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1 Introduction
Algebraic geometry is the studies of zero sets of polynomials that we call varieties.
To understand such structures we need to be able to analyze their behaviour in
affine spaces but also their behaviour at infinite points, the collection of the two is
what we’ll call projective spaces.

However we’d expect all those objects we want to study to be smooth curves,
surfaces, but it is not always the case, some varieties have singularities that makes
them not smooth. Those singularities are invariant by isomorphism but we can find
a weaker equivalence that will allow us to work and try to obtain smooth varieties.
Those techniques are called resolution of singularities.

Here we’ll want to focus on obtaining a smooth curve from any curve through
some transformations, we’ll study a particular way of doing called the blowing up
of a curve. In order to give a visual intuition of why those are called blowups we’ll
introduce a few examples along the way.

The first two parts will give the basics we need about algebraic geometry, most
of the notions are taken from Hartshorne’s book ([5]). We’ll do a few exercises that
are in the book as well. If the reader is already familiar with the notions of affine,
projective spaces, singular varieties and birational maps he can skip those first two
parts.

Then we will build the mechanics we need to treat our subject. We will start
by talking about a topology on some spaces that will justify some constructions
underlying the blowups so we can talk about varieties in the product of affine and
projective spaces.

Then we’ll give some vocabulary about singularities, explain multiplicity of
points and what a resolution of singularities is. Once all those notions will be
built, we’ll be ready for the main proof of this paper, that is that we can remove
singularities from any curve.

The next part will setup a strategy to deal with this problem and carry out
an example all along the rather long construction. We’ll follow the global way
construction done in Fulton’s book ([1]) with some modifications due to us working
with Hartshorne’s notations. The blowup construction does not always give us a
smooth curve, we have to be careful before doing so and modify our curves before,
also we’ll only be talking about blowing up curves in planes, so we need to send our
curves to planar curves. Those aspects will be the main focus of this part.

Once our main result will be proven we will give some clues about how to get
better result without going too much in details, by finding some unicity of this
construction, or getting the same results in higher dimensional spaces, or the same
result but with positive characteristic fields.
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All the content should be understandable with basic notions in algebra and
commutative algebra.

2 Basic Algebraic Geometry

2.1 Affine spaces and Zariski topology

Let’s define the context and the important notions we are going to work with.
Throughout the whole project we’ll work over an algebraically closed field k.

This chapter and the following 2 are mostly taken from [5] Chapter 1, so all the
statements that do not include proofs will be proved there.

Definition 1 (Affine Space). Given any field k, the set of all n−tuples of elements
of k is called the affine n-space over k, written Ank , An(k) or just An when the
context is clear.

This corresponds to our usual finite dimensional vector spaces. Often we want
our base field k to be algebraically closed.

In order to do geometry on it we’ll define a topology, the Zariski topology.

Definition 2 (Algebraic Set). An algebraic set is a subset Y ⊆ An such that there
is T ⊆ k[x1,⋯, xn] such that Y = {P ∈ An ∶ f(P ) = 0 ∀f ∈ T}.

Remark 1. Algebraic sets are very important so we use the following notations :
If T ⊆ k[x1,⋯, xn] then Z(T ) ∶= {P ∈ An ∶ f(P ) = 0 ∀f ∈ T}.
If Y ⊆ An then I(Y ) ∶= {f ∈ k[x1,⋯, xn] ∶ f(P ) = 0 ∀P ∈ Y }.

Proposition 1. We can define a topology with algebraic sets as closed sets, this is
the Zariski topology.

Proof. It is straightforward to check that algebraic sets form a topology.

• An = Z(0) and ∅ = Z(1). So the whole space and the empty set are closed
sets

• If {Z(Tα)}α∈A are closed sets in An then ⋂α∈AZ(Tα) = Z(⋃α∈A{Tα}) so the
intersection is also a closed set.

• If Z(T1), Z(T2) are closed sets then Z(T1) ∪ Z(T2) = Z(T1T2) where T1T2 =
{fg ∶ f ∈ T1G ∈ T2}. So finite union of closed sets are closed.

We often write A = k[x1,⋯, xn].

Remark 2. We easily check that I(Y ) is an ideal of A.

Remark 3. We usually do not have Z(I(Y )) = Y or I(Z(T )) = T .

Here are a few propositions about algebraic sets.
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Theorem 1 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and I
be an ideal in A. If f ∈ A vanishes at all points of Z(I) then there is n ∈ N such
that fn ∈ I

Recall the topology definitions : If Y ∈ An then Y is its closure i.e. the smallest
closed set containing Y (equivalently the intersection of all the closed sets containing
Y ). A closed set is said to be irreducible if it cannot be expressed as the union of
two nontrivial closed sets.

And recall the notion from commutative algebra : if I is an ideal in a ring R,
√
I ∶= ⋂

P ∈Spec(R)
I⊆P

P = {x ∈ R ∶ xr ∈ I for some r ∈ N}

where Spec(R) is the set of prime ideals of R.
√
I is called the radical of I. The

proof of the above equality can be found in [3], Proposition 1.14, one inclusion is
straightforward and the other one uses Zorn’s lemma. This equality leads to the
radical ideal being sometimes defined as any two of those sets.

Proposition 2. We have the following properties :

(a) If T1 ⊆ T2 ⊆ A then Z(T2) ⊆ Z(T1).

(b) If Y1 ⊆ Y2 ⊆ An then I(Y2) ⊆ I(Y1).

(c) If Y1, Y2 ∈ An then I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(d) If a is an ideal of A then I(Z(a)) =
√
a.

(e) For any subset Y ⊆ An, Z(I(Y )) = Y .

Proof. (a) If P ∈ Z(T2), f(P ) = 0 forallf ∈ T2 so in particular for all f in T1
hence P ∈ Z(T1).

(b) If f ∈ I(Y2) then f(P ) = 0 ∀P ∈ Y2 then f vanishes in particular on Y1 so
f ∈ I(Y1).

(c) f ∈ I(Y1 ∪ Y2) if and only if f(P ) = 0 for all P ∈ Y1 and ∀P ∈ Y2 if and only if
f ∈ I(Y1) ∩ I(Y2).

(d) It is a direct consequence of Hilbert’s Nullstellensatz.

(e) Clearly Y being the smallest closed subset containing Y and Z(I(Y )) being a
closed set containing Y we have Y ⊆ Z(I(Y )). Conversely let C be any closed
set containing Y , write it C = Z(a) for some ideal a ⊆ A then (a) ⊆ I(Z(a)) =
I(C) ⊆ I(Y ) by (b) so by (a) Z(I(Y )) ⊆ Z(a) = C so Z(I(Y )) ⊆ Y , hence we
have the desired equality.

Corollary 1. There is a one to one inclusion reversing correspondence between
algebraic sets in An and radical ideals in A, given by Y ↦ I(Y ) and a ↦ Z(a).
Furthermore an algebraic set is irreducible if and only if its ideal is a prime ideal.
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Proof. We still need to prove that last claim, i.e. an algebraic set is irreducible if and
only if its ideal is a prime ideal. Suppose Y is an irreducible algebraic set, let’s show
that I(Y ) is prime. Let f, g ∈ A such that fg ∈ I(Y ). Then Y ⊆ Z(fg) = Z(f)∪Z(g)
(easy to check). We then have Y = (Z(f) ∩ Y )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
closed

∪ (Z(g) ∩ Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

closed

. By irreducibility of

Y we must have (Z(g) ∩ Y ) = Y or (Z(f) ∩ Y ) = Y hence g ∈ I(Y ) or f ∈ I(Y ) so
I(Y ) is prime.

Conversely, suppose a is a prime ideal of A, let’s show that Z(a) is an irreducible
algebraic set. Suppose Z(a) = Y1 ∪ Y2, Y1, Y2 closed sets. Then by last proposition
a =

√
a = I(Y1∪Y2) = I(Y1)∩Y (Y2), it is the intersection of two prime ideals so either

a = (Y1) or a = I(Y2) so either Z(a) = Y1 or Z(a) = Y2 hence Z(a) is irreducible.

Definition 3 (Affine algebraic varieties). An affine algebraic variety or simply
affine variety is a closed irreducible subset in the Zariski topology. A quasi-affine
variety is an open subset of an affine variety.

Remark 4. If Q is a quasi affine variety contained in an affine variety Y then
Q = Y (The closure of an open subset of an irreducible closed set is the whole closed
set).

Example 1. Consider the algebraic set in R3 defined by Y = Z(x2−y, xz−x). This
algebraic set is not irreducible, it is the union of three algebraic varieties :

Y = Z(x2 − y, xz − x) = Z(y2 + x2) ∪Z(x2 + z2) ∪Z(z − 1, y − x2).

Here is how it looks with each irreducible components in different colours :

2.2 Dimension of an algebraic set

Definition 4 (Height and Krull Dimension). In any ring R the height of a prime
ideal p is the supremum over integers, say n such that there exists a chain of distinct
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prime ideals p0 ⊂ ⋯pn = p. The Krull dimension (or simply dimension) of R is
the supremum of the height of the prime ideals.

By analogy, we get the definition of a topological space.

Definition 5 (Dimension of a topological space). The dimension of a topolog-
ical space X is the supremum over all integers n such that there exists a chain
Z0 ⊂ ⋯ ⊂ Zn of irreducible closed subsets.

A is noetherian so it translates to the property in An that every chain of de-
scending closed subsets Y1 ⊇ Y2 ⊇ ⋯ must terminate (i.e. there is r ∈ N such that
∀i ≥ r Yi = Yr). This is the descending chain condition and implies that An
has finite dimension.

From commutative algebra with have the following useful properties about the
dimension

Theorem 2. Let k be a field and let B be an integral domain that is also a finitely
generated k−algebra. Then the dimension of B is equal to the transcendance degree
of the field of fractions K(B) of B over k ( which is the supremum of the size of
subsets of K(B) algebraically independant over k).

Moreover for any prime ideal p in B we have

height p + dimB/p = dimB

Also, with our analogy we immediately have the following theorem :

Proposition 3. The dimension of any affine algebraic set Y is the dimension of
the ring A/I(Y ).

Proof. We just need to remark that there is a one-to-one correspondance between
prime ideals of A/I(Y ) and the prime ideals of A containing I(Y ).

So the following definition will be useful.

Definition 6 (Coordinate ring). If Y is an algebraic affine set, we define its coor-
dinate ring as A/I(Y ).

Remark 5. The coordinate ring of an affine variety is an integral domain (since
its corresponding ideal of polynomials is prime).

Proposition 4. Here are some immediate consequences of our last proposition of
the dimension :

• The dimension of An is n.

• If Y is a quasi affine variety, dimY = dimY .

• A variety Y in An has dimension n − 1 if and only if it is the zero set Z(f)
of a single nonconstant irreducible polynomial in A.

Proof. The first point is a direct consequence of proposition 3. The second one
comes from the definitions and the third one needs more result, it is proven in [5],
proposition 1.13.

6



Example 2. In R2, the hyperbole Z(x2 − y) is an irreducible closed subset of R2

of dimension 1.
In R3 the unit circle Z(x2 + y2 + z2 − 1) is an irreducible closed subset of R3 of

dimension 2.

2.3 Projective spaces

We will define slightly different spaces related to our affine spaces.

Definition 7 (Projective space). Let k be a field, we define the projective n−space
over k, denoted Pnk (or just Pn) as the quotient set of all (n+ 1)−tuples of elements
of k, not all zero, under the equivalence relation given by :

∀λ ∈ k (x0,⋯, xn) ∼ (λx0,⋯, λxn).

Elements of P are called points, and representative of the equivalence class corre-
sponding to a point are called homogeneous coordinates for that point.

Intuitively, Pn can be seen as the set of all lines of An+1 going through 0. Easily,
if P ∈ An+1, P ≠ 0, then all points on the line going through 0 and P are of the form
λP , which are all equal in Pn. Conversely if (x0,⋯, xn) ∈ Pn then we can associate
the line going through the point (x0,⋯, xn) (not all coordinates are 0) and 0. This
is a one-to-one correspondence.

In the projective case we will note S = k[x0,⋯, xn] and for all i ∈ N we’ll
note Si the set of homogeneous polynomials in S of degree i. So S = ⊕i∈N Si
as a graded ring. In general, zeroes of polynomials in S are not well defined in
Pn, because multiplying all the coordinates by a scalar might the value of the
polynomial at that point. However, if f ∈ Si for some i ∈ N and (x0,⋯, xn) ∈ Pn
then f(λx0,⋯, λxn) = λif(x0,⋯, xn). So if f vanishes at one set of homogeneous
coordinates for a point, it vanishes at all of them, so the zeroes of a homogeneous
polynomial are well defined over projective spaces.

If T ⊆ S is a set of homogeneous polynomials, we can define its zero set to be
Z(T ) .

Hence we can define algebraic sets in the projective case.

Definition 8 (Algebraic set). A subset Y of Pn is an algebraic set if there exist
a subset T ⊂ S of homogeneous polynomials such that Y = Z(T ) .

So we get a topology like in the affine case.

Definition 9 (Zariski topology and projective varieties). We can define the Zariski
topology on Pn by taking the algebraic sets as closed sets.

We define projective algebraic varieties (or just projective varieties) as the
irreducible closed subsets of Pn. A quasi-projective variety is an open subset of
some projective variety.

Definition 10 (Varieties). If k is a field, a variety over k is any affine, quasi-affine.
projective, quasi-projective variety.
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Now that we have a topology, we still have the same definition of the dimension
than for the affine case, since we defined the dimension for any topological space.

Let’s state a few useful facts about projective spaces.
We can write Pn = ⋃ni=0Ui where Ui = {(x0,⋯, xn) ∈ Pn ∶ xi ≠ 0} with i ∈ {0,⋯, n}.

This decomposition comes from the fact that homogeneous coordinates of a point
cannot be all 0. For each i we have U ci = Z(xi), which is closed, hence all the Ui’s
are open, so they form an open cover of Pn.
Proposition 5. For a projective algebraic set Y , we have

dimY = max
i∈{0,⋯,n}

dim(Ui ∩ Y ).

Proof. ≥ : This is the easy part, if we have an increasing chain of irreducible
closed sets C1 ⊂ C2 ⊂ ⋯ ⊂ Cr ⊂ Ui ∩ Y for some i, it corresponds to a chain of
same length of irreducible closed subsets in Y .
So we get dimY ≥ maxi∈{0,⋯,n} dim(Ui ∩ Y ).

≤ : If C1 ⊂ ⋯ ⊂ Cr is a maximal increasing chain of irreducible closed subsets
in Y . Since ⋃i∈{0,⋯,n}Ui = Pn there is some Ui such that Ui ∩ C1 ≠ ∅. We
claim that C1 ∩Ui ⊂ ⋯ ⊂ Cr ∩Ui is a chain of closed subsets in Y ∩Ui. Those
sets are clearly closed in Y ∩Ui and are irreducible, we need to show that the
sequence is increasing. Suppose not, we know it is nondecreasing then there
is some k such that Ck ∩ Ui = Ck−1 ∩ Ui. Note that for all ` ∈ {1,⋯, r} we
have that C` ∩ Ui is open in C`, which is irreducible so C` ∩Ui = C`. So we
get that Ck = Ck ∩Ui = Ck−1 ∩Ui = Ck−1 which is absurd because the chain
C1 ⊂ ⋯ ⊂ Cr is increasing. So we proved that dim(Ui ∩ Y ) ≥ dim(Y ).

Proposition 6. For all i ∈ {0,⋯n} Ui with its induced topology is homeomorphic
to An.
Proof. Let i ∈ {0, c . . . , n}, we define the map ϕi ∶ Ui → An by

ϕi(x0,⋯, xi−1, xi, xi+1,⋯, xn) = (x0
xi
,⋯, xi−1

xi
,
xi+1
xi

,⋯, xn
xi

) .

ϕi is a bijection with

ϕ−1
i (x1,⋯, xn) = (x1,⋯, xi−1,1, xi,⋯, xn).

For the sake of simplicity of notations, let’s assume i = 0, and write ϕ0 = ϕ and
U0 = U .

Define α ∶ Sh → A where Sh is the subset of S of homogeneous polynomials. If
f ∈ Sh, α(f)(y1,⋯, yn) = f(1, y1,⋯, yn) so α(f) ∈ A. Let also β ∶ A → Sh defined
by β(f)(x0,⋯, xn) = xe0f(

x1
x0
,⋯, xn

x0
), it is straightforward to check that β(f) is a

homogeneous polynomial of degree e.
● ϕ is closed : Let Y ⊆ U be a closed subset, and Y its closure in Pn. Y is

closed so we have Y = Z(T ) for some T ⊆ Sh. Let T ′ = α(T ). We easily check that
ϕ(Y ) = Z(T ′) so ϕ(Y ) is closed, so ϕ is closed.

● ϕ is continuous : Let W be a closed subset of An, we can write W = Z(T ′)
for some T ⊆ A. Again, one can easily verify that ϕ−1(W ) = Z(β(T ′)) ∩U . So ϕ is
continuous, so it is a homeomorphism.
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Remark 6. With the same notations as the proposition then if f ∈ Sh, α(f) is called
the dehomogenization of f , and if F ∈ A, β(F ) is called the homogenization of
F , both depend on the Ui we pick, so one shall precise it when it is not clear from
the context.

Corollary 2. dimPn = n

Proof. dimPn = dimU0 = dimAn = n.

So now we can talk about curves.

Definition 11 (Curves). A curve is a variety of dimension 1.

Another useful notion that we’ll use is the projective closure.

Definition 12 (Projective Closure). The projective closure of an affine algebraic
set V ⊆ An is the closure of V in Pn under the standard embedding An ≅ U0 ⊂ Pn.

3 Morphism between varieties.
We want to study our varieties like a category, and be able to have arrows from
one variety to another, so we will build up a notion of morphisms between varieties.
Again, all the statements that will not be proved can be found in [5] Chapter 1.

Definition 13 (Regular functions in the affine case). Let Y be a quasi-affine variety
and f ∶ Y → k a function. f is said to be regular at a point P ∈ Y if there is an open
neighborhood U with P ∈ U ⊆ Y and polynomials g, h ∈ A such that h is nowhere
zero on U and f = g

h on U . We say f is regular on Y if it is regular at every point
of Y .

Definition 14 (Regular functions in the projective case). Let Y be a quasi-projective
variety and f ∶ Y → k a function. f is said to be regular at a point P ∈ Y if there is
an open neighborhood U with P ∈ U ⊆ Y and homogeneous polynomials g, h ∈ S of
same degree such that h is nowhere zero on U and f = g

h on U . We say f is regular
on Y if it is regular at every point of Y .

Remark 7. In both cases, regular functions are continuous.

Now we can define our morphisms.

Definition 15 (Morphisms). And ifX,Y are two varieties, amorphism ϕ ∶X → Y
is a continuous map such that for every open set V ⊆ Y and for every regular function
f ∶ V → k the function f ○ ϕ ∶ ϕ−1(V ) → k is regular. An isomorphism ϕ ∶ X → Y
of two varieties is a morphism which admits and inverse morphism ψ ∶ Y →X with
ψ ○ φ = idX and φ ○ ψ = idY .

Remark 8. In Pn the functions φi ∶ Ui → An are isomorphisms of varieties.

Remark 9. If Y is a variety we note O(Y ) the set of regular functions.

Remark 10. To justify the definition above, let’s remark that the set of morphisms
is stable by composition and for all variety Y there is an identity morphism idY for
the composition law (the usual identity).
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Proposition 7. If X is a variety and f, g are regular functions on X such that
f = g on some open subset U ⊆X then f = g everywhere on X.

Proof. Let X be a variety and f, g regular functions on X such that f = g on some
open subset U ⊆ X. X is irreducible so U = X. Since f, g are continuous, and {0}
being closed, Z(f − g) ⊇ U =X. Hence f = g on X.

Proposition 8. If X, Y are two affine varieties then X and Y are isomorphic if
and only if A(X) and A(Y ) are isomorphic as k − algebras.

We will introduce a few other definitions we will need.

Definition 16 (Local ring). Let Y be a variety. We can define an equivalence
relation on {< U, f >∶ U is an open subset of Y containing P, f is a regular function
on U} by

< U, f >∼< V, g > if f = g on U ∩ V.

We define the local ring of P on Y OP,Y (or OP ) to be the set of those
equivalence classes.

Remark 11. It is called the local ring because it indeed is a local ring. Its unique
maximal idea is the set of non invertible elements, so the set m of elements f such
that f(P ) = 0. Indeed if f ∉ m then f(P ) ≠ 0 so 1

f is a regular function at P . The
quotient field OP /m is isomorphic to k because k is algebraically closed.

Now we move to a similar definition.

Definition 17 (Function Fields). If Y is a variety, we define the following equivalent
relation in {< U, f >∶ U is a nonempty open subset of Y , and f is a regular function
on U} by

< U, f >∼< V, g > if f = g on U ∩ V.

We define the function field K(Y ) of Y as the set of equivalence classes of this
equivalence relation. Elements of K(Y ) are called rational functions on Y

Remark 12. It indeed is a field, if < U, f > is a rational function then its inverse
is < V, 1

f > where V = U ∖U ∩Z(f).

Remark 13. Also, the intersection of sets in the definition of the equivalence rela-
tion is never empty. Indeed varieties are irreducible closed sets, so the closure of any
open subset is the whole variety, hence two open subsets always have a nonempty
intersection.

The following theorems will give us a link between those new definitions.

Theorem 3. Let Y ⊆ An be an affine variety with affine coordinate ring A(Y ).
Then :

(a) O(Y ) ≅ A(Y ).

(b) K(Y ) is isomorphic to the quotient field of A(Y ) and hence K(Y ) is a finitely
generated field extension of k, of transcendance degree = dimY .
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To give a projective version of this theorem, note that for any graded ring S we
write S(p) the subring of elements of degree 0 in the localization of S with respect
to the multiplicative subset T consisting of the homogeneous elements of S not in
p. S(p) is a local ring with maximum ideal (pT−1S)∩S(p). In particular S((0)) gives
us a field. Also if f ∈ S is a homogeneous element we denote by S(f) the subring of
elements of degree 0 in the localized ring Sf .

Theorem 4. Let Y ⊆ Pn be a projective variety with homogeneous coordinate ring
S(Y ). Then :

(a) O(Y ) ≅ k.

(b) K(Y ) ≅ S(Y )((0)).

(c) K(Y ) is a finitely generated field extension of k.

All the maps we just introduced are functions valued in our base field, but they
motivate a definition of less strict morphisms between varieties.

Proposition 9. Let X and Y be varieties, let ϕ and ψ be two morphisms from X
to Y , and suppose there is a nonempty open subset U ⊆X such that ϕU = ψU . Then
ϕ = ψ.

Proof. The proof is similar to proposition 7. Since the morphisms are continuous
and agree on some open set, then they agree on its closure, which is X.

This proposition means that we don’t lose too much information if we restrict
morphisms to opensubsets of varieties. That justifies our following definition.

Definition 18 (Rational Maps). LetX,Y be varieties. A rational map ϕ ∶X → Y
is an equivalence class of pairs < U,ϕU > where U is a nonempty open subset of
X,ϕU is a morphism of U to Y , and where < U,ϕU > and < V,ϕV > are equivalent
if ϕU = ϕV on U ∩ V . The rational map ϕ is dominant if for some pair < U,ϕU >,
the image of ϕU is dense in Y .

Remark 14. Note that if a rational map varpphi from X to Y is dominant (so
if for some pair < U,ϕU >, the image of ϕU is dense in Y ) then for all < V,ϕV >
rep representant of ϕ, the image of ϕU is dense in Y in other words we can check
the dominance relation with any representant of ϕ. Indeed X is a variety so it is
irreducible, and U ∩ V is an open subset of X, so by irreducibility we have that
U ∩ V = X, so in U we get that U ⊆ U ∩ V . Also see that by continuity of ϕU we
have ϕU(U ∩ V ) = U ∩ V . We have by hypothesis that ϕU(U) is dense in Y so

Y = ϕU(U) ⊆ ϕU((U ∩ V ) = ϕU(U ∩ V ) = ϕV (U ∩ V ) ⊆ ϕV (V ).

So ϕV (V ) is dense in Y .

The "isomorphic" relation on varieties is very strong, and hard to find, we want
to have a less strict relation between varieties that will still have nice properties.
It’s like going from homeomorphisms to homotopies in topology.
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Definition 19 (Birational maps, Birational varieties). Let X,Y be two varieties.
A birational map is a rational map ϕ ∶X → Y which admits an inverse ψ ∶ Y →X.
If we have such maps, we can say that X and Y are birationally equivalent or
simply birational.

Remark 15. This requires us to be able to compose morphisms ϕ and ψ, to do so
we need both morphisms to be dominant.

Theorem 5. There is a bijection between the set of dominant rational maps from
X to Y and the set of k−algebra homomorphisms from K(Y ) to K(X).

Corollary 3. For any two varieties X,Y the following conditions are equivalent :

• X and Y are birationally equivalent.

• There are open subsets U ⊆X, V ⊆ Y with U isomorphic to V .

• K(X) ≅K(Y ).

So in particular, if two varieties are isomorphic, they are birational. Now let’s
move on to caracterising the topology we want on Pn−1 ×An.

We will need to move curves around in our spaces, to check that it does not
change the curves we introduce the changes of coordinates.

3.1 Change of coordinates

Definition 20 (Change of coordinates). An affine change of coordiantes T ∶
(T1,⋯, Tn) ∶ An → An such that each Ti is a polynomial of degree 1 and such that T
is bijective. If T ∶ An+1 → An+1 is an affine change of coordinates then it sends lines
throught the origin to lines through the origin, so it induces a map from Pn to Pn,
called a projective change of coordinates.

Proposition 10. Affine changes of coordinates are compositions of a linear map
with a translation. Composition of affine change of coordinates is a change of
coordinates, and changes of coordinates are isomorphisms of varieties.

Proof. Take T ∶ (T1,⋯, Tn) ∶ An → An an affine change of coordinates, then we can
write T = ∑nj=1 aijXj +ai0, so T = T ′′ ○T ′ where T ′i = ∑nj=1 aijXj is a linear map, and
T ′′i =Xi+ai0 is a translation. A translation is always invertible, so the linear map T ′
must be invertible and its inverse will be linear. With this decomposition, we easily
check that the composition of changes of coordinates is a change of coordinates,
and also that the inverse of a change of coordinates is a change of coordinates. so
T is an isomorphism of variety from An to istself.

Corollary 4. Composition and inverse of projective change of coordinates give
projective change of coordinates, and they are isomorphisms of varieties.

Proof. Since a projective change of coordinate is obtained from an affine one, it’s a
direct consequience from previous proposition.

If A is any algebraic set, its image under a change of coordinates T will be
written AT and both will be isomorphic.

12



4 Singularities and multiplicity.

4.1 Singular Affine Varieties

If we take the case of the affine space A2, varieties will be either points (not very
interesting) or curves. However some of the curves we study are not smooth, they
can for example have several tangents at one point or have "a cusp". Here are a few
examples of the possible singularities in 2-dimensional spaces.

Figure 1: A Cusp Z(x3 − x4 − y2 − y4)(left) and a double point Z(y2 − x2(x + 1))
(right)

Those problems are linked to the tangents of the curves, so its only normal that
we define them with the Jacobian of the equations of the affine variety.

Definition 21 (Singular points, Singular Varieties). Let Y ⊆ An be an affine variety,
and let f1,⋯, ft ∈ A = k[x1,⋯, xn] be a set of generators for the ideal of Y . Y is
nonsingular at a point P if the rank of the matrix ∥(∂fi/∂xj)(P )∥ is n− r, where
r is the dimension of Y . Y is nonsingular if it is nonsingular at every point.

Example 3. In R2 take f = x6 + y6 − xy, Y = Z(f).

13



Figure 2: The graph of Y , a node.

Then [∂f/∂x, ∂f/∂y](x, y) = [6x − y,6y − x] the rank is 1 = 2 − 1 except for
(x, y) = (0,0) where its rank is 0, hence this variety is singular at (0,0).

4.2 Singular Varieties

Now that we saw what it means for an affine variety to be singular at one point,
we will give an equivalent definition thanks to the following theorem.

Theorem 6. Let Y ⊆ An be an affine variety and let P ∈ Y be a point. Then Y is
nonsingular at P if and only if the local ring OP,Y is a regular local ring.

We recall the definition of local rings :

Definition 22 (Regular Local Ring). Let A be a noetherian local ring with maximal
ideal m and residue field k = A/m. A is a regular local ring if dimkm/m2 = dimA.

Now we’ll prove the theorem.

Proof. Let P be the point (a1,⋯, an) in An and let aP = (x1 − a1,⋯, xn − an) the
corresponding maximal ideal in A = k[x1,⋯, xn] (note that we want to work most
often with k algebraically closed so those are the only maximal ideals). Let’s define
the map θ ∶ A→ kn by

θ(f) = ⟨ ∂f
∂x1

(P ),⋯, ∂f
∂xn

(P )⟩

for any f ∈ A. We immediately have that {θ(xi − ai)}i=1,⋯,n forms a basis for kn
and also θ(a2

P ) = 0. So by the first isomorphism theorem we have an isomorphism
θ′ ∶ aP /a2

P → kn.
Now let b be the ideal of Y and let f1,⋯, ft be a set of generators of b. The rank

of the Jacobian matrix J = ∥(∂fi/∂xj)(P )∥ is the dimension of θ(b) as a subspace
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of kn. The previous isomorphism we previously defined, this dimension corresponds
to the dimension of (b + a2

P )/a2
P of aP /a2

P . On the other hand, the local ring OP
of P on Y is obtained by taking the quotient of A by b and then localizing at the
maximal ideal aP . Hence, if m is the maximal ideal of OP we have

m/m2 ≅ aP /(b + a2
P ).

We count dimensions of vector spaces and come up with dimm/m2 + rankJ = n.
Write r = dimY which is also the dimension of OP as a local ring. So OP is regular
if and only if r = dimkm/m2, so if and only if J = n − dimm/m2 = n − r. So the two
definitions coincide, what we wanted.

Remark 16. If Y is a curve nonsingular at P , so a variety of dimension 1 with
the local ring OP,Y a regular local ring of dimension 1, this is called a discrete
valuation ring.

Now thanks to this theorem we can define singularities in a broader sense than
just with affine varieties.

Definition 23 (Nonsingular Points, Nonsingular Curves). Let Y be any variety.
Y is nonsingular at a point P ∈ Y if the ring OP,Y is a regular local ring. Y is
nonsingular if it is nonsingular at every point. We say Y is singular if it is not
nonsingular.

So now we can talk about singularities for any variety.
And note the following facts.

Proposition 11. Let A be a noetherian local ring with maximal ideal m and residue
field k = A/m. Then dimkm/m2 ≥ dimA.

So the inequality is strict when we talk about a curve’s singularity.

Proposition 12. Let Y be a variety. Then the set SingY of singular points of Y
is a proper closed subset of Y .

Corollary 5. Let Y be a variety over k. Then there is an open dense subset U of
X which is nonsingular.

This is very interesting, for example in a curve, which is of dimension 1, the set of
singular points has to be finite because closed sets of dimension 0 are finite unions of
sets. So when we will blow up curves to eliminate singularities at particular points,
we will just need to solve singularities for a finite number of points.

4.3 Multiplicity

Recall that a point P of an irreducible plane curve is a simple point if and only if
its local ring OP is a discrete valuation ring.

Definition 24 (Multiplicity). Let P be a point on an irreducible curve Y . The
following proposition will show that the sequence dimk (mn/mn+1) stabilizes as n
tends to infinity. Then we define the multiplicity of Y at P by

mP,Y = dimk (mn/mn+1)

where m is the maximal ideal of OP and n is large enough.
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We want to find a simple way to compute the multiplicity of an affine plane
curve, this will be done through the following theorem.

Proposition 13. Let Y = Z(F ) be an irreducible plane curve, write F = Fr +
Fr+1 + ⋯ + Fd where Fi is a form (homogeneous polynomial) of degree i. Then the
multiplicity of Y at 0 is well defined and equals r.

Proof. We note O for O0,Y and m its maximal ideal.
It is straightforward to see that we have the following exact sequence for any

integer n:

0Ð→ mn/mn+1 Ð→ O/mn+1 Ð→ O/mn Ð→ 0.
It follows that dimk(O/mn+1) = dimk(mn/mn+1) + dimk(O/mn). If we show

that for all n ≥ r, dimk(O/mn) = nr + s for some constant s then we’ll get by the
above formula that dimk(mn/mn+1) = r. We saw that m is the set of non invertible
elements, so the set of elements that cancel at (0,0), so write I = (X,Y ), we get
that mn = InO. Note that Z(In) = (0,0) so we get the following isomorphisms :

O/mn = O0,Y /InO0,Y ≅ O0,A2/(In, F )O0,A2 ≅ k[X,Y ]/(In, F ),

so dimk(O/mn) = dimk(k[X,Y ]/(In, F )). We can consider the quotient surjection
ϕ ∶ k[X,Y ]/In → k[X,Y ]/(In, F ) and define the k−linear map ψ ∶ k[X,Y ]/In−r →
k[X,Y ]/In by ψ(G) = FG. ψ is injective because FG ∈ In implies that G ∈ In−r,
so we have the following exact sequence :

0Ð→ k[X,Y ]/In−r
ψ
Ð→ k[X,Y ]/In

ϕ
Ð→ k[X,Y ]/(In, F ) Ð→ 0.

An induction on n gives us that

dimk(k[X,Y ]/In) = 1 + 2 +⋯ + n = n(n + 1)
2

, and the exact sequence gives us that dimk(k[X,Y ]/In) = dimk(k[X,Y ]/(In, F ))+
dimk(k[X,Y ]/In−r) so

n(n + 1)
2

= dimk(k[X,Y ]/(In, F )) + n − r(n − r + 1)
2

.

We deduce that dimk(k[X,Y ]/(In, F )) = nr + r(r−1)
2 , for all n ≥ r exactly what we

wanted.

Remark 17. Note that d is called the degree of the curve, and this way with a
change of coordinates sending a point P to 0, we can get the multiplicity of any
point of an affine plane curve.

Remark 18. The function used in the proof, χ(n) = dimk(O/mn) is a polynomial
in n and is called the Hilbert-Samuel polynomial.

Remark 19. With the same notations and reasoning, we get that if 0 ≤ n < r then
dimk (mn/mn+1) = n + 1 (see [1] chapter 3.2). Hence the sequence dimk (mn/mn+1)
is increasing so we get that a point P of a curve Y has multiplicity 1 if and only if
dimk (m/m2) = 1 = dimk (OP ) so a point P has multiplicity 1 if and only if OP is a
regular ring, if and only if P is nonsingular.
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Definition 25 (Multiplicity, Degree, Tangent Lines). Let Y = Z(F ) an irreducible
affine plane curve, write it F = Fr +Fr+1⋯+Fn with Fi a form of degree i. Then r
is the multiplicity of Y at 0, n is the degree of the curve.

Also write Fr = ∏Lri
i with Li of the form aiX + biY so Z(Li) are distinct lines,

Li are called the tangent lines to Y at (0,0), ri is the multiplicity of the tangent
Li, and the latter is said to be simple (resp double, triple, ...) if ri = 1 (resp
2,3, ...).

Proposition 14. The tangents are well defined.

Proof. With the same notations as the definition, we need to check that we can
indeed write Fr = ∏Lri

i with Li of the form aiX + biY . Write Fr = Y kG where Y
does not divide G. Since Fr is a form, we can use the reasoning used in the proof
of proposition 6 to dehomogenize the polynomial Fr and we get Fr(X,1) = G(X,1)
a polynomial of k[X] but k is algebraically closed to so we can write G(X,1) =
∏(aiX + bi) so homogenizing the polynomial again, using the isomorphism, we get
that Fr(X,Y ) = Y k∏aiX + biY = (0X + Y )k∏(aiX + biY ) which is of the desired
form.

4.4 Resolution of singularities

Now we can define what we mean by resolving singularities

Definition 26 (Resolution of singularities). Given a quasi projective variety Y ,
a resolution of singularities of Y is a nonsingular variety X together with a
birational map π ∶ X → Y where π is an isomorphism above the nonsingular locus
of Y .

The main aspect of this project will be to send a curve to some birational curve
that is nonsingular. We’ll need a last step before going for our main proof, to
justify some later construction we’ll need to justify that we can find a topology on
Pn−1 ×An.

5 Topology on Pn−1
×An.

5.1 The Segre Embedding

Definition 27 (Segre Embedding). We define the Segre embedding to be the
map ψ ∶ Pr × Ps → PN by

ψ((a0,⋯, ar), (b0,⋯, bs)) = (⋯, aibj ,⋯)

in lexicographic order and where N = rs + r + s.

Proposition 15. The Segre embedding is a well defined injective map and its image
is a subvariety of PN .

Proof. Clearly it is well defined, if λ ∈ k we get

ψ((λa0,⋯, λar), (b0,⋯, bs)) = (⋯, λaibj ,⋯) = (⋯, aibj ,⋯) = ψ((a0,⋯, ar), (b0,⋯, bs))
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and likewise

ψ((a0,⋯, ar), (λb0,⋯, λbs)) = (⋯, λaibj ,⋯) = (⋯, aibj ,⋯) = ψ((a0,⋯, ar) (b0,⋯, bs)).

We can take the open covering of PN , denoted {Uij}0≤i≤r,0≤j≤s given by

Uij = {(x00,⋯, xlk,⋯, xrs) ∶ xij ≠ 0}

. For the sake of notations let’s deal with U00 the other cases being similar. Define
the homomorphism : k[{zij}] → k[x0,⋯, xr, y0,⋯, ys] which sends zij to xiyj , call
a its kernel. We can check that a = (zijzkl − zilzkj).

Let P = (z00,⋯, zlk,⋯, zrs) ∈ U00, suppose P is in the image of ψ.
If ψ(((a0,⋯, ar), (b0,⋯, bs))) = P then a0, b0 ≠ 0 so we can set a0 = b0 = x00 = 1.

If P ∈ Z(a) then we must have zij = z00zij = zi0z0j So if we set ai = zi0 for all
i ∈ {1,⋯r} and bj = z0j for all j ∈ {1,⋯s} we get zij = aibj hence those vectors are
the unique only solutions. Thereforce Z(a) ⊆ Imψ and ψ is injective on Z(a).

Conversely if ((a0,⋯, ar), (b0,⋯, bs)) ∈ Pr × Ps, write ψ((a0,⋯, ar), (b0,⋯, bs)) =
(z00,⋯, zlk,⋯, zrs) then

zijzkl − zilzkj = aibjakbl − aiblakbj = 0

by commutativity in k. So Z(a) ⊇ Imψ hence Imψ = Z(a) and the Segre embedding
is injective.

We even have that Imψ is a closed set, we need to prove it’s irreducible. By defi-
nition of a, using the first isomorphism theorem we get k[{zij}]/a ≅ k[x0,⋯, xr, y0,⋯, ys]
which is an integral domain, so a is prime so Imψ = Z(a) is irreducible so it is a
variety.

So now we know we have a structure of projective variety on Pr × Ps. Now let
X ⊆ Pr, Y ⊆ Ps be quasi projective varieties, consider X × Y ⊆ Pr × Ps.

Proposition 16. X × Y is a quasi projective variety. Moreover if X and Y are
projective, then X × Y is projective.

Proof. We know that projection maps are continuous. Call p1 ∶ Pr × Ps → Pr, p2 ∶
Pr ×Ps → Ps the canonical projections. X and Y are irreducible so p−1

1 (X) =X ×Ps
and p−1

2 (Y ) = Pr × Y is irreducible. So X × Y =X × Ps ∩ Pr × Y is irreducible hence
it is a variety. This argument holds for both cases.

We can always identify An with U0 in Pn So Pn−1 × An can be seen as a quasi
projective variety. Write x1,⋯, xn for the homogeneous coordinates in Pn−1 and
y1,⋯, yn the affine coordinates in An, then closed subsets in Pn−1 ×An are defined
by polynomials in k[x1,⋯, xn, y1,⋯, yn] that are homogeneous with respect to the
xi’s.
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6 Blowing up Projective Curves
Now we want to establish a strategy to solve singularities with any projective curve.
So we want to bind a sequence of birational maps to send a projective curve to a
nonsingular projective curve. Note that from now, unless precised otherwise, on
we’ll work over k, an algebraically closed field of characteristic 0. Here is our
strategy

1. Send any curve to a projective plane curve

2. Modify this curve to have better singularities

3. Define the blowup a point of an affine variety and prove that the blowup
of an affine curve is nonsingular (under the assumption that we have "good"
singularities of point 2.).

4. Define the blowup of the projective plane. Check that locally, this blowup is
the blowup of an affine curve.

We will illustrate our proofs with the following curve in P3(C). Note the homo-
geneous coordinates (X,Y,Z,T ) and take the curve

Z((X − Y )(X + Y )3 +ZT 3,X6 + Y 6 −ZT 5).

As we cannot draw it in P3(C), we go in A3 by taking Z((X − Y )(X + Y )3 +
ZT 3,X6 + Y 6 −ZT 5) ∩U2 and then draw the real part. We get the following.

Figure 3: Our starting singular curve.

It is clearly singular at (0,0,0,1) because the isomorphism with A3 we used
gave us a singular point at (0,0,0)
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6.1 Sending a projective curve to a projective plane curve.

We want to get a plane curve from a projective curve, but the morphism between
those two curves must be birational, otherwise we’d lose too much information, so
just a simple projection on P2 will not be enough.

To prove that we can do that we’ll need 3 results from commutative algebra :

Theorem 7 (Theorem of the Primitive Element). Let L be a finite separable ex-
tension field of a field K. Then there is an element α ∈ L which generates L as an
extension field of K

Theorem 8. If a field extension K/k is finitely generated and separably generated
then any set of generators contains a subset which is a separating transcendance
base.

Theorem 9. If k is a perfect field, any finitely generated field extension K/k is
separably generated.

All the proofs can be found in [4] Chapter II, theorems 19,30,31.
With that in mind, we can prove our desired theorem :

Theorem 10. Any curve is birational to a projective plane curve.

Proof. We work over the field k, algebraically closed. Take a curveX, from Theorem
4 we saw that K(X) is a finitely generated extension of k, any algebraically closed
field if perfect so by Theorem 9K(X) is separably generated over k, by the definition
of separably generated field extensions we get a transcendance base (that we can
take of size of the dimension of X thanks to Theorem 8, so 1) {x} such that K(X)
is a separable algebraic extension of k, using the theorem of the primitive element
(7) we get y ∈K(X), algebraic over k(x) such that

K(X) = k(x, y).

y is algebraic over k(x), it is the root of some irreducible polynomial equation with
coefficients in k(x), so with coefficients that are rational functions in x, clearing the
denominators of those rational functions we get an irreducible polynomial f(x, y) =
0. This defines a curve Y in A2 we want to show now that this curve is birational
to X, for that purpose we’ll show their function fields are isomorphic, i.e. the
function field of Y is isomorphic to k(x, y) and use corollary 3. Note that the
function field of Y is F (A(Y )) the field of fractions of A(Y ). Build ϕ ∶ F (A(Y )) =
F (k[X,Y ]/(f)) → k(x, y) by

ϕ([g]
[h]

) = f(x, y)
g(x, y)

.

We check that it is well defined, indeed if [g] = [g′], [h] = [h′] then g − g′ ∈ (f),
h − h′ ∈ (f) and f(x, y) = 0 so g(x, y) − g′(x, y) = 0 and likewise h(x, y) = h′(x, y),
we conclude that ϕ ( [g]

[h]) =
g(x,y)
h(x,y) =

g′(x,y)
h′(x,y) = ϕ ( [g′]

[h′]). It is easily a field morphism.
Contant polynomials are mapped to k, [X]

[1] is mapped to x and [Y ]
[1] is mapped to y

so both being fields, ϕ is surjective. Also if ϕ( [g]
[h]) = 0 then g(x,y)

h(x,y) = 0 so g(x, y) = 0.
By irreducibility of f , we deduce that f divides g so [g] = 0, so ϕ is injective, so
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we have the desired isomorphism. So Y is birational to X, take Y ′ the projective
closure of Y , a curve and its projective closure are always birational, so we found a
projective plane curve birational to our curve X, what we wanted.

Remark 20. The proof also holds if k is not algebraically closed but its character-
istic is 0 since all characteristic 0 fields are perfect and so we can use Theorem 9,
all the other theorems used here are true even without an algebraically closed field.
Moreover the same proof can be used to show that any variety of dimension n is
birational to an hypersurface in Pn+1.

Example 4. Let’s find a projective plane curve birational to our example curve
Z((X − Y )(X + Y )3 + ZT 3,X6 + Y 6 − ZT 5). Note that if we consider the curve in

A3 defined by { (x − y)(x + y)3 + z = 0
x6 + y6 = z observe that the homogeneification of those

two polynomials give us the equations of our curve, so our curve is just the projective
closure of this one, hence they are birational and have isomorphic function fields.
Call Y the latter curve, then we can see that

A(Y ) = C[x, y, z]/((x − y)(x + y)3 + z, x6 + y6 − z)
≅ (C[x, y, z]/(x6 + y6 − z))/((x − y)(x + y)3 + z)
≅ C[x, y]/((x − y)(x + y)3 + x6 + y6)

so F (A(Y )) ≅ C(x, y)

with x transcendant over C and y algebraic over C(x) that verifies the equation
(x − y)(x + y)3 + x6 + y6 = 0. So the polynomial f of our theorem is f(X,Y ) =
(X − Y )(X + Y )3 + X6 + Y 6, its projective closure in P2(C) with homogeneous
coordinates X,Y,Z is Z((X + Y )(X − Y )3Z2 +X6 + Y 6).

Here is our curve drawn in R2 to get a visual impression. See that it has a
singularity at 0.

Figure 4: A plane curve birational with our starting one.

Althought we did not define it yet, this is what we would get by blowing up this
curve at 0 now :
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One can see that it is still singular.

To understand more how to get better singularities before blowing up, we must
introduce the definition the intersection number.

6.2 Intersection Numbers

Given two plane curves Y,Y ′, and a point P , we want to define the intesection
number of Y and Y ′ at P , denoted by I(P,Y ∩ Y ′). If we note Y = Z(F ) and
Y ′ = Z(F ′), we can find this number written as I(P,F ∩G) in the literature. This
number is uniquely defined by the properties we want it to hold, so it all boils down
to the following theorem.

Theorem 11. There is a unique intersection number I(P,Y ∩ Y ′) for all plane
curves Y = Z(F ), Y ′ = Z(G) and all points P ∈ A2 that verifies the following
properties :

[I1] If Y and Y ′ have no common component passing through P then I(P,Y ∩Y ′)
is a non-negative integer. Else I(P,Y ∩ Y ′) = ∞.

[I2] I(P,Y ∩ Y ′) = 0 if and only if P ∉ Y ∩ Y ′.

[I3] If T is an affine change of coordinates on A2, then I(T (P ), T (Y ) ∩ T (Y ′)) =
I(P,Y ∩ Y ′).

[I4] I(P,Y ∩ Y ′) = I(P,Y ′ ∩ Y )

[I5] I(P,Y ∩Y ′) ≥ mP,YmP,Y ′ with equality occurring if and only if Y and Y ′ have
no tangent lines in common at P .

[I6] If F = ∏F ri
i and G = ∏G

sj

j then

I(P,Z(F ) ∩Z(G)) = ∑
i,j

risjI(P,Z(Fi) ∩Z(Gj)).

[I7] For all A ∈ k[X,Y ] we have

I(P,Y ∩ Y ′) = I(P,Y ∩Z(G +AF ))
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This number is given by

I(P,Y ∩ Y ′) = dimk(OP,A2/(F,G)).

The proof is rather long and we want to focus on the resolution of singularities
so we refer to the proof in Fulton [1] Chapter 3 Theorem 3.

We can now define our intersection number.

Definition 28 (Intersection Number). Let Y = Z(F ), Y ′ = Z(G) be two affine
plane curves, and P ∈ A2 then we define the intersection number of Y and Y ′ at
P by I(P,Y ∩ Y ′) = dimk(OP,A2/(F,G)).

An additional property is very useful when we’ll be using intersection numbers
:

Theorem 12 (Bezout’s Theorem). If C and D are projective plane curves of degrees
m and n respectively with no common component, then

∑
P ∈C∩D

I(P,C ∩D) =mn.

The proof is also found in Fulton’s book [1] Chapter 5.
Now when studying projective plane curves, we can use the above definition

to talk about intersection numbers. If P ∈ P2 and Y,Y ′ are projective curves,
then P ∈ Ui for some i and we define the intersection number of Y and Y ′ at P ,
I(P,Y ∩ Y ′) as I(Pi, Yi ∩ Y ′

i ) where P − i, Yi, Y ′
i are obtained from P,Y, Y ′ via the

isomorphism U − i→ A2. The definition is independant of the choice of Ui. Likewise
we can define the multiplicity of Y at P as the multiplicity of Yi at Pi. So we can
carry out all the definitions of affine plane curves to the projective plane curves.

Definition 29 (Ordinary Multiple points). P is an ordinary multiple point of
Y if Y has mP,Y distinct tangents at P .

In other words, a point is an ordinary multiple point if all the tangents of Y at
P are simple.

6.3 Quadratic Transformations

The goal of this section is to make all singular points ordinary, by doing so the
blowup curve will be nonsingular.

Let P = (0,0,1), P ′ = (0,1,0), P ′′ = (1,0,0) ∈ P2, those points are called the
fundamental points, also if we note x, y, z the homogeneous coordinates of P2,
let L = Z(z), L′ = Z(y), L′′ = Z(x) be the exceptional lines.

Definition 30 (Standard Quadratic Transformation). We define the standard
quadratic transformation as follows :

Q ∶ ∣ P2 − {P,P ′, P ′′} → P2

(x, y, z) ↦ (yz, xz, xy)
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Let U = P2 − Z(xyz) = P2 − (L ∪ L′ ∪ L′′), then Q is a morphism from P2 −
{P,P ′, P ′′} to U ∪ {P,P ′, P ′′}. If (x, y, z) ∈ U then Q(Q(x, y, z)) = Q(yz, xz, xy) =
(xxyz, yxyz, zxyz) = (x(xyz), y(xyz), z(xyz)) = (x, y, z), hence Q restricted to U
is an isomorphism, so Q is a birational map of P2 with itself.

Let F ∈ k[x, y, z] the equation of an irreductible curve C distinct from the excep-
tional lines, and let n be the degree of F , write FQ = F (yz, xz, xy) = F (Q(x, y, z)),
it is a form of degree 2n, it is called the algebraic transform of F .

Proposition 17. Let r be the multiplicity of C at P , then zr is the largest power
of z which divides FQ.

Proof. It follows from the definition of the multiplicity, when we take the isomor-
phism from U3 to A2, it sends P to 0, so e get that F (x, y,1) is of the form
F (x, y,1) = Fr(x, y) + ⋯ + Fn(x, y) with Fi a form of degree i so homogenizing
the polynomial in P2 we see that F (x, y, z) = Fr(x, y)zn−r + Fr+1(x, y)zn−r−1 + ⋯ +
Fn(x, y), so

FQ(x, y, z) = Fr(yz, xz)(xy)n−r + Fr+1(zy, xz)(xy)n−r−1 +⋯ + Fn(yz, xz)
= zrFr(y, x)(xy)n−r + zr+1Fr+1(y, x)(xy)n−r−1 +⋯ + znFn(y, x)
= zr(Fr(y, x)(xy)n−r + zFr+1(y, x)(xy)n−r−1 +⋯ + zn−rFn(y, x)).

which proves our result.

Corollary 6. Write r = mP,C , r
′ = mP ′,C , r

′′ = mP ′′,C . Then FQ = xr′′yr′zrF ′ where
x, y, z do not divide F ′. The latter is called the proper transform of F and
deg(F ′) = 2n − r − r′ − r′′.

Proof. We so the same reasoning as in the previous proposition with P ′ and P ′′.
Note that U is open so U ∩ C is open in C and closed in U , and Q, Q−1 are

well defined at U ∩ C, what’s more, Q−1(U ∩ C) = Q(U ∩ C) is a closed curve in
U because Q2 = Id. Write C ′ = Q(U ∩C). By construction C ∩ U and C ′ ∩ U are
isomorphic, so C and C ′ are birational.

Proposition 18. (F ′)′ = F , mP,C′ = n−r′−r′′,mP ′,C′ = n−r−r′′,mP ′′,C′ = n−r−r′,
F ′ is irreducible and C ′ = Z(F ′).

Proof. Let’s prove first the last assertion. (FQ)Q = (xyz)nF , but also

(FQ)Q = (xr
′′

yr
′

zrF ′)Q

= (yz)r
′′

(xz)r
′

(xy)r(F ′)Q

(xyz)nF = xr+r
′

yr+r
′′

zr
′+r′′(F ′)Q

(F ′)Q = xn−r−r
′

yn−r−r
′′

zn−r
′−r′′F

and x, y, z do not divide F because it is irreductible and distinct from the tangent
lines, so we recognize the writing of Corollary 6 , and deduce that (F ′)′ = F ,
mP,C′ = n − r′ − r′′,mP ′,C′ = n − r − r′′,mP ′′,C′ = n − r − r′. Also F ′ is irreducible,
otherwise by previous equation F wouldn’t be irreductible.

Moreover Q−1(U∩C) ⊆ Z(F ′) so by irreducibility we must have C ′ = Q(U ∩C) =
Z(F ′).
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This way we know the multiplicity of our fundamental points at F ′, and it
describes a curve birational to C, but a priori the fundamental points are not
ordinary multiple points of F ′, we need to position the curve before applying the
quadratic transformation.

Definition 31 (Curve Position). We say that a curve C is in good position
if no exceptional line is tangent to C at a fundamental point. Moreover we say
that a curve C is in excellent position if it is in good position and L intersects
(transversally, that is the intersection points are simple for both curves) C at n
distict non-fundamental points, and both L′ and L′′ each intersect (transversally)
C in n − r distinct non fundamental points.

To show that it does not bring more difficulty, note the following proposition.

Proposition 19. If C is an irreducible projective plane curve, and P1 is a point
of C then there is a projective change of coordinates T such that F T is in excellent
position and T (0,0,1) = P1.

Proof. Let F such that C = Z(F ), n = deg(F ), mP,C = r. All is done thanks to the
following claim :
Claim : Let C = Z(F ) be an irreducible curve of degree n in P2, suppose P ∈ P2

with mP (F ) = r ≥ 0. Then there are infinitely many lines L through P such that L
intersects C in n − r distinct points other than P .

Proof. Suppose P = (0,1,0), for all λ ∈ k define Lλ = {(λ, t,1) ∶ t ∈ k} ∪ {P} = Z(y −
λz). By homogenization of a polynomial of 6 and the definition of the multiplicity
of an affine curve (definition 25) and seeing F as the, we get that we can write
F = Ar(x, z)yn−r + ⋯ + An(x, z), Ar ≠ 0. Define Gλ(t) = F (λ, t,1). We have
Gλ(t) = Ar(λ,1)tn−r + ⋯ + An(λ,1), so if Ar(λ,1) ≠ 0 then Gλ is a polynomial of
degree n − r over k, algebraically closed, so it has n − r roots. Seeing Ar(λ,1) as a
polynomial in λ we check that it is always the case except for finitely many λ, namely
the roots of Ar(t,1). Plus by irreducibility of F we must have Gλ irreducible, so it
has no multiple roots, its roots are all distinct and in k, because it is algebraically
closed. So for all but many λ we have that Lλ intersects C in n − r points distinct
from P , so the claim is verified.

Use this claim to P1 to construct two distinct lines going through P that intersect
C in n − r distinct points, call them L1, L2. Now take any point in L1 that does
not belong to C, call it P2, and use the claim with P ′, note that mP2,C = 0 so we
get infinitely many lines intersecting C in n distinct points, take one, say L3 and
call P3 the intersection of L2 and L3. Note that during the construction, we always
had the choice between infinitely number of lines, so we can make sure that none
of those lines are tangent to the curve at P1, P2 and P3 likewise, having the curve
and lines to intersect transversally is just insuring we avoid multiple points, that
corresponds to only a finite number of lines we have to avoid. Now take a change
of coordinates T that send P1 to (0,0,1), P2 to (0,1,0) and P3 to (1,0,0). So the
three lines L1, L2, L3 will be sent to the exceptional lines, respectively L′′, L′, L. By
construction CT is in excellent position.
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Remark 21. When we proved the claim we used that all the roots of an irreducible
polynomial are distinct, so we used the characteristic 0 of k there.

Remark 22. A change of coordinates being an isomorphism, we did not add any
new singularity to the curve by doing so.

Let’s examine the consequence of a curve having these desired properties. We
now go back to the notations we used at the start of this part.

Proposition 20. If C is in good position then

• C’ is also in good position.

• If P1,⋯, Ps are the non-fundamental points on C ′ ∩L then

mPi,C′ ≤ I(Pi,C
′ ∩L), and

s

∑
i=1
I(Pi,C ′ ∩L) = r.

We have likewise results for P ′ and P ′′ because being in good position is sym-
metrical with respect to the fundamental points.

Proof. By definition of the tangent (definition 25) and property [I5] of Theorem
11), L is tangent to C ′ at P ′ if and only if I(P ′, Z(F ′) ∩L) > mP ′,C′ i.e.

I(P ′, Z(Fr(y, x)xn−r−r
′′) ∩ L) > n − r − r′′ i.e. I(P ′, Z(Fr(y, x)) ∩ L) > 0 i.e.

(1,0) ∈ Z(Fr(y, x)) i.e. Fr(1,0) = 0. But L′ is not tangent to C at P so Fr(1,0) ≠ 0,
by symmetry we use the same reasoning for other lines and other points, so we
conclude that C ′ is in good position.

For the second part, use the same reasoning to see that
s

∑
i=1
I(Pi, Z(F ′) ∩L) =

s

∑
i=1
I(Pi, Z(Fr(y, x) ∩L) = r

where the last property comes from Bezout’s Theorem.

Proposition 21. Moreover if C is in excellent position then

• Multiple points on C ′ ∩U correspond to multiple points on C ∩U , preserving
the multiplicity and ordinary multiple points.

• P ,P ′ and P ′′ are ordinary multiple points on C ′ with multiplicities respectively
n,n − r and n − r.

• There are no non-fundamental points on C ′ ∩ L′ or on C ′ ∩ L′′ If P1,⋯, Ps
are the non-fundamental points on C ′ ∩ L then mPi(C ′) ≤ I(Pi,C ′ ∩ L) and
∑i I(Pi,C ′ ∩L) = r.

Proof. The first part comes from the fact that C ′ ∩U and C ∩U are isomorphic.
The second part is from proposition 20. C ′ is in good position so we use the

second fact with C ′ and also note that (C ′)′ = C and the lines and curve intersect
transversally in non-fundamental points so the intersection numbers are always 1.
For P , if P1,⋯Pn are the non fundamental points of C ∩ L(we are using the fact
that C is in excellent position), ∑ni=1 I(Pi,C ′ ∩ L) = ∑ni=1 1 = n = mP,C′ . Likewise
mP ′,C′ = mP ′′,C′ = n − r.
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The last fact also comes from the second point of last proposition, with P we
have the exact same result, and use it also with P ′ and P ′ but now the sum of the
intersection numbers equals the multiplicity of P’ or P”, which are 0 because we
are in excellent position, so there are no non-fundamental points on C ′ ∩ L′ and
C ′ ∩L′′.

So if P is any multiple point we’re dealing with, we get 3 ordinary multiple
points, but we need some control on the possible multiple points on C ′ ∩ L. For
that we define a function for any curve C, if we note rP = mP,C where P is a multiple
point of C, define g∗(C) = (n−1)(n−2)

2 −∑P multiple point
rP (rP−1)

2 .

Remark 23. Note that if P is an ordinary multiple point then rP (rP−1)
2 = 0 so

ordinary multiple points do not appear in g∗

Proposition 22. If C = Z(F ) is any irreducible curve, g∗(C) is a nonnegative
integer.

Proof. It is straightforward to see that it is an integer, let’s show that it is nonneg-
ative. For that we will use Bezout’s theorem (Theorem 12) with the derivative of
F , F ′ = ∂F

∂z . If P1,⋯, Ps are the multiple points of C and ri = mPi,C , then if F ′ ≠ 0
those points have multiplicity at least ri − 1 for F ′. F is irreducible so F and F ′

have no common component, se we can use bezout theorem with them and get that
s

∑
i=1
ri(ri − 1) ≤

s

∑
i=1
I(Pi, Z(F ) ∩Z(F ′)) = n(n − 1)

The first inequality comes from the property [I6] of the intersection number, the-
orem 11. We deduce the desired result from the definition of g∗.

If F ′ = 0 then we want to find another irreducible curve of degree n − 1 with no
common component with C such that the mutiplicities at Pi’s are at least ri−1. To
build a homogeneous polynomialG of degree n−1 we must choose n(n−1)

2 coefficients.
Then we want that for each i, Pi has multiplicity at least ri − 1 on Z(G), which
gives us ri(ri−1)

2 linear conditions. With the remaining degrees of freedom so let’s
require Z(G) to pass through N = n(n+1)

2 − 1 − ∑i
ri(ri−1)

2 other points of C. It is
still possible without having G = 0. Since F is irreducible and G is of degree n − 1,
they cannot have a common factor, so by previous reasonning we get

s

∑
i=1
I(Pi, Z(F ) ∩Z(G)) = n(n − 1) ≥

s

∑
i=1
ri(ri − 1) +N

so g∗(C) ≥ 0.

Proposition 23. If C is in excellent position, call P1,⋯, Ps the non-fundamental
points on C ′ ∩L, and rPi = mPi,C then g∗(C ′) = g∗(C) −∑si=1

ri(ri−1)
2 .

Proof. It is a calculation, we know that deg(F ′) = 2n − r to calculate g∗(C ′), also
we know that on C ∩ U and C ′ ∩ U we have the bijection so the component with
the multiplicities will cancel themselves. The only part left to calculate is that
on C, P is the only multiple point, of C on the fundamental lines, and on C ′ we
have 3 ordinary multiple points (which won’t appear because if P is ordinary, then
rP (rP−1)

2 = 0), and then the other multiple points of L.
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Now to conclude, define a quadratic transformation.

Definition 32 (Quadratic Transformation). If T is any projective change of coor-
dinates, Q ○ T is called a quadratic transformation, if C is a curve, (CT )′ is a
quadratic transformation of F . If CT is in excellent position and T (0,0,1) = P , we
say that the quadratic transformation is centered at P .

Theorem 13. By a finite sequence of quadratic transformation, any projective
plane curve may be transformed into a curve with only ordinary multiple points for
singularities.

Proof. Observe that when applying a quadratic transformation centered at a non
ordinary multiple point, we don’t add any multiple point outside of the exceptional
lines, P is sent to an ordinary multiple point, and we get two other multiple points.
What is left to see is if there are new multiple points on L.

Note that g∗(C) is a nonnegative integer for all curves C, and using previous
notations, by our last result we get that g∗(C) = g∗(C ′) if and only if there are
no new non-ordinary multiple points after the transformation (because ordinary
multiple points do not appear in g∗), else ∑si=1

ri(ri−1)
2 > 0, so g∗(C ′) < g∗(C).

So g∗(C) ≥ g∗(C ′) ≥ g∗(C ′′) ≥ ⋯, we have a nonincreasing sequence of nonnegative
integers, so it will stabilize itself after at most g∗(C) steps. So applying the standard
quadratic transformation over and over again, we make sure that no new non-
ordinary multiple points appear. Applying this process for all the non-ordinary
multiple points we end up with a curve with only ordinary multiple points.

Let’s sum up our progress now.

Corollary 7. Any projective curve is birational to a projective plane curve with
only ordinary multiple points.

Proof. We saw in last part with theorem 10 that any projective curve is birational
to a projective plane curve, and such a curve is birational to a curve with only
ordinary multiple points through a sequence of quadratic transformations as stated
in the previous theorem.

Example 5. Recall our new curve in P2(C) is Z((X +Y )(X −Y )3Z2+X6+Y 6) so
our singularity is already at (0,0,1), and (1,0,0) and (0,1,0) are not on the curve
so the fundamental lines are not tangent. The multiplicity of (0,0,1) is 4. Let’s see
what we get after the standard quadratic transformation.

FQ(X,Y,Z) = (Y Z +XZ)(Y Z −XZ)3(XY )2 + (Y Z)6 + (XZ)6

= Z4 (−X6Y 2 + 2X5Y 3 − 2X3Y 5 +X2Y 6 +Z2(X6 + Y 6))

So we get F ′(X,Y,Z) = −X6Y 2 + 2X5Y 3 − 2X3Y 5 + X2Y 6 + Z2(X6 + Y 6) a
polynomial of degree 2n − r = 2 × 6 − 4 = 8.

Sadly when we try to plot our new curve as we did before, we are now limited
because the tangents at 0 have complex coefficients and so it becomes hard to draw.
And even computerwise, our curve has a high degree now, so it is hard to be precise
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around 0. Here is the plot when going to R2, we calculated 100′000′000 points and
still got an average result.

Figure 5: Result of the quadratic transformation

6.4 Blowing up a point in the affine plane

When working with a curve Y ⊂ A2, er can always translate the space so a singular
point goes to 0, hence we only need to define a blowup at 0. Consider X ⊆ P1 ×A2

defined by
X = {((u, v), (x, y)) ∈ P1 ×A2∣vx = uy}

Define the map ϕ as the projection of X ⊆ P1 ×A2 on A2.

X P1 ×A2

A2

ϕ
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From Propositions 15 and 16 we can see P1 ×A2 as a quasi-projective variety.

Note that ϕ is an isomorphism from X ∖ ϕ−1(0) to A2 ∖ 0. Indeed we have the
inverse morphism ψ ∶ A2 → P1×A2 by ψ(x, y) = ((x, y), (x, y)). It is straightforward
to see that its image is in X.

Also ϕ−1(0) = P1 × {0}.

Definition 33 (Blowup of a variety at a point). X is called the blowing up
of A2 at 0. If C ⊆ A2 is any curve, then we define the blowup of C at 0 by
C̃ = ϕ−1(C ∖ 0) the closure of ϕ−1(C ∖ 0) in P1 ×A2.

Let’s remark a few properties about blowing up :
Suppose L is a line of A2 going through 0, we can write the equation of L in

the form { x = at
y = bt for some a, b ∈ k. Then if we take L′ = ϕ−1(L ∖ 0), it is given by

the equations x = at, yi = bt, u = at, v = bt and t ∈ k ∖ 0, since u, v are homogeneous
coordinates we can just write u = a, v = b. So L′ is determined by those equations
hence L′ meets P1 ×{0} = ϕ−1(0) at only one point, (a, b). Conversely we can show
that every point of P1×{0} corresponds to a line in A2 going through zero, so those
two sets are in 1 − 1 correspondence.

Proposition 24. X is irreducible.

Proof. X = X ∖ ϕ−1(0) ∪ ϕ−1(0) is irreducible because the first part is isomorphic
to A2 ∖ 0 so it is irreducible and for the second part, every point of ϕ−1(0) is in the
closure of some subset (the lines we talked about) of X ∖ ϕ−1(0). We just proved
that X ∖ ϕ−1(0) is dense in X so X =X ∖ ϕ−1(0) is irreducible.

Corollary 8. The blowup curve at 0 of an irreducible curve is an irreducible curve
and they are birational.

Proof. Let C be an irreducible affine curve. ϕ induces an isomorphism from C̃ ∖
ϕ−1(0) to C ∖ 0 so it represents a birational map. Also ϕ−1(C ∖ 0) is irreducible
because C is, so its closure, C̃ is irreducible.

For the rest of this part, consider an affine plane curve C = Z(F ), with F =
Fr + Fr+1 +⋯ + Fn with Fi a form of degree i in k[x, y], r = m0,C , n = deg(C). Via
a change of coordinates we can always insure that Z(x) is not a tangent to C, this
way C̃ ⊂ U0 × A2 ≅ A × A2 ≅ A3. So now we see C̃ as in A3, X is identified with
{(x, y, z) ∶ y = zx} and ϕ−1(0) is identified with {(0,0, z) ∶ z ∈ k}

Proposition 25. C̃ = Z(F̃ , y − zx) where F̃ (x, y, z) = Fr(1, z) + xFr+1(1, z) + ⋯ +
xn−rFn(1, z) ∈ k[x, y, z].

Proof. The equation y−xz comes from the blowup, when we identify U0 with A1 by
(1, z) ↦ z, so we see ((1, z), (x, y)) as (x, y, z). Then the blowup equation vx = uy
becomes y = zx. For the second equation, we substitute this blowup equation in F ,
we get F (x, zx) = xrFr(1, z) + xr+1Fr+1(1, z) + ⋯ + xnFn(1, z) = xrF̃ (x, y, z). F̃ is
irreducible, suppose it wasn’t then F̃ = GH then F (x, y) = xrG (x,1, yx)H (x,1, yx)
so F would not be irreducible. We do not take xr as an equation because if x = 0
then either y = 0 or z = 0, if y = 0 then (x, y) = 0 but we want to have ϕ−1(C ∖{0}),
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so we do not want the preimage of 0, so z = 0, and so F̃ (x, y, z) = 0 so we have
this point already. So Z(F̃ , y − zx) is an irreducible curve and by construction
Z(F̃ , y − zx) ⊆ C̃ so we have the desired result.

Now suppose 0 is an ordinary multiple point on C, so C has r distinct tangents
at 0, write Fr(x, y) = ∏r

i=1(y − αix) where Z(y − αix) are the distinct tangents at
0 thanks to proposition 14 (we chose Z(x) not to be a tangent so we want write it
like this). Write π ∶ C̃ Ð→ C the projection on A2 defined by π(x, y, z) = (x, y) then
because ϕ is an isomorphism when restricted to C∖0 the multiplicities of the points
outside 0 are unchanged. We want to check that this blowup solves singularities so
we need to check that the points on π−1(0) are nonsingular.

Proposition 26. π−1(0) = {P1,⋯, Pr} where Pi = (0,0, αi) and each Pi is a simple
point on C̃.

Proof.

π−1(0) = C̃ ∩ ϕ−1(0) = {(0,0, z) ∶ F̃ (0,0, z)
= 0 and 0 − z0} = {(0,0, z) ∶ F̃ (0,0, z) = 0}
= {(0,0, z) ∶ Fr(1, z) = 0}

= {(0,0, z) ∶
r

∏
i=1

(z − αi) = 0}

= {(0,0, z) ∶ z ∈ {α1,⋯, αr}}
= {P1,⋯, Pr}.

Then by properties of the intersection number of Theorem 11 number we have that
for all i we get I(Pi, Z(z −αi) ∩X) = 1 and if j ≠ i we have I(Pi, Z(z −αj) ∩X) = 0
so

1 = I(Pi, Z(z − αi) ∩X) =
r

∑
l=1
I(Pi, Z(z − αj) ∩X)

= I(Pi, Z(
r

∏
l=1

(z − αl)) ∩X)

= I(Pi, Z(Fr) ∩X)
= I(Pi, Z(F̃ ) ∩X)
≥ mPi,C̃

mPi,X
²

=1

≥ mPi,C̃
.

And since Pi ∈ C̃ by previous calculation, then mPi,F̃
≥ 1 so mPi,F̃

= 1, what we
wanted.

Remark 24. By previous reasonning, if we forget the hypothesis that 0 is an
ordinary multiple point then we can write Fr(x, y) = ∏s

i=1(y − αix)ri and we get
1 ≤ mPi,C̃

≤ ri.
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Remark 25. Define א ∶ A2 → X by ,x)א y) = (x, yx, y), it is an isomorphism from
A2 to X. Take ב ∶ X → A2 the projection ,x)ב y, z) = (x, y), and ג = ב ○ ,א so
,x)ג y) = (x,xy). Then define C ′ = C)1−ג ∖ 0), the exact same reasonning gives us
that C ′ = Z(F ′) where F ′(x, y) = F̃ (x,1, y). Define f ∶ C ′ → C the restriction of
ג to C ′, it is our birational map, so the two curves are birational, and f−1(0) =
{Q1,⋯,Qr} with Qi = (0, αi) and all those points are simple points on C ′. This
way also solves the singularity at 0 and we end up with a nonsingular plane curve
if 0 was our only singularity and it is ordinary.

We will use this way of doing when we will blow up the projective plane.

Example 6. Since our example got less graphic, we will give the solution and a
plot in R3 but we’ll go fast on the calculations, we’ll do more details in the next
example that is visualized better.

We send our curve to A3 by going in U2 so we get the equation F ′(X,Y ) =
−X6Y 2 + 2X5Y 3 − 2X3Y 5 +X2Y 6 + (X6 + Y 6), plugging the blowing up equation
Y = ZX we get our curve Z(Y −ZX,1+Z6 −X2(Z2 + 2Z3 − 2Z5 +Z6)). This curve
is represented as follows.

Figure 6: Result of the blowup

We still have the problem of being limited to plotting curves in R3 so the fact
that it is nonsingular is not easily seen.

If we do the second method, the one of remark 25 and give a plane curve, then
using the formula, we get F ′(X,Y ) = 1+Y 6 −X2(Y 2 +2Y 3 −2Y 5 +Y 6) which is the
following.
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Figure 7: Result of the blowup in the plane

Example 7. Let’s give a more graphic example where we see how the blowup
works.

In R2 take f = x6 + y6 − xy, Y = Z(f) from the second section. We already saw
that it is singular at 0.

Consider all the lines in A2 that go through zero, so simply P1. Each nonzero
point in our variety will belong to only one such line as we checked before.

Figure 8: Lines through 0 in A2

X = {((u, v), (x, y))∣vx = uy}. If u ≠ 0 we set u = 1 and get the equation y = vx
which is just taking for each point in the "b" axis the line y = vx. If v ≠ 0 we set
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v = 1 and get uy = x. Graphically we are now in a 3-dimensional space :

We have an inclusion of X in P1 × A2 and also a natural projection of X into
A2 where we only take the second component, call it ϕ.

We’re intersted in the image of our curve under ϕ−1. This function is defined
everywhere but in 0. Indeed, each point in A2 only belongs to one line that goes
through zero, except zero that belongs to all of them. So if P ≠ 0, then ϕ−1(P )
consists of only one point, so ϕ is an isomorphism from X ∖ ϕ−1(0) to A2 ∖ 0.
Moreover, 0 being in all lines, ϕ−1(0) ≅ P1.

For our curve we want to find Y ′ = ϕ−1(Y ∖ {0}).
Suppose ((u, v), (x, y)) ∈ Y ′, then if (x, y) ≠ 0, we have ϕ((u, v), (x, y)) = (x, y) ∈

Y ∖ 0. So we must get x6 + y6 − xy = 0 (it still holds at (x, y) = 0 so we need not
exclude 0 here). We also have the blowup equation, so xv = yu. P1 being covered
by the sets u ≠ 0 and v ≠ 0, we consider both cases separately.

If u ≠ 0 we can set it to 1 and get the equation y = xv. Hence we get the system

{ x6 + y6 − xy = 0
y = xv

By substitution we get x6 + u6x6 − ux2 = 0 so x2(x4(1 + u6) − u) = 0. If x = 0
then we get all the points where x = y = 0, which will be the whole space P1 (except
[0,1] because we supposed u ≠ 0) because that is just computing ϕ−1(0). If x ≠ 0
we get the equation x4(1 + u6) − u = 0. So excluding ϕ−1(0) what we’re looking for
is the curve in the intersection of the surfaces y = xv and x4(1 + u6) − u = 0.

If v ≠ 0 the only point we did not compute is [u, v] = [0,1] so that gives us x = 0,
and the first equation gives us y = 0 so we got the last point of ϕ−1(0) we were
missing before.

So we got :

ϕ−1(Y ) = (P1 × 0) ∪ {((u, v), (x, y))∣y = xv and x4(1 + u6) − u = 0}.
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Figure 9: Result of the blowup

We don’t want all of ϕ−1(0) (the blue part) in the blowup of the curve though,
hence we get

Ỹ = {((u, v), (x, y))∣y = xv and x4(1 + u6) − u = 0}

Using the second point of view via the function ג and remark 25, we get Y ′ =
Z(f ′) with f ′(x, y) = x5(y6 + 1) − y which gives us the following nonsingular curve.

Figure 10: Result of the blowup in the affine plane

6.5 Blowing up the projective plane

Let P1,⋯, Pt ∈ P2 distinct points. We will define the blowing up of a projective plane
curve C at those points (these points will be the singular points of our curve). Note
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(x0, x1, x2) the homogeneous coordinates, we can make a change of coordinates to
insure that P1,⋯, Pt ∈ U2 so we can write Pi = (ai0, ai1,1).

Let U = P2 ∖ {P1,⋯, Pt} an open set and define the functions fi ∶ U → P1 by
fi(x0, x1, x2) = (x0 − ai0x2, x1 − ai1x2).

Now take f ∶ U → P1 ×⋯ × P1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t times

defined by f(P ) = (f1(P ),⋯, ft(P )). Define

G ⊂ U × P1 ×⋯ × P1 the graph of f , that is G = {(P, f(P )) ∶ P ∈ U}.
We note (yi0, yi1) the homogeneous coordinates for the ith copy of P1.

Definition 34 (Blowing up of P2). We define the blowing up of P2 at the points
P1,⋯, Pt by

B = Z ({yi1(x1 − ai1x2) − yi0(x0 − ai0x2) ∶ i = 1,⋯, t})

Call π ∶ B → P2 the projection from P2 × P1 × ⋯ × P1 to P2 restricted to B and
Ei = π−1(Pi).

Let’s list a few properties of this blowup that will show us how similar it is to
the affine plane blowup.

Proposition 27. We have the following properties :

• Ei = {Pi} × {f1(Pi)} ×⋯ × {fi−1(Pi)} × P1 × {fi+1(Pi)} ×⋯ × {ft(Pi)}.

• B ∖⋃ti=1Ei = B ∩ (U × P1 ×⋯ × P1) = G.

Proof. The first point is just checking that {Pi, (y10, y11),⋯, (yt0, y + t1)} ∈ B then
yi0, yi1 can take any value and if j ≠ i then (yj0, yj1) = fj(Pi). Those points are well
defined because all Pi’s are distinct and fi is defined everywhere in P2 but in Pi.

Let j ∈ {1,⋯, t}, and suppose (yj0, yj1) is in the jth copy of P1 in B, then by
definition we have yi1(ai1 − aj1) − yj0(ai0 − aj0) = 0. So if i = j then yi0 and yi1 can
take any value. Else up to multiplying yj0 and yj1 by the same scalar we get that
yj0 = (ai1 − aj1) and yj1 = (ai0 − aj0), so it corresponds to only one point in P1,
which is (ai1 − aj1, ai0 − aj0) = fi(aj0, aj1,1) = fj(Pi), what we wanted.

The second part is a direct consequence of the first one.

We’ve just shown that the method if very similar to what we did in the affine
case, we replace all our points by lines (we’ve shown that Ei ≅ P1), which is exactly
what we had when we did the blow up at 0, this point was sent to P1. The second
part tells us that π restrict to an isomorphism of B ∖⋃ti=1Ei to U , so outside those
lines, the projection is an isomorphism.

So now we want to study π in a neighbourhood of points in the E′
is, let’s see

how the blowup behaves under change of coordinates so we will be able to focus on
just one particular point.

If T is a projective change of coordinates of P2 such that T (Pi) = P ′
i , define

f ′i ∶ P2 − {P ′
1,⋯, P ′

t} → P1 as before, but now using the coordinates of the P ′
i .

Proposition 28. There exist projective changes of coordinates Ti such that Ti○fi =
f ′i ○ T for all i.
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Proof. Take some i ∈ {1,⋯, t} For the sake of simplicity and without loss of gener-
ality, take Pi = (0,0,1) and P ′

i = (u, v,1) so we can write T (X,Y,Z) = (aX + bY +
uZ, cX + dY + vZ, eX + fY + Z), this is just imposing T (Pi) = P ′

i . Define Ti by
Ti(X,Y ) = ((a − ue)X + (b − uf)Y, (c − ve)X + (d − vf)Y ), it is clearly a change of
coordinates of P1.

Ti ○ fi(X,Y,Z) = Ti(X,Y )
= ((a − ue)X + (b − uf)Y, (c − ve)X + (d − vf)Y )

and

f ′i ○ T (X,Y,Z) = f ′i(aX + bY + uZ, cX + dY + vZ, eX + fY +Z)
= (aX + bY + uZ − u(eX + fY +Z), cX + dY + vZ − v(eX + fY +Z))
= ((a − ue)X + (b − uf)Y, (c − ve)X + (d − vf)Y )

so Ti ○ fi = f ′i ○ T what we wanted.
We just need to apply the same reasoning for the other points and by translations

to (0,0,1) we’ll have well defined Ti for all i.

Proposition 29. Conversely if Ti is a projective change of coordinates of P1 for
some i then there is a projective change of coordinates T of P2 such that T (Pi) = Pi
and fi ○ T = Ti ○ fi.

Proof. Again suppose Pi = (0,0,1), write Ti(X,Y ) = (aX + bY, cX + dY ). Take
T (X,Y,Z) = (aX + bY, cX + dY,Z). Then

fi ○ T (X,Y,Z) = fi(aX + bY, cX + dY,Z)
= (aX + bY, cX + dY )

and

Ti ○ fi(X,Y,Z) = Ti(X,Y )
= (aX + bY, cX + dY )

so fi ○ T = Ti ○ fi, what we wanted.

So if we want to study π in a neighborhood of a point Q of some Ei, it is enough
to check with E1. Thanks to our last 2 propositions, we may assume P1 = (0,0,1)
and also Q will be corresponding to some (λ,1), λ ∈ k.

Let ϕ2 ∶ A2 → U2 the usual isomorphism ϕ2(x, y) = (x, y,1). Let V = U2 ∖
{P2,⋯, Pt} and W = ϕ−1

2 (V ). To make the link with our previous affine blowup,
consider the morphism ג ∶ A2 → A2 as in the last section, that is ,x)ג y) = (x,xy),
call W ′ = W)1−ג ).

Now define ϕ ∶W ′ → P2×P1×⋯×P1 by ϕ(x, y) = (x,xy,1)×(y,1)×f2(x,xy,1)×
⋯ × ft(x,xy,1) so ϕ(x,λ) = (x,xλ,1) × Q × f2(x,xλ,1) × ⋯ × ft(x,xλ,1) . It is
straightforward to check that π ○ ϕ = ϕ2 ○ .ג Because we defined everything with
morphisms, ϕ is a morphism, so let V ′ = ϕ(W ′) is a neighborhood of Q on B. We
are now ready to prove the final statements.
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Proposition 30. B is a variety and locally, the map π is just like the map ג of
remark 25.

Proof. By construction of . If S is any closed set in P2×P1×⋯×P1 that contains G,
since ϕ is a morphism, ϕ−1(S) is closed in W ′ and contains ϕ−1(G) =W ′ ∖ Z(X).
Why is that last equality ? If x ≠ 0 then f1(x,xy,1) = (x,xy) = (1, y) so ϕ(x, y) =
(x,xy,1) × f1(x,xy,1) × f2(x,xy,1) × ⋯ × ft(x,xy,1) ∈ G, conversely if x = 0 then
f1 is not defined at (0,0,1) so ϕ(x, y) ∉ G. So we deduce that Q ∈ S but since we
took Q as an arbitrary point of B ∖G, we have S ⊂ B. So B is the closure of G in
P2 × P1 ×⋯ × P1 so it is a variety.

For the second part, note that we have a morphism from P2 ×⋯×P1 ∖Z(x2y11)
to A2 that sends (x0, x1, x2) × (y10, yy1) × ⋯ × (yt0, yt1) to (x0

x2
, y10
y11

) which is well
defined and it is the inverse of ϕ when restricted to V ′. Then by calculations we
check that the following diagram commutes :

A2 W ′ V ′ B

A2 W V P2

ϕ

≅

ϕ2

≅
ג π

⊃

⊃

⊂

⊂

In other words, in the neighborhood V ′ of Q, π acts just as ג when we associate
W ′ with V ′ and W with V .

Now let C be an irreducible curve in P2, let C0 = C ∩U , C ′
0 = π−1(C0) ⊂ G.

Definition 35 (Blowup of a projective plane curve). Define C̃ = π−1(C ∩U) =
π−1(C ∖ {P1,⋯, Pt}), it is called the blowing up of the curve C at the points
P1,⋯, Pt.

Proposition 31. If P1,⋯, Pt are the only singular points of C and they are all
ordinary then the blowing up curve of C at P1,⋯, Pt is nonsingular and C and C̃.

Proof. If we take f ∶ C̃ → C the restriction of π, then it is an isomorphism when
restricted from π−1(C ∩U) to C ∩U , so f is a birational map.

By proposition 27, as we just said before, f is an isomorphism outside of the
lines E′

is and since we took P1,⋯, Pt to be all the singularities, outside of the lines
we do not have more singularities. On those lines, by proposition 30 we saw we can
find a neighborhood of any point of those lines, and on this neighborhood we can
identify the blowup curve with the blowing up of an affine curve because on this
neighborhood f corresponds to the f we defined in the last remark on the last, and
there we proved that the blowing up curve was nonsingular, so by isomorphism we
deduce that C̃ is nonsingular at all points in those Ei’s. So C̃ is nonsingular.

So we finally give our desired result.

Theorem 14. Let C be any projective curve, then it is birational to some nonsin-
gular projective curve C ′.
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Proof. Apply all the steps we did before. Find a plane curve birational with C by
10, then by a finite sequence of quadratic transformations from theorem 13 we find
a plane curve birational with C with only ordinary singularities, and then we blow
up this curve at the singularities and get a birational nonsingular curve by 31.

7 Going further.
In this section we will state briefly few theorems and problems to get some further
results.

7.1 Finding some unicity

Once we have our desired nonsingular curve, one can wonder if there is some kind
of unicity of the blowing up curve.

Actually we have the following :

Theorem 15. Let C be a projective curve, and C ′ a nonsingular projective curve,
with f a birational map from C ′ to C. Then if f ′ ∶ C ′′ → C is another such birational
map with C ′′ a nonsingular projective curve, then there is a unique isomorphism
g ∶ C ′ → C ′′ such that f ′ ○ g = f .

Proof. The proof is simple once we have proven the following fact : If C is a
projective curve, C ′ a nonsingular curve, then there is a natural bijection between
dominant morphisms f ∶ C ′ → C and homomorphisms f̃ ∶ f(C) → k(C ′).

But in our theorem, since all function fields are the same, we are dealing with
birational curves, we cam use the correspondence to find such a g. One can find
the proof of the claim in [1] Chapter 7 Theorem 1, Corollary 2.

7.2 Blowing up higher dimension spaces

Consider X ⊆ Pn−1 ×An defined by

X = {((x1,⋯, xn), (y1,⋯, yn))∣xiyj = xjyi∀i, j ∈ {1,⋯, n}}

And we define the map ϕ by the projection of X ⊆ Pn−1 ×An on An.

X Pn−1 ×An

An

ϕ

Note that ϕ is an isomorphism from X ∖ ϕ−1(0) to An ∖ 0. Indeed we have the
inverse morphism ψ ∶ An → Pn−1 ×An by ψ(x1,⋯, xn) = ((x1,⋯, xn), (x1,⋯, xn)). It
is straightforward to see that its image is in X.

and ϕ−1(0) = Pn−1 × 0. The blowup of Y at 0 is defined by ϕ−1(Y ∖ 0). In
particular, the blowup of An is X.
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This way we can talk about blowing up higher dimensional spaces, and if we keep
working over an algebraically closed field of characteristic 0 we have the following
theorem.

Theorem 16 (Hironaka’s Theorem). Let Y be any variety over a field of charac-
teristic 0. Then there exists a nonsingular variety Y ′ and a regular map ϕ ∶ Y ′ → Y
that is a birational equivalence.

This corresponds to the "main theorem" in Hironaka’s publication [2] p.132

7.3 Working over fields with positive characteristics

Hironaka’s Theorem is still an open problem if we work over a field of characteristic
p > 0. Similar versions have only been proved for curves and surfaces (varieties of
dimension 2).

If we stick with curves, starting with a curve C, we could find a birational plane
curve only using the fact that we are working over an algebraically closed, we needed
to have a perfect field, so if we treat the algebraically closed case, we do not need
to have a characteristic 0 field and it still works. Then during the blowup process,
we did not use the characteristic 0 as well. The only moment we used it is when we
said we can send any curve to a curve in excellent position (proposition 19). When
going through the same proof, now it is possible to encounter points that we call
terrible.

Let’s work over k an algebraically closed field with char(k) = p > 0

Definition 36 (Terrible Points). Let C = Z(F ) be an irreducible plane curve of
degree n, and P ∈ P2 with r = mP,C ≥ 0. P is a terrible point if there are an
infinite number of lines L through P which intersect C in fewer than n − r distinct
points.

If we follow the steps of proposition 19, we see that to have such a problem,
we must have p∣n − r By considerations of the dual curve done in [1] p.220 one can
prove that for any plane curve C there can be only one terrible point. The rest
of the proof for the excellent position holds, since we have much more freedom to
choose the lines intersecting C in n distinct points. So our only problem is if we
have to perform a quadratic transformation centered at this terrible point.

In that case we must consider doing a quadratic transform of C centered at
some other point Q of multiplicity m with m = 0 or 1 (we can always find such
points, m = 0 corresponds to points not on the curve, and m = 1 corresponds to
nonsingular points). If C ′ is the quadratic transform then take n′ = deg(C ′) = 2n−m.
So n′ − r ≡ 2n −m − r ≡ (n −m) + (n − r) ≡ n −m( mod p) since p divides n − r. So
when choosing your point, take m so that p does not divide n−m hence p does not
divide n′ − r, so the image of P , P ′ is not a terrible point anymore so we can do
quadratic transformations centered at P ′.

That proves the theorem 14 in the case of a field with positive characteristic.
But if we want to go to higher dimensions as in Hironaka’s Theorem, this is

believed to still be possible, but it is still an open problem. Only the case of
surfaces and curves have been proved in fields of positive characteristics.
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8 Conclusion
I hope this paper gave a clear enough view on the basic algebraic geometry and
an example of its applications through the blowing up of curves. Hopefully the
examples we carried through we enlightening and gave a visual aspect to some
abstract notions. The point of view we adopted is one of many in the topics of
resolution of singularities. This is a still active subject and I hope we showed in the
last section that there are still problems to be solved in this particular topic.
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