Research overview

Thomas Rüd

Massachusetts Institute of Technology

November 25, 2025

Let K be a global field, \mathbb{A}_K its ring of adéles, and G a reductive F-group.

Convolution: $f \in \mathcal{C}^{\infty}_{c}(\mathbf{G}(\mathbb{A}_{K}))$ acts on $L^{2}(\mathbf{G}(F) \backslash \mathbf{G}(\mathbb{A}_{K})) \cong \bigoplus_{\pi} V_{\pi}^{m_{\pi}}$.

Let K be a global field, \mathbb{A}_K its ring of adéles, and G a reductive F-group.

Convolution: $f \in \mathcal{C}^{\infty}_{c}(\mathbf{G}(\mathbb{A}_{K}))$ acts on $L^{2}(\mathbf{G}(F)\backslash \mathbf{G}(\mathbb{A}_{K})) \cong \bigoplus_{\pi} V_{\pi}^{m_{\pi}}$.

(stable/relative/...) Trace Formulae

(spec. side)
$$\sum_{\pi} m_{\pi} \operatorname{Tr}(f|V_{\pi}) = \sum_{\gamma} \underbrace{\frac{\mathbf{v}_{\gamma} \operatorname{Orb}(\gamma, f)}{2}}_{\mathbf{Q}}$$
 (geom. side)

Let K be a global field, \mathbb{A}_K its ring of adéles, and G a reductive F-group.

Convolution: $f \in \mathcal{C}^{\infty}_{c}(\mathbf{G}(\mathbb{A}_{K}))$ acts on $L^{2}(\mathbf{G}(F)\backslash \mathbf{G}(\mathbb{A}_{K})) \cong \bigoplus_{\pi} V_{\pi}^{m_{\pi}}$.

(stable/relative/...) Trace Formulae

$$\text{(spec. side)} \ \sum_{\pi} m_{\pi} \mathrm{Tr}(f|V_{\pi}) = \sum_{\gamma} \underbrace{\frac{\mathbf{v}_{\gamma} \ \mathrm{Orb}(\gamma, f)}{2}}_{\mathbf{2}} \text{(geom. side)}$$

- \bigcirc "Local-global volumes" of centralizers \mathbf{G}_{γ} (Tamagawa numbers).
- (stable/twisted/...) orbital integrals

Let K be a global field, \mathbb{A}_K its ring of adéles, and **G** a reductive F-group.

Convolution: $f \in \mathcal{C}_c^{\infty}(\mathbf{G}(\mathbb{A}_K))$ acts on $L^2(\mathbf{G}(F)\backslash \mathbf{G}(\mathbb{A}_K)) \cong \bigoplus V_{\pi}^{m_{\pi}}$.

(stable/relative/...) Trace Formulae

$$(\text{spec. side}) \ \sum_{\pi} m_{\pi} \mathrm{Tr}(f|V_{\pi}) = \sum_{\gamma} \underbrace{\frac{\mathbf{v}_{\gamma} \ \mathrm{Orb}(\gamma, f)}{2}}_{\mathbf{2}} \ (\text{geom. side})$$

- "Local-global volumes" of centralizers \mathbf{G}_{γ} (Tamagawa numbers).
- (stable/twisted/...) orbital integrals

Applications. Various problems around Shimura varieties (mass formula, GGP), relative Langlands programme (BZSV), Functoriality conjecture (and Beyond Endoscopy), ...

Thomas Rüd (MIT)

Research overview

Example: Mass formula

 $[X,\lambda]$: principally polarized abelian variety over \mathbb{F}_q of dimension g with commutative endomorphism ring and Frobenius $\gamma \in G = \mathrm{GSp}_{2g}(\mathbb{Q})$.

Langlands-Kottwitz

$$\sum_{[X,\lambda]\sim [Y,\mu]}\frac{1}{|\mathrm{Aut}([X,\lambda])|}=\mathrm{vol}(G_{\gamma}(\mathbb{Q})\backslash G_{\gamma}(\mathbb{A}_f))\mathrm{TO}(f_p)\prod_{\ell\neq p}\mathrm{Orb}(\gamma,f_\ell)$$

for explicit test functions f_ℓ 's

3/24

Thomas Rüd (MIT) Research overview November 25, 2025

Example: Mass formula

 $[X,\lambda]$: principally polarized abelian variety over \mathbb{F}_q of dimension g with commutative endomorphism ring and Frobenius $\gamma \in G = \mathrm{GSp}_{2g}(\mathbb{Q})$.

Achter-Gordon, Achter-Altug-Garcia-Gordon

$$\sum_{[X,\lambda]\sim[Y,\mu]}\frac{1}{|\mathrm{Aut}([X,\lambda])|}=q^{g(g+1)/4}\tau_{\mathsf{G}_{\gamma}}\nu_{\infty}([X,\lambda],\mathbb{F}_q)\prod_{\ell}\nu_{\ell}([X,\lambda],\mathbb{F}_q)$$

for explicit "local densities ν_ℓ 's". Terms and conditions apply...

Most of my thesis work: Study Tamagawa numbers $au_{G_{\gamma}}$

3/24

Thomas Rüd (MIT) Research overview November 25, 2025

1 Tamagawa numbers

Let $\gamma \in \mathrm{GSp}_{2n}(F)$ be a regular semisimple element with centralizer \mathbf{T} and let $K = F[\gamma] = F[t]/(\chi_{\gamma}(t))$.

 $K = \bigoplus_{i=1}^{t} K_i$ is an étale algebra of degree 2n with subalgebra $K^+ = \bigoplus_{i=1}^{t} K_i^+$, where K_i^+ a subfield of K_i fixed by an involution $x \mapsto \bar{x}$, and $[K^+ : F] = n$. Then

$$\begin{array}{ll}
K \\
| 2 \\
K^{+} \\
| g
\end{array}$$

$$\mathbf{T} = \operatorname{Ker} \left(\mathbb{G}_{m} \times_{\operatorname{Spec}(\mathbb{Q})} \operatorname{R}_{K/F} (\mathbb{G}_{m}) \xrightarrow{(x,y) \mapsto x^{-1} N_{K/K^{+}}(y)} \operatorname{R}_{K^{+}/F} (\mathbb{G}_{m}) \right),$$

$$\mathbf{T} = \operatorname{Ker} \left(\mathbb{G}_{m} \times_{\operatorname{Spec}(\mathbb{Q})} \operatorname{R}_{K/F} (\mathbb{G}_{m}) \xrightarrow{(x,y) \mapsto x^{-1} N_{K/K^{+}}(y)} \operatorname{R}_{K^{+}/F} (\mathbb{G}_{m}) \right),$$

$$\mathbf{T} = \operatorname{Ker} \left(\mathbb{G}_{m} \times_{\operatorname{Spec}(\mathbb{Q})} \operatorname{R}_{K/F} (\mathbb{G}_{m}) \xrightarrow{(x,y) \mapsto x^{-1} N_{K/K^{+}}(y)} \operatorname{R}_{K^{+}/F} (\mathbb{G}_{m}) \right),$$

$$\mathbf{T} = \operatorname{Ker} \left(\mathbb{G}_{m} \times_{\operatorname{Spec}(\mathbb{Q})} \operatorname{R}_{K/F} (\mathbb{G}_{m}) \xrightarrow{(x,y) \mapsto x^{-1} N_{K/K^{+}}(y)} \operatorname{R}_{K^{+}/F} (\mathbb{G}_{m}) \right),$$

Assume t = 1, what was known?

- If g = 1, 2, 3 then $\coprod^{1}(\mathbf{T}) = 0$ by elementary computations.
- If g = 4, there is K/F with $Gal(K/F) = Q_8$ the quaternion group, such that $III^1(\mathbf{T}) \neq 0$ (Cortella, 1997).

1 Creating tools in SageMath

I implemented a vast array of methods to study specific algebraic tori in SageMath.

Example. Check $\tau_{\mathbb{Q}}(\mathrm{R}^{(1)}_{\mathbb{Q}(\sqrt{5},\sqrt{29},\sqrt{109},\sqrt{281})/\mathbb{Q}}\mathbb{G}_m)=\frac{1}{4}$.

```
sage: L.<a, b, c, d> =
....: NumberField([x^2-5, x^2-29, x^2-109, x^2-281])
sage: K = L.absolute_field('e')
sage: from sage.schemes.group_schemes.tori
....: import NormOneRestrictionOfScalars
sage: T = NormOneRestrictionOfScalars(K); T
Algebraic torus of rank 15 over Rational Field
split by a degree 16 extension
sage: T.Tamagawa_number()
1/4
```

1 Results

Assuming K/F is a Galois CM-field, we get

Theorem

Let $G = \operatorname{Gal}(K/F)$.

- If the 2-Sylow subgroups of G are cyclic, then $\operatorname{Pic}(\mathbf{T})=0$, otherwise $\operatorname{Pic}(\mathbf{T})\cong \mathbb{Z}/2\mathbb{Z}$. In particular, $\tau_{\mathbf{T}}\leq 2$.
- If $\mathrm{Pic}(\mathbf{T})=0$ then $\mathrm{III}^1(\mathbf{T})=0$ and $au_{\mathbf{T}}=1$, else $\mathrm{III}^1(\mathbf{T})\subset G^{\mathrm{ab}}[2]$.

Remark. In particular, if g is odd, then $\tau_T = 1$.

- I give a simple rule to determine $\coprod^1(\mathbf{T})$ when G is abelian. In particular, $|\coprod^1(\mathbf{T})| \in \{1,2\}$, so $\tau_{\mathbf{T}} \in \{1,2\}$.
- Here, I give a computation of all possible values of $|\mathrm{III}^1(\mathbf{T})|$ when G is a 2-group up to order 256. They all satisfy $|\mathrm{III}^1(\mathbf{T})| \leq 8$.
- The 2's can be replaced by p's.

Non-Galois Case

Let K^{\sharp} be the Galois closure of K. Let $G = \operatorname{Gal}(K^{\sharp}/\mathbb{Q})$ and $N_2 = \operatorname{Gal}(K^{\sharp}/K)$.

$$G \begin{pmatrix} K^{\sharp} \\ N_{2} \\ K \\ 2 \\ K^{+} \\ \mathbb{Q} \end{pmatrix}$$

- One of the following holds:

 (i) If there is $g \in G$ such that $|\langle g \rangle \backslash G/N_2|$ is odd, then $\operatorname{Pic}(\mathbf{T})$ is trivial.

 - $[K : \mathbb{Q}] = 4 : \tau_T = 1$ unless K/\mathbb{Q} is Galois and $G = (\mathbb{Z}/2\mathbb{Z})^2$.
 - $[K : \mathbb{Q}] = 6 : \tau_{\mathsf{T}} = 1.$
 - $[K:\mathbb{Q}]=8$: see this page.

1 CM-étale algebrae

Now $K = \bigoplus_{i=1}^m K_i$ with totally real subalgebra $K^+ = \bigoplus_{i=1}^m K_i^+$.

• I give a method to compute Pic(T).

Theorem

Let K/k be an étale CM-algebra and let \mathbf{T}^K be the corresponding torus. Assume $K=\bigoplus_{i=1}^r K_i^{\oplus j_i}$ for some pairwise non-isomorphic fields K_1,\cdots,K_r , and $j_1,\cdots,j_r\in\mathbb{N}$. Let $\tilde{K}=\bigotimes_{i=1}^r K_i$. If each K_i is a Galois CM-field and $\mathrm{Gal}(\tilde{K}/\mathbb{Q})=\prod_{i=1}^r \mathrm{Gal}(K_i/\mathbb{Q})$, then

$$\tau(\mathbf{T}^{K}) = \prod_{i=1}^{r} 2^{j_i - 1} \tau(\mathbf{T}^{K_i}),$$

where \mathbf{T}^{K_i} is the torus defined for each field. In particular, if r=1 we can obtain arbitrarily large Tamagawa numbers.

Liang–Oki–Yang–Yu (2024): build a family of independent Galois extensions with Galois group Q_8 and used this formula to conclude that any power of Q_8 arises as Q_8

Thomas Rüd (MIT) Research overview November 25, 2025 8

1 Corresponding norm problem

The triviality of $\mathrm{III}^1(\mathbf{T})$ when $K_i^+=\mathbb{Q}$ is equivalent to a **projective Hasse norm principle**: if a line $L\subset\mathbb{Q}^n$ contains a point in the image of the norms $\prod_i N_{K_i/\mathbb{Q}}$ locally, does it contain one globally?

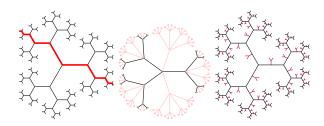
1 Corresponding norm problem

The triviality of $\mathrm{III}^1(\mathbf{T})$ when $K_i^+=\mathbb{Q}$ is equivalent to a **projective Hasse norm principle**: if a line $L\subset\mathbb{Q}^n$ contains a point in the image of the norms $\prod_i N_{K_i/\mathbb{Q}}$ locally, does it contain one globally?

Theorem (Bu-Rüd, 2024)

The projective Hasse norm theorem holds: $\coprod^{1}(\mathbf{T}) = 1$ when K_{i} 's are cyclic.

2 Orbital integrals



Now assume F is a local field.

$$\operatorname{Orb}(f,\gamma) := \int_{\mathsf{G}_{\gamma}(F)\backslash\mathsf{G}(F)} f(g^{-1}\gamma g) \ \mathrm{d}\dot{g}.$$

When ${\bf G}={\rm GL}_2$ then we can compute them explicitly by counting points on the Bruhat-Tits tree (above).

10 / 24

Thomas Rüd (MIT) Research overview November 25, 2025

(2) Arithmetic Gan-Gross-Prasad

Goal: relating heights of cycles on Shimura varieties to derivatives of L-functions using the relative trace formula.

Let F/F_0 be a ramified quadratic extension. Let $W^{\flat} \subset W$ be F/F_0 -Hermitian spaces of dimension n, n+1. Let $f' \in C_c^{\infty}(\mathrm{GL}_n(F) \times \mathrm{GL}_{n+1}(F))$ and $f \in C_c^{\infty}(U(W^{\flat}) \times U(W))$.

Consider

$$\operatorname{Orb}^{\operatorname{GGP}} \bigl(g,f\bigr) = \int_{U(W^{\flat}) \times U(W^{\flat})} f\bigl(h_1^{-1}gh_2\bigr) \, \mathrm{d}h_1 \mathrm{d}h_2,$$

$$\operatorname{Orb}^{\operatorname{JR}}(\gamma,f',s) = \int_{G'} f'(h_1^{-1}\gamma h_2) |\operatorname{det}(h_1)|^s \eta(h_2) \, \mathrm{d}h_1 \mathrm{d}h_2.$$

where $G' = GL_n(F) \times (GL_n(F_0) \times GL_{n+1}(F_0)).$

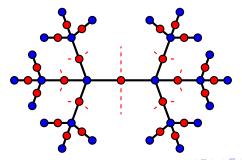
2) Arithmetic Transfer Conjecture

Conjecture ((Zhang) Arithmetic Transfer Conjecture.)

We can define a **matching** $g \leftrightarrow g'$, $f \leftrightarrow f'$ so that

$$\operatorname{Orb}^{\operatorname{GGP}}(g,f) = \Omega(\gamma)\operatorname{Orb}^{\operatorname{JR}}(\gamma,f',0),$$

where $\Omega(\gamma)$ is a function satisfying some geometric condition on a corresponding Shimura variety.



2 A conjecture

Let $\mathbb{K}_n = \operatorname{GL}_n(\mathcal{O}_F)$, $K^{\flat} = \operatorname{Stab}_{U(W^{\flat})}(\Lambda^{\flat})$, $K = \operatorname{Stab}_{U(W)}(\Lambda)$, where Λ^{\flat} is a *vertex* lattice, i.e. corresponds to a vertex on the building of $U(W^{\flat})$ and $\Lambda \subset \Lambda^{\flat} \oplus \langle u \rangle$ is a vertex lattice explicitly built from Λ^{\flat} (u is a unit vector).

Conjecture (Rüd, Zhang)

Let
$$h_{2m} = \begin{pmatrix} \pi^2 I_m & -\pi \\ \pi I_m & I_m \end{pmatrix}$$
 where π is the uniformizer of F .

If n is even, the function $1_{K^{\flat} \times K}$ matches $1_{\mathbb{K}} \otimes 1_{\mathbb{K}_{n+1}(h_n)^{-1}}$. If n is odd, the function $1_{K^{\flat} \times K}$ matches $1_{\mathbb{K}_n} \otimes 1_{\mathbb{K}_{n+1}(h_{n+1})^{-1}}$

Types of Lattices in $U(W^{\flat})$

- $U(W^{\flat})$ quasisplit Λ^{\flat} self dual
- $U(W^{\flat})$ quasisplit Λ^{\flat} π -modular
- W^{\flat} anisotropic Λ^{\flat} self dual

Types of Lattices in U(W)

- Λ self dual

2 Case n=2

Types of Lattices in $U(W^{\flat})$

- $U(W^{\flat})$ quasisplit Λ^{\flat} self dual
- $U(W^{\flat})$ quasisplit Λ^{\flat} π -modular
- W^{\flat} anisotropic Λ^{\flat} self dual

Types of Lattices in U(W)

- Λ self dual

Rapoport–Smithling–Zhang showed *existence* of transfer in case (b2), but no explicit function matching.

2 Case n=2

Types of Lattices in $U(W^{\flat})$

- $U(W^{\flat})$ quasisplit Λ^{\flat} self dual
- $U(W^{\flat})$ quasisplit Λ^{\flat} π-modular
- W^{\flat} anisotropic Λ^{\flat} self dual

Types of Lattices in U(W)

- Λ self dual
- \bigcirc Λ almost π -modular

Rapoport–Smithling–Zhang showed *existence* of transfer in case (b2), but no explicit function matching.

In a first paper of a planned series, Wei Zhang and I use the trace formula to show that our conjecture achieves Jacquet–Rallis transfer in most cases (we have a strategy for the remaining few).

(2) Descent and relative mass formulae

Question. (Achter) Given a product of two elliptic curves, what proportion of isomorphism classes (as abelian variety) also decompose as products of elliptic curves?

Descent and relative mass formulae

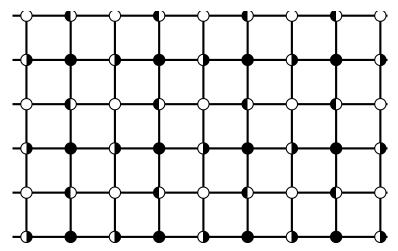
Question. (Achter) Given a product of two elliptic curves, what proportion of isomorphism classes (as abelian variety) also decompose as products of elliptic curves?

In practice. We want to relate orbital integrals over G and H, where

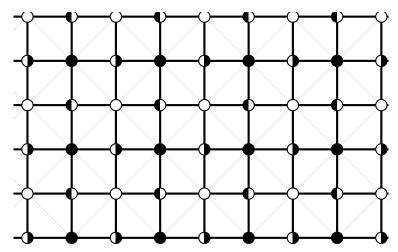
$$\mathbf{H} := \operatorname{GL}_2 \times_{\mathsf{det}} \operatorname{GL}_2 \subset \mathbf{G} = \operatorname{GSp}_{2n},$$

$$\left(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}, \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}\right) \longleftrightarrow \begin{pmatrix} a_1 & 0 & a_2 & 0 \\ 0 & b_1 & 0 & b_2 \\ a_3 & 0 & a_4 & 0 \\ 0 & b_3 & 0 & b_4 \end{pmatrix}.$$

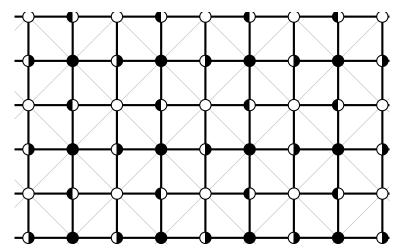
Apartment in the building of type A_2^2 (SL_2^2):



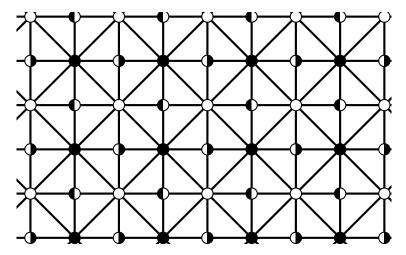
Apartment in the building of type A_2 (Sb_2^2):



Apartment in the building of type \mathcal{L}_2 (Sp_4^2):



Apartment in the building of type C_2 (Sp_4):

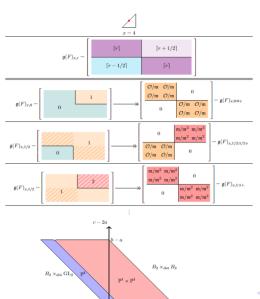


2 Strategy: lots of drawing

index	1	2 no equivalued	3	4
vertex	(0,0,0,0)	(1/2, 0, 0, 0)	(1,0,0,0)	(1/2, 1/2, 0, 0)
$\mathfrak{g}(F)_{x,0}$	(0 0 0 0 0 0 0 0 0 0 0 0	(0 m m m 0 0 0 m 0 0 0 m 0 0 0 0	$ \begin{pmatrix} \mathcal{O} & \mathfrak{m} & \mathfrak{m} & \mathfrak{m} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathfrak{m} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathfrak{m} \\ \mathfrak{m}^{-1} & \mathcal{O} & \mathcal{O} & \mathcal{O} \end{pmatrix} $	$ \begin{pmatrix} \mathcal{O} & \mathcal{O} & \mathfrak{m} & \mathfrak{m} \\ \mathcal{O} & \mathcal{O} & \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m}^{-1} & \mathfrak{m}^{-1} & \mathcal{O} & \mathcal{O} \\ \mathfrak{m}^{-1} & \mathfrak{m}^{-1} & \mathcal{O} & \mathcal{O} \end{pmatrix} $
group reductive quotient $g_{x,0}/g_{x,0+}$ over \mathbb{F}_q	GSp_4	$GL_2 \times_{\det} \mathbb{G}_m^2$ $\cong GL_2 \times GL_1$	GL ₂ × _{det} GL ₂	$\mathrm{GL}_2 imes \mathrm{GL}_1$
Embedding	(* * * * * * * * * * * * * * * * * * *	(* * * * * * * * * * * * * * * * * * *	(* * * * * * * * * * * * * * * * * * *	$\left(\begin{array}{c c} M & \\ \hline & \lambda M^c \end{array}\right)$
Contains depth 0 elliptical elements	Yes	No	Yes	No
$\lambda = (a, b, c)$ such that $G = \sqcup_{\lambda} K \pi^{\lambda} K_i$	$\begin{array}{c} b-a\geq 0\\ c-2a\geq 0 \end{array}$	$c-2a \geq 0$	$\begin{array}{c} c-2a\geq 0\\ c-2b\geq 0\end{array}$	$b-a\geq 0$
Roots/ Positive Chamber	c-2b $b-a$ $c-a-b$ $c-2a$	←²α	c-2b	b-a
$\mathfrak{g}(F)_{x,1/2}$	(m m m m m m m m m m m m m m m m	$\begin{pmatrix} m & m & m & m \\ m & m & m & m \\ m & m &$	$ \begin{pmatrix} m & m^2 & m^2 & m^2 \\ m & m & m & m^2 \\ m & m & m & m^2 \\ \mathcal{O} & m & m & m \end{pmatrix} $	$\begin{pmatrix} m & m & m & m \\ m & m & m & m \\ \mathcal{O} & \mathcal{O} & m & m \\ \mathcal{O} & \mathcal{O} & m & m \end{pmatrix}$

 GL_2^2

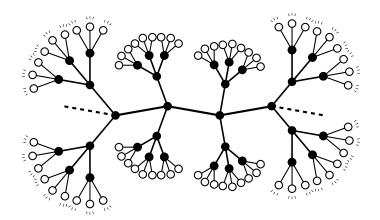
2) Strategy: lots of drawing



Research overview

Long-term directions

- Prove higher-rank cases of the arithmetic transfer conjecture. (joint with Wei Zhang)
- Establish more relative mass formulae.
- Adapt Yun's work on Dedekind zeta function symplectic orbital integrals.
 (joint with Julia Gordon)
- ullet Waldspurger's recursion formula for Shalika germs in GL_n . (joint with Minh Tam Trinh)



Thank you!

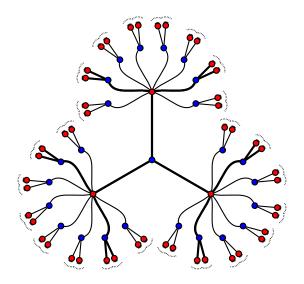


Figure: Building of U(2) inside U(3) (unramified)