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Local-global principle
Local-global principle: The study of properties (e.g.
isomorphism) holding locally but not globally.

+

Figure: Examples of line bundles over S1



Number-theoretical version

Look at integer solution for polynomial equations...

x2 − 3xy + 9y2 = 8
no solution in Z ⇐=

x2 ≡ 2 (mod 3)
no solution in Z/3Z .

The lack of “local” solutions implies the lack of “global” solutions,
but the converse brings two related questions:

I Do local solutions imply a solution in Q?

I If everything is defined over Z, can we find a solution in Z?

Answer: It depends.

I (Hasse) Homogeneous quadratic polynomials with roots
modulo every n and in R also have roots in Q.

I (Selmer) The equation 3x3 + 4y3 + 5z3 = 0 has solutions
modulo every integer, but no solution in Q.

I If a monic polynomial in Z[x ] has a solution in Q, then it has
a solution in Z.



Number-theoretical version

Globally: Over a global fields (e.g. Q, number fields, k(X ), ...).

Locally: Over completions over the global fields.

For the field Q, the completions are R and the p-adic fields Qp,
where p is a prime number.



Class, Genus, and Mass formulae

For k = Q, the completions Qp have rings of integers Zp. By the

Chinese Remainder Theorem, we have
∏
p

Zp = lim
←

Z/nZ.

Given an algebraic object A defined over Z, we can define its

I Genus: Set of objects defined over Z that are isomorphic to
A modulo every n ∈ N.

I Class: Isomorphism class of A over Z.

I Mass: Number of classes in its genus.

Example. The symmetric bilinear forms given by the matrices(
1 0
0 82

)
and

(
2 0
0 41

)
are in the same genus but not in the same

class.



Other “example” if 2 were invertible.

U

W

Take

I G = Z/2Z = 〈σ〉.
I V = Z2 = Z[G ]

as G -module (σ(a, b) = (b, a)).

I U = spanZ((1, 1)), and
W = spanZ((1,−1)).

I ϕ : U ×W → V .

Then

I Ker(ϕ) = 0, Coker(ϕ) = Z/2Z.

I If n is odd, ϕ is an isomorphism modulo n:

(U ⊗Z Z/nZ)× (W ⊗Z Z/nZ) ∼= (V ⊗Z Z/nZ).

I ϕ induces an isomorphism over Q but not Z:

(U ⊗Z Q)× (W ⊗Z Q) ∼= (V ⊗Z Q).
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Modern setting: cohomological reformulation

In the modern setting, the classification of the objects of interest
arise as Galois cohomology groups H1(k ,G(k)) where G is an
algebraic group G defined over a global field k.

G H1(k,G(k))

GLn isomorphism classes of n-dimensional k-vector spaces

PGLn isomorphism classes of n-dimensional
central simple algebras over k

On isomorphism classes of non-degenerate n-dimensional
quadratic forms over k

Sp2n isomorphism classes of 2n-dimensional
symplectic forms over k



Modern setting: cohomological reformulation

For simplicity, let us take k = Q. One is interested in the
local-global principle for G -torsors, i.e. the injectivity of

H1(Q,G(Q)) −→
∏

p prime

H1(Qp,G(Qp))× H1(R,G(C)).

The kernel of this map is denoted by X1(G), the Tate-Shafarevich
group. We say that the Hasse principle holds when X1(G) = {0}.

The Hasse principle was proven for classical groups over number
fields over many years with the work of Kneser, Springer, Harder,
and Chernousov.



Algebraic tori
The specific algebraic groups we are interested in are algebraic tori.

Gm = multiplicative group, Gm(k) = k×.

Algebraic torus: Algebraic group, isomorphic to Gm over k .
Examples:

I RK/kGm : restriction of scalars, RK/kGm(k) = K×.
Example: RC/RGm(R) = C×.

I R
(1)
K/kGm = Ker(NK/k : RK/kGm → Gm): norm-one torus.

Example: R
(1)
C/RGm(R) = SO2(R) = S1.

Theorem
There is a categorical equivalence

{algebraic tori over k} ↔
{
Z− lattices with Gal(k/k)− action

}
.

T 7→ X?(T) = Hom(T,Gm) (character lattice).



Isogenies

Similarly, for algebraic groups, we consider isogenies: surjective
(over the algebraic closure) morphisms of algebraic groups with
finite kernel.

Examples.

I GLn → Gm × PGLn defined by M 7→ (det(M), [M]). It has
kernel µn and is surjective (over the algebraic closure).

I RK/kGm is isogenous to R
(1)
K/kGm ×Gm.

Example: For k = R and K = C, we get polar coordinates:
I a surjection S1 × R× → C× : (s, r) 7→ rs with kernel {±1}.
I an injection C× → S1 × R× : z 7→ (Arg(z), |z |) with cokernel

Z/2Z.

The corresponding character lattices are U,V ,W from before.



Isogenies

Theorem (Achter, Altug, Garcia, Gordon)

Let [X , λ] be a principally polarized abelian variety of dimension g
defined over a finite field Fq with commutative endomorphism ring.
If q is prime or if X is ordinary, then its mass is

q
g(g−1)

4 τTν∞([X , λ])
∏
`

ν`([X , λ]),

where τT is the Tamagawa number of T, some maximal algebraic
torus in GSp2g (Q).

The work presented here aims to compute

τT =
|H1(Q,X?(T)))|
|X1(T)|

.



Remark. Tamagawa numbers are defined for any algebraic group G
over a number field k as a specific volume of G1(Ak)/G(k). The
formula above was established by Ono (1965) (and Voskresenski),
and was generalized later to connected algebraic groups by Sansuc
(1981) by the formula

τG =
|Pic(G)|
|X1(G)|

.



The torus

Q

K+

K
2 Let K/Q be a field extension of degree 2g with

intermediate field extension K+ such that K/K+

is imaginary and K+/Q is totally real. Define

T(k) = {x ∈ K× : xx ∈ Q},

or in other words ...

T = Ker

(
Gm ×Spec(Q) RK/Q(Gm) −→

(x ,y)7→x−1NK/K+ (y)
RK+/Q(Gm)

)
.
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What was known?

This specific torus is maximal in GSp2g (Q), and was already
studied in the context of local-global principle for bilinear forms.
However very little was known.

I If g = 1, 2, 3 then X1(T) = 0 by elementary computations.

I If g = 4, there is K/Q with Gal(K/Q) = Q8 the quaternion
group, such that X1(T) 6= 0 (Cortella).



Implementation of algebraic tori in SageMath

There was no software to create and study specific tori so I
implemented algebraic tori and their character lattices in
Sagemath.

To build our lattice, we simply look at the embedding
GSp2g ↪−→ GL2g , yielding an embedding T ↪−→ RK/QGm. The
corresponding map on character lattices is a surjection
X?(RK/QGm) = Z[Gal(K/Q)]→ X?(T). We then just need to
compute the quotient by the corresponding kernel.



Results

Assuming K/Q is Galois, we get ...

Theorem
Let G = Gal(K/Q).

I If the 2-Sylow subgroups of G are cyclic, then
H1(Q,X?(T)) = 0, otherwise H1(Q,X?(T)) = Z/2Z. In
particular, τT ≤ 2.

I If H1(Q,X?(T)) = 0 then X1(T) = 0 and τT = 1, else
X1(T) ⊂ G ab[2].

Remark. In particular, if g is odd, then τT = 1.
Remark. We can replace 2’s by p’s.



Non-Galois Case

Let K ] be the Galois closure of K .

Q

K+

K ]

K
2G

N2 Theorem
We have H1(G ,X?(T)) ⊂ Z/2Z. Moreover,
H1(G ,X?(T)) = 0 if and only if there is g ∈ G
such that |〈g〉\G/N2| is odd, where
G = Gal(K ]/Q) and N2 = Gal(K ]/K ).

I [K : Q] = 4 : τT = 1 unless K/Q is Galois and G = (Z/2Z)2.

I [K : Q] = 6 : τT = 1.

I [K : Q] = 8: see this page.

http://www.math.ubc.ca/~thomas/Sha_computations/deg8cm.html


Most general case: CM-étale algebras

Now K =
m⊕
i=1

Ki with totally real subalgebra K+ =
m⊕
i=1

K+
i .

I We have a method to compute H1(Q,X?(T)).

Theorem
Let K/k be an étale CM-algebra and let TK be the corresponding
torus. Assume K =

⊕r
i=1 K

⊕ji
i for some pairwise non-isomorphic

fields K1, · · · ,Kr , and j1, · · · , jr ∈ N. Let K̃ =
⊗r

i=1 Ki . If each Ki

is a Galois CM-field and Gal(K̃/Q) =
∏r

i=1Gal(Ki/Q), then

τ(TK ) =
r∏

i=1

2ji−1τ(TKi ),

where TKi is the torus defined for each field. In particular, if r = 1
we can obtain arbitrarily large Tamagawa numbers.

K = K⊕r1 gives arbitrarily large numbers, ji = 1 may give arbitrarily
small ones.



Thank you!



Idea

We can define an auxilliary torus T1 = RK+/QR
(1)
K/K+(Gm).

T1(Q) = {x ∈ K× : xx = 1}.

1→ T1 → T→ Gm → 1.

We can compute the cohomology of T1, and link it to the
cohomology of T by careful examination of the group-theoretic
transfer map (verlagerung) Gal(K/Q)→ Gal(K/K+) = Z/2Z
and its relation to 2-Sylow subgroups.

Remark. We can also (painfully) compute H1 directly, by linking
the transfer map to point counts, existence of complement
subgroup of the 2-Sylows, and their “cyclicity”.



The denominator

To compute X1(T) in the general case, it depends heavily on K
and ramification of the prime ideals of OK .

In general, we have

X1(T) ⊂X1
C (T) := Ker

(
H1(Q,T)→

∏
α∈G

H1(〈α〉,T)

)
.

We have a simple criteria for the computation of X1
C (T) and

X1(T).
In particular, assuming G is abelian, the only possibility for
X1(T) 6= 0 is that its 2-Sylow is of the form
Z/2n1Z⊕ · · · ⊕ Z/2nrZ with r > 1, nr > n1, · · · , nr−1, and
Gal(K/K+) ⊂ Z/2nrZ.



How?

We use Tate-Nakayama duality to get X1(T) = X2(X?(T)).
Let S ≤ G and N = Gal(K/K+). If S has cyclic 2-Sylow then
H2(S ,X?(T)) = G ab/N, otherwise H2(S ,X?(T)) = G ab. X1

C (T)
becomes the kernel of

G ab = Hom(G ,Q/Z)→
∏
α∈G
N⊂〈α〉

〈α〉/N ×
∏
α∈G
N 6⊂〈α〉

〈α〉,

f 7→
∏
α∈G
N⊂〈α〉

f (α) mod
1

2
Z×

∏
α∈G
N 6⊂〈α〉

f (α).

Partial results for 2-groups of order ≤ 256 are available here. In all
cases |X1

C (T)| ≤ 8.

http://www.math.ubc.ca/~thomas/Sha_computations/


Examples

Example 1. Assume G = 〈α, β|α4 = β2 = 1, βαβ = α3〉 the
dihedral group D4 with N = 〈α2〉.
G ab = Hom(G ,Q/Z) = (Z/2Z)2 = 〈tα, tβ〉 with
tα(α) = tβ(β) = 1

2Z.

tβ(β) 6= 0 and N 6⊂ 〈β〉
tα(αβ) 6= 0 and N 6⊂ 〈αβ〉

}
→X1(T) = X1

C (T) = 0.

Example 2. Assume G = Q8 the quaternion group. Here
N = Z (G ), and every proper subgroup is cyclic, containing N, so
G ab = (Z/2Z)2 = X1

C (T).
Therefore, τT = 2

1 = 2 if a prime number of Q remains prime in K ,
otherwise τT = 2

4 = 1
2 .

Find examples in the LMFDB

https://beta.lmfdb.xyz/NumberField/8.8.101240302206976.2

