hecke Algebras

Hall-Littlewood processes
Random matrices over finite fields
Spherical functions for p-adic groups

General
Random matrices over 
Calogero-Sutherland, Jack polynomials
Spherical functions for Riem. symm. sp.

RMT 

q-Whittaker processes
q-TASEP, 2d dynamics
q-deformed quantum Toda lattice
Representations of

Whittaker processes
Directed polymers and their hierarchies
Quantum Toda lattice, repr. of

             Schur processes
Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE
  Characters of symmetric, unitary groups

Kingman partition structures
Cycles of random permutations
Poisson-Dirichlet distributions

      
(Figure credits: A. Borodin)



The Zp $ C analogy is actually extremely close

Macdonald measure
[Borodin-Corwin ’11]

Pr(λ) =
Pλ(1, . . . , tn−1; q, t)Qλ(tm−n+1, . . . , tD−n; q, t)

Πq,t(1, . . . , tn−1; tm−n+1, . . . , tD−n)

Heckman-Opdam measure:
singular values of n×m corners

of Haar O(D), U(D), Sp∗(D)
matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n×m

corners of Haar GLD(Zp) matrices
[VP ’20]

q → 0
β ∈ {1, 2, 4}
t = qβ/2

q → 1
λ rescaled

t = 1/p

Macdonald processes are also a key tool in our proofs.
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Conclusion

We’ve seen structural analogies between random matrices over Zp

and R,C through Macdonald processes, which belie serious

probabilistic differences.

Basic asymptotic questions inspired by real/complex random matrix

theory yield new universal objects in p-adic random matrix theory.

The end. Thank you all!
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Bonus 1: An infinite amount of ringing
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ring!

Infinitely many clocks ring on any time interval—nontrivial even to

formally define reflecting Poisson sea! [VP 2023]

However, for ‘nice initial conditions’ µ(0) with limi!�1 µi(0) = 1
as in above picture, projections suffice.
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Bonus 2: more formal statement of bulk limit

Theorem (VP 2023)

Let r 2 (0, 1), µ a ‘nice initial condition’, and for each n � 1, let

A
(n)
i , i � 1 iid n⇥ n matrices with distribution invariant under

GLn(Zp),

B
(n) 2 Matn(Zp) fixed ‘initial condition matrix’ with singular

numbers SN(B(n))brnc+i ! µi for all i.

�
(n)(⌧) = SN(A(n)

⌧ · · ·A(n)
1 B

(n)).

Then L
(n)
i (T ) := �brnc+i(bc�1

n T c), i 2 Z, T � 0 converges to

reflecting Poisson sea (µi(T ))i2Z with µ(0) = µ, for

cn = c(r, Law(SN(A(n)
i ))) explicit, provided that

1 SN(A(n)
i ) is not identically (0, . . . , 0), and

2 Xn := corank(A(n)
i (mod p)) ⌧ rn w.h.p. (formally,

limn!1 Pr(Xn > rn� j|Xn > 0) = 0 for any j 2 N).


