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1 Introduction
"Chaque objet abstrait est devenu concret par l’usage [...] un objet concret est un

objet abstrait auquel on a fini par s’habituer." Laurent Schwartz

Algebraic geometry covers a lot of topics, and takes some time to get used to.
However it is a very powerful tool in mathematics, for geometry but also arithmetic
and commutative algebra. In order to have a first glance at this subject we will
work on a conjecture, try to bring basic definitions to understand it and study a
few simple cases.

This conjecture is about density of a kind of point in projective spaces. We’ll see
that simple examples of such points characterize the integers and give a motivation
in section 2.

In section 3 we will just state the conjecture, then in the 4th we will take a
look at a special dimension two space over the rational numbers and, starting with
a special case, we will try to broaden our example towards a construction of a
strategy. Then we’ll prove the general case for this space.

After that we’ll move to a similar space but of dimension 3. Throughout section
5 we will try to see problems that arise and what we can adapt from our previous
strategy and the results we need to prove in order to make it work. Once this is
clear, we will establish a new strategy and proceed to the proof.

Eventually we’ll see in section 6 that the proof we constructed can be adapted
to those spaces for any dimension, so we will have the general case for all such
projective spaces over rational numbers.

2 Motivation
Let’s take a very simple example. Take r ∈ Q and write r = a

b , gcd(a, b) = 1. Then
r ∈ Z if and only if b = 1, so r is an integer if and only if p does not divide b for
every prime p.

We can embed Q in P1(Q) by r = a
b ↔ [a ∶ b] = [r ∶ 1], hence another way of

writing the situation is : an integer corresponds to a point [a ∶ b] ∈ P1(Q) such
that [a ∶ b] /≡ [1 ∶ 0] mod p for all prime p. We want to broaden the problem, first
changing [1 ∶ 0] to other points and see what points we end up describing, and we
also want to see what happens in higher dimensions so take the new problem : for
some subsetD ⊆ Pn(Q) find points P ∈ Pn(Q) such that P ∉D mod p for all prime p.

This motivates the following definition :

Definition 1. Let D ⊆ Pn(Q), let P ∈ Pn(Q) we say P is D−integral if

P ∉D mod p for all prime p.

Notation. Whenever we take a point P ∈ Pn(Q), if we don’t specify otherwise, we
write it with integer coprime coefficients.

Example : In P2(Q), find points [a ∶ b ∶ c] /≡ [0 ∶ 0 ∶ 1] mod p. Take such a point
[a ∶ b ∶ c] ∈ P2(Q), we can write it so that a, b, c ∈ Z with gcd(a, b, c) = 1. Let p be a
prime, if p divides a then p cannot divide b because otherwise [a ∶ b ∶ c] ≡ [0 ∶ 0 ∶ c] ≡
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[0 ∶ 0 ∶ 1] mod p, likewise prime divisor of b cannot divide a, hence gcd(a, b) = 1.
Conversely if gcd(a, b) = 1 then if a ≡ 0 mod p for some prime p then b /≡ 0 mod p so
[a ∶ b ∶ c] /≡ [0 ∶ 0 ∶ 1] mod p. So the [0 ∶ 0 ∶ 1]−integral points are the points [a ∶ b ∶ c]
with gcd(a, b) = 1.

In this last example we have an interesting property, which is that the integral
points we get are Zariski dense in P ∈ P2(Q). By Zariski dense we mean :

Definition 2 (Zariski topology, Zariski density). In a projective space X we define
the Zariski topology by taking the algebraic subsets as the closed sets.

Hence a set S ⊆ X is not Zariski dense if it is contained in some proper
algebraic subvariety of X.

We will prove later that the [0 ∶ 0 ∶ 1]−integral points are Zariski dense in P2(Q),
but first we will state the conjecture.

3 Conjecture
Conjecture. Let X be an n−dimensional variety with n ≥ 2 and let D ⊂ X with
dimD ≤ n − 2. If the rational points on X are Zariski dense, then the D−integral
points on X are also potentially Zariski dense.

Definition 3. If X is a projective variety over a field F , we say D ⊂ X is poten-
tially Zariski dense in X if there is a finite field extension K/F such that D is
Zariski dense in X over the field K.

Here we will only study the cases of the projective varieties X = Pn(Q) so the
rational points are automatically dense in X.

4 2-dimensional case.

4.1 [0 ∶ 0 ∶ 1]-integral points

We go back to our previous example. We are in P2(Q) and we know that the
[0 ∶ 0 ∶ 1]−integral points are the points [a ∶ b ∶ c] with gcd(a, b) = 1. Let N be the
set of those points. Suppose, for the sake of contradiction, that N ⊆ C for some
algebraic curve C. For all α ∈ Z define the line

Vα ∶ z − αy = 0.

Easily the elements of {Vα ∶ α ∈ Z} are distinct lines, and for a line Vα, we have
{[x ∶ 1 ∶ α] ∶ x ∈ N} ∈ Vα∩N, so∞ = ∣Vα∩N ∣ ≤ ∣Vα∩C ∣ hence ∣Vα∩C ∣ =∞ for all α ∈ Z.

To conclude, we need :

Theorem 1 (Bezout theorem). Let F and G be projective plane curves of degree
m and n respectively. Assume F and G have no common component. Then F ∩G
has mn points, counting multiplicity.
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For a proof, see [1, 12.31].
Then Vα is a component of C for all α ∈ Z, so C has an infinite number of

components, which is absurd ☇ So the [0 ∶ 0 ∶ 1]−integral points are Zariski dense
over P2(Q) , as we wanted.

4.2 [α ∶ β ∶ γ]-integral points

Let [α ∶ β ∶ γ] ∈ P2(Q), α,β, γ ∈ Z, gcd(α,β, γ) = 1. We want to use the previous
fact to see that [α ∶ β ∶ γ]−integral points are Zariski dense. A way to do that is to
find an integer matrix with determinant one, say P , such that

P [α ∶ β ∶ γ] = [0 ∶ 0 ∶ 1].

Such a P gives us a new basis and sends [α ∶ β ∶ γ] to [0 ∶ 0 ∶ 1]. If we take the
lines we used in the previous part and then go back to our original basis, we’ll get
an infinite number of distinct lines that will help us conclude thanks to Bezout’s
Theorem as before. The determinant one condition is to ensure that P−1 has integer
entries, which will be useful for the general case.

The only thing we really need to prove is the existence of such a matrix. This
will be a key argument in our general proof.

4.3 Finding a special kind of matrix

Now let’s focus on finding the previously described matrix P . It is actually easier
to look for P −1; we will state its existence as a theorem.

Theorem 2. Given α,β, γ ∈ Z with gcd(α,β, γ) = 1 there exists P ∈ GLn(Z) such

that P
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
=
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
and ∣det(P )∣ = 1.

Note that by GL3(Z) we mean the group of invertible 3×3 matrices with integer
entries. The inverse of a matrix with integer entries in general need not have integer
entries, but it is the case if and only if its determinant is ±1, hence the condition
∣det(P )∣ = 1.

As we’ll see later, we don’t really need to know the matrix, we just need to know
it exists. Finding one explicitly can be tricky, so we’ll first give a nonconstructive
proof before trying to actually build one.

4.3.1 Nonconstructive proof

We start with our vector v ∶=
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠

∈ Z3. Consider S ∶= span(v). It is a

Z−submodule of Z3. Suppose we proved that Z3/S ≅ Z2. We can take {( 1
0 ) ,( 0

1 )}

a basis for Z2, then there are v1, v2 ∈ Z3 such that {v1+S, v2+S} is a basis for Z3/S.
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It follows from the construction that {v, v1, v2} is a basis for Z3 as a free Z-module.
So we can write :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e1 = (1,0,0) = a11v1 + a21v2 + a31v
e2 = (0,1,0) = a12v1 + a22v2 + a32v
e3 = (0,0,1) = a13v1 + a23v2 + a33v

So if N = (aij)3
i,j=1, it has integer coefficients and Nv1 = e1, Nv2 = e2, Nv3 = e3, and

M = N−1 = (v1 v2 v), so Pe3 = v, what we wanted, P is invertible, its inverse, N ,
has integer coefficients, so det(P ) = ±1.

Why do we have Z3/S ≅ Z2 ? S has rank one and the rank of Z3 is 3. Then
Z3/S is a Z−module of rank 2 so the only way Z3/S could fail to be isomorphic to
Z2 is if it contains some torsion submodule.

If it weren’t torsion free, there would be m =
⎛
⎜
⎝

a
b
c

⎞
⎟
⎠
∉ S and k ∈ Z, k ≠ 0 such

that km ∈ S, so kP = λv = km, i.e.

⎛
⎜
⎝

ka
kb
kc

⎞
⎟
⎠
=
⎛
⎜
⎝

λα
λβ
λγ

⎞
⎟
⎠
.

gcd(α,β, γ) = 1 (i.e. m + S ≠ 0 in Z3/S but km + S = 0).
So gcd(ka, kb, kc) = gcd(λα,λβ,λγ) = λ. But k divides gcd(ka, kb, kc) so k∣λ, so

⎛
⎜
⎝

a
b
c

⎞
⎟
⎠
=
⎛
⎜
⎝

λ
kα
λ
kβ
λ
kγ

⎞
⎟
⎠
= λ

k
®
∈Z

⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
∈ S

which is absurd ☇ Hence Z3/S ≅ Z2 so we win.

4.3.2 Constructive proof

Let’s return to finding the matrix P . We know we must have P
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
=
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
so

we know that the last column of P must be
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
. Let’s try to find such a P with

determinant 1.
We need to find a, b, c,ב,א, ג ∈ Z such that

RRRRRRRRRRRRRR

א a α
ב b β
ג c γ

RRRRRRRRRRRRRR
= 1 = א) ב (ג ⋅

⎛
⎜
⎝

⎛
⎜
⎝

a
b
c

⎞
⎟
⎠
∧
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠

⎞
⎟
⎠
= א) ב (ג ⋅

⎛
⎜
⎝

bγ − cβ
cα − aγ
aβ − bα

⎞
⎟
⎠
.

We will be able to find such ,ב,א ג ∈ Z if we have

gcd(bγ − cβ, cα − aγ, aβ − bα) = 1.

Pick b, c such that bγ − cβ = gcd(γ, β). Here we suppose again that γ ≠ 0 so
gcd(γ, β) ≠ 0 (if γ = 0 we can take a, b such that aβ − bα = gcd(α,β) ≠ 0). We must
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have gcd(b, c) = 1 so there are m,n ∈ Z such that mb + nc = 1. Set a = 0 and call
d ∶= gcd(bγ − cβ, cα − aγ, aβ − bα) = gcd(bγ − cβ, cα,−bα). Then d∣cα and d∣ − bα so

d∣n(cα) −m(−bα) = (mb + nc)α = α.

So d∣α but also by definition d∣(bγ − cβ) = gcd(β, γ), so d∣gcd(α,gcd(β, γ)) =
gcd(α,β, γ) = 1, hence d = gcd(bγ − cβ, cα,−bα) = 1, what we wanted.

So just pick ,ב,א ג ∈ Z such that bγ)א − cβ) + (cα)ב + (bα−)ג =
RRRRRRRRRRRRRR

א 0 α
ב b β
ג c γ

RRRRRRRRRRRRRR
= 1.

Hence define P =
⎛
⎜
⎝

א 0 α
ב b β
ג c γ

⎞
⎟
⎠
. The calculations above give us the desired result.

4.4 Strategy for the general case.

First remark that if we takeD ⊆ P2(Q) as in the conjecture, dim(D) ≤ 0 so dim(D) =
0 so D is a finite set of points.

We want to adapt our strategy to use Bezout’s theorem for the general case
in dimension 2, so given a finite set of points D, we want to build infinitely many
distinct lines each containing infinitely many D−integral points, and then we can
conclude as in the previous case. The problem is that we can’t construct those lines
as easily as before because we need to have lines containing D−integral points, and
D can have several points not only one as before, so our construction doesn’t work.

So we’ll go through the following two steps to prove our result.

• Step 1 : Prove that if a line that does not intersectD contains oneD−integral
point then it contains infinitely many of them.

• Step 2 : Prove that given any finite set of points S and a point m not in S,
there is a line containing m and not intersecting S.

• Step 3 : Find a D−integral point m.

Suppose these facts are proved. We take the point m from step 3 and thanks to
step 2 with S =D take a line containingm that does not intersect D (m ∉D because
m is D−integral). By step 1 we get infinitely many points, say {mn ∶ n ∈ N} ∈ L,
pairwise distinct and all D−integral. Then using step 2 with S =D∪ {mi} we get a
line Lmi that does not intersect D∪m (so Lmi ≠ L). So by step 1 each Lmi contains
infinitely many D−integral points and they are pairwise distinct (if mj ∈ Lmi for
i ≠ j, then Lmi = L).

So we apply the previous argument, suppose theD−integral points are contained
within a curve C, then C ∩ Lmi is infinite for each Lmi . By Bezout’s theorem all
Lmi are components of C, so C has infinitely many distinct components, which is
absurd ☇ So the D−integral points are Zariski dense.
Remark 1. Although it doesn’t appear that we need to take field extensions, we
will need it in step 3 in the case where D mod p = P2(Q) mod p for some prime
p. For example if p = 2 then P2(Q) mod p only contains 7 points, so it is possible
that D mod 2 contains all of them. In that case there are no D−integral points in
P2(Q), so we will need to take a field extension of Q to create one.
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4.4.1 Step 1

Again we’ll go back to the case of D = {[0 ∶ 0 ∶ 1]}. Now let L ∶ ax + by + cz = 0 be a
line with a, b, c ∈ Z, gcd(a, b, c) = 1 . Suppose [0 ∶ 0 ∶ 1] ∉ L and there is a D−integral
point [x0 ∶ y0 ∶ z0] ∈ L. Let’s show that we can find an infinity of D−integral points
on the line.

[0 ∶ 0 ∶ 1] ∉ L so c ≠ 0, let [x ∶ y ∶ z] ∈ L, x, y, z ∈ Z, gcd(x, y, z) = 1.

Remark 2. [x ∶ y ∶ z] is not D−integral iff there is a prime p such that p∣x and p∣y.
Suppose there is such a p. Then p∣ax + by = −zc but gcd(x, y, z) = 1 so p ∤ z so p∣c.
So if we stay on the line L, we only need to check that,

[x ∶ y ∶ z] ∉D mod p for all p dividing c.

We’re now reduced to a finite number of constraints.

We want to find other D−integral points in L of the form [x ∶ y ∶ z0]. Such a
point [x ∶ y ∶ z0] must belong to the line, so ax + by + cz0 = 0 = ax0 + by0 + cz0. Thus
a(x − x0) + b(y − y0) = 0 and hence a(x − x0) = b(y0 − y).

We have that for all k ∈ N, [x ∶ y ∶ z0] ∈ L where x = x0 + kb, y = y0 − ka, and we
have an infinity of them. That’s because

a(x0 + kb) + b(y0 − ka) + cz0 = ax0 + by0 + cz0 + kab − kab = ax0 + by0 + cz0 = 0.

Also suppose c∣k. Then if p∣c,

x ≡ x0 + kb mod p ≡ x0 mod p y ≡ y0 + kb mod p ≡ y0 mod p,

so [x ∶ y ∶ z0] ≡ [x0 ∶ y0 ∶ z0] mod p for all p∣c.
By the previous remark, [x ∶ y ∶ z0] is D−integral, so if k ∈ N , define

mk ∶= [xk ∶ yk ∶ zk] ∶= [x0 + kcb ∶ y0 − kca ∶ z0],

then Pk ∈ L and it isD−integral, so we found infinitely manyD−integral points on L.

Now we supposeD = {[α ∶ β ∶ γ]}, α,β, γ ∈ Z, gcd(α,β, γ) = 1. Let L ∶ ax+by+cz,
a, b, c ∈ Z gcd(a, b, c) = 1, a line such that [α ∶ β ∶ γ] ∉ L and [x0 ∶ y0 ∶ z0] be
D−integral and on L. Take the matrix P like in Theorem 2, and write N = P −1

and L′ the image of L under N .

Let’s write P =
⎛
⎜
⎝

א 0 α
ב i β
ג j γ

⎞
⎟
⎠
; then

[x ∶ y ∶ z] ∈ L′⇔ P [x ∶ y ∶ z] ∈ L

⇔
⎛
⎜
⎝

א 0 α
ב i β
ג j γ

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
∈ L

⇔ (aא + bב + cג)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=A

x + (ib + jc)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=B

y + (aα + bβ + cγ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=C

z = 0

⇔ Ax +By +Cz = 0
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So the equation of L′ in the new system is Ax+By +Cz = 0, and by hypothesis
C = aα + bβ + cγ ≠ 0 because [α ∶ β ∶ γ] ∉ L . Write [x1 ∶ y1 ∶ z1] = P −1[x0 ∶ y0 ∶ z0].
We follow the same scheme as previously now that our point is [0 ∶ 0 ∶ 1] in this new
basis, and we get our points [x1+kCB ∶ y1−kCA ∶ z1] = [x1 ∶ y1 ∶ z1]+kC[B ∶ −A ∶ 0].
We get the points

[x1 ∶ y1 ∶ z1] + kC[B ∶ −A ∶ 0] for all k ∈ N.

We now go back in our original basis,

[xk ∶ yk ∶ zk] = P ([x1 ∶ y1 ∶ z1] + kC[B ∶ −A ∶ 0])
= P [x1 ∶ y1 ∶ z1] + kCP [B ∶ −A ∶ 0]
= [x0 ∶ y0 ∶ z0] + kC[b ∶ −a ∶ 0].

Our points therefore have the form

[xk ∶ yk ∶ zk] = [x0 + k(aα + bβ + cγ)b ∶ y0 − k(aα + bβ + cγ)a ∶ z0].

Keep in mind that we just need points of the form [x0 +Kb ∶ y0 −Ka ∶ z0] with
(aα + bβ + cγ)∣K.

Now starting from any set D = {[αs ∶ βs ∶ γs]∣1 ≤ s ≤ n}, write L ∶ ax+by+cz = 0.
Suppose that L ∩D = ∅, and there is [x0 ∶ y0 ∶ z0] ∈ L that is D−integral. Let k ∈ N
and build

[xk ∶ yk ∶ zk] = [x0 + kNb ∶ y0 − kNa ∶ z0]

where N =∏ns=1(aαs + bβs + cγs). We can check that [xk ∶ yk ∶ zk] ∈ L and also given
any s ∈ {1,⋯, n}, aαs+bβs+cγs ≠ 0 and (aαs+bβs+cγs)∣N so by previous construction
[xk ∶ yk ∶ zk] is [αs ∶ βs ∶ γs]-integral and thus [xk ∶ yk ∶ zk] is D−integral. So we
won; we just constructed infinitely many D−integral points on L.

4.4.2 Step 2.

This step is pretty straightforward. Take a point m ∈ P2(Q) and S a finite set of
points such that m ∉ S. Given two points there is exactly one line going through
them both, so there are only finitely many lines containing m and points of S, but
there are infinitely many lines containing m so we can take one not intersecting
S.

4.4.3 Step 3.

Take any point in P2(Q)∖D which is nonempty because D is finite. Then use step
2 to take a line L ∶ ax + by + cz such that D ∩ L = ∅. If L contains a D−integral
point, call it m, and we’re done. Suppose not, we want to find a D−integral point
m = [x0 ∶ y0 ∶ z0] on L.

Suppose without loss of generality that c ≠ 0. We want to look for x0 such that
x0 /≡ αs mod p for all s ∈ {1,⋯, n}, for all p prime, but as we showed in step 1,
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we can restrict ourselves to p∣c. If we find such a x0, we take any y0, z0 such that
[x0 ∶ y0 ∶ z0] ∈ L (if c = 0 we can look for z0 /≡ γs mod p and then take any x0, z0
such that [x0 ∶ y0 ∶ z0] ∈ L).

"Simple" case: c has only one prime divisor p. If there is q ∈ N such that
q /≡ αs mod p for all s ∈ {1,⋯, n}, take x0 = q, and then y0 = 1 and z0 = −(ax0+by0)

c .
Then for all s, we cannot have p such that [x0 ∶ y0 ∶ z0] ≡ [αs ∶ βs ∶ γi] mod p because
x0 /≡ αs mod p for all s.

If there is no such q, note that the polynomial xp2 − x has an irreducible factor
in Fp[x] that doesn’t divide xp − x. Let f(x) ∈ Z[x] whose reduction mod p is that
irreducible factor, then it is irreducible in Z[x] and by Gauss lemma it is irreducible
as a polynomial of Q[x]. So we can extend the field with this polynomial and take
θ a root of f(x). So θp2 = θ and

θ ∉ N mod p.

Why ? Suppose otherwise, then there is r ∈ {1,⋯, p} such that θ ≡ r mod p so
θp ≡ rp ≡ r ≡ θ mod p, because if r ∈ {1,⋯, p}, it is a root of xp − x in Fp, so θ is a
root of xp − x in Fp, but we constructed θ to not be a root of this polynomial (our
polynomial does not divide xp − x).

So take x0 = θ, y0 = 1 and z0 = −(ax0+by0)
c .

General case : Let p a prime divisor of c, and suppose there is ωp ∈ Q such
that for all i, αi /≡ ωp mod p. We want to find x0 such that

x0 ≡ ωp mod p p is a prime divisor of N.

By the Chinese remainder theorem, we can find such a x0, then take y0 = 1 and
z0 = −(ax0+by0)

c and so for all p∣c, p prime, [x0, y0, z0] /≡ [αi ∶ βi ∶ γi] mod p because
x0 ≡ ωp /≡ αi mod p.

Suppose there is a p, prime divisor of c such that there is no ωp such that
αi /≡ ωp mod p for all i. Then take a field extension of Q that induces a nontrivial
extension of Fp. Like we did before, we know that we we can take an irreducible
polynomial in Q[x] whose root generates a nontrivial extension of Fp, so we can
extend Q with this polynomial and take one of its roots. We proved it cannot be
congruent to any n ∈ N mod p, so in particular we have an element ωp not congruent
to any αi mod p. We extend our field for every p where we have such a problem,
and then take x0 ≡ ωp mod p for every prime divisor p of c thanks to the Chinese
Remainder Theorem and conclude as before.

4.5 Extending the strategy

We just all proved the three steps so we can conclude that the conjecture is true
for X = P2(Q). However we didn’t solve the problem for 2-dimensional projective
varieties. Also during our research we saw that it was very comfortable to work
with P2(Q) so we might want to prove the conjecture for Pn(Q) with n ≥ 3 and try
to adapt the strategy we build for dimension 2. In the next part we’ll see how we
can adapt the strategy for 3-dimensional spaces.
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5 3-dimensional case
Now we work in P3(Q), what in our previous strategy fails in dimension 3 ?

Problems : The first problem we have is, even if we find infinitely many lines
with infinitely many D−integral points each, it it possible that all those lines are
contained in some 2-dimensional algebraic surface in P3(Q) so it is possible that all
our lines are contained in a subvariety. Also now we have dim(D) ≤ 1 so D need
not contain only points, it may contain some curves, and we would need to prove
that we can find lines going through some point outside of D and that does not
intersect D.

We will proceed as we did in dimension 2, using Bezout’s Theorem to conclude,
as it is true in any dimension.

5.1 Strategy for the 3 dimensional case

Let D be a finite set of points and curves, suppose the set of D-integral points in
P3(Q) is not Zariski dense. So it is contained in a 2-dimensional algebraic variety,
call it S.

We will write ND the set of all D−integral points. Here are the steps for the
strategy of our proof :

• Step 1 : Given any point, there exists a line that goes through this point
and does not intersect D.

• Step 1’ : With the same setup as step 1, we can ensure our line is not
contained in S.

• Step 2 : If L is a line such that L∩D = ∅ and L∩ND ≠ ∅ then ∣L∩ND ∣ =∞.

• Step 3 : There exists a D−integral point.

Once we prove these steps, we can proceed in the following way : We find a point
m ∈ ND by step 3; by hypothesis m ∈ S. With step 1’ we take a line L that contains
m, does not intersect D and is not contained in S. By step 2, ∣L ∩ND ∣ = ∞, but
ND ⊂ S so ∣L∩S ∣ =∞ but L is not contained in S so by Bezout theorem ∣L∩S ∣ <∞,
which is absurd ☇. So we can conclude that the D−integral points are Zariski dense
in P3(Q).

5.1.1 Step 1

Take a point P ∈ P3(Q) that is not contained in D. Let’s prove that there is a line
L such that L ∩D = ∅.

Let’s give a definition before proving that.

Definition 4 (Grassmannian). Suppose we are working over a field K; in our case
we have K = Q. Let N,M ∈ N with M < N , then the Grassmannian G(N,M) is the
set of all vector subspaces Λ ⊂ KN .

And we’ll use the following theorem :

10



Theorem 3. The Grassmanian G(N,M) carries the structure of an abstract vari-
ety. It is irreducible and rational of dimension M(N −M).

More details are available in [1, 11.13]
Consider the map

Φ ∶ ∣ D Ð→ G(4,2)
Qz→ PQ the line from P to Q.

P3(Q) corresponds to the set of lines in A4(Q) so we can see G(4,2) as the set
of lines in P3(Q).

And now consider the canonical projection maps Π1 ∶ P3(Q) ×G(4,2) → P3(Q)
and Π2 ∶ P3(Q)×G(3,1)→ G(4,2). Also take the inclusion map i ∶D → P3(Q). We
restrict Π1 and Π2 to the algebraic subset Γ ∶= {m × L ∈ P3(Q) ×G(4,2) ∶ m ∈ L}
and we get the following diagram :

Γ ⊂ P3(Q) ×G(4,2)

P3(Q) G(4,2)

D

Π2Π1

i Φ

Φ(D) corresponds to the set of lines containing P and intersecting D so it is
precisely the set of lines we do not want. We want to use our morphisms to find
all the points Q in P3(Q) such that PQ intersects D. We have dim(D) = 1 hence
dim(Φ(D)) ≤ 1. Now look at the fibers of Π2. Fix L ∈ G(4,2). Then:

Π−1
2 (L) = {(p,L) ∶ p ∈ L} so dim(Π−1

2 (L)) = dim(L) = 1.

Then dim (Π−1
2 (Φ(D))) = dim (Φ(D)) + 1 ≤ 2, so dim (Π1 (Π−1

2 (Φ(D)))) ≤ 2 < 3.
Π1 (Π−1

2 (Φ(D))) is the set of points M such that the lines PM intersects D.
We saw that Π1 (Π−1

2 (Φ(D))) ⊊ P3(Q) so take M ∈ P3(Q) ∖Π1 (Π−1
2 (Φ(D))) , and

we win.
Step 1’ : Now we want to be sure we pick a line not contained in S. We

have that dim(S) = 2, so dim (S ∪ (Π−1
2 (Φ(D)))) = 2 < 3 so we can take a point

Q ∈ P3(Q) ∖ (S ∪Π1 (Π−1
2 (Φ(D)))). Our line PQ will not be contained in the sets

of bad points so it will not intersect D, and it will contain a Q ∉ S so it is not
contained in S.

5.1.2 Step 2.

Suppose we have a line L that contains one point P = [a ∶ b ∶ c ∶ d], a, b, c, d ∈ Z and
gcd(a, b, c, d) = 1. Also suppose that P is D−integral and L ∩D = ∅.

Take α,β, γ, δ,ב,א, ד,ג ∈ Z such that gcd(α,β, γ, δ) = gcd(ב,א, (ד,ג = 1 and

L ∶ { αx + βy + γz + δt = 0
xא + yב + zג + tד = 0 .

11



We need a result to solve this problem.
Claim. There is an integer N ≠ 0 such that if P ∈ L and P ∈ D mod p for some
prime number p then p∣N .

Suppose for now that we proved this claim. Fix such an N ∈ N and consider
the set of points of the form Pk = [a ∶ b ∶ c ∶ d] + kN[bβ ∶ −aγ ∶ 0 ∶ 0]. We can check
that Pk ∈ L. Suppose there is a k ∈ N such that Pk is not D−integral, then there is
a prime p such that Pk ∈ D mod p, by the claim p∣N so Pk ≡ P + kN[bβ ∶ −aγ ∶ 0 ∶
0] ≡ P mod p but P is D−integral, so it is absurd, hence all Pk are D−integral, and
N ≠ 0 so they are pairwise distinct, so we have an infinite set of D−integral points
in our line, as we wanted.

Let’s give a definition and state the projective Nullstellensatz to prove our claim.

Definition 5. A homogeneous J ⊂ k[x0,⋯, xn] is irrelevant if J ⊃< xN0 ,⋯, xNn > for
some N ∈ N.

Theorem 4 (Projective Nullstellensatz). Let k be algebraically closed and J ⊂
k[x0,⋯, xn] be a homogeneous ideal. Then X(J) = ∅ if and only if J is irrelevant.

For a proof of the projective Nullstellensatz, see [1, 9.25].
Proof of the claim : Since L ∩D = ∅, then I(L ∩D) is irrelevant, so there

is some d ∈ N such that every monomial of degree d lies in I(L ∩D). Note that
I(L∩D) = I(L)+I(D) so for any i ≤ 3, xdi = ∑

ni
j=1 fijli+gijdj for some fij , fgij homo-

geneous polynomials and lj ∈ I(L) ⊆ Z[x0, x1, x2, x3], dj ∈ I(D) ⊆ Z[x0, x1, x2, x3].
In the Nullstellensatz k is an algebraic closed field, so fi,j and gi,j have coefficients
in Q, but there are finitely many coefficients and each of them are algebraic over Q
so they are all contained in a finite extension k/Q.

Let Ok be the ring of integers of k.
So for each i there is αi ∈ Ok, ni ≠ 0 such that

αix
d
i =

ni

∑
j=1

FijLj +GijDj

where Fij ,Gij , Lj ,Dj ∈ Ok[x0, x1, x2, x3].
Suppose P ∈ L satisfies P ∈D mod p, if α =∏3

i=0 αi and N is the norm of α then

αixi(P )d ≡ 0 mod p for all i

so Nxi(P )d ≡ 0 mod p for all i. Since xi(P ) /≡ 0 mod p for at least one i, we get
that p∣ni. By construction, N satisfies our claim. Hence step 2 is proved.

5.1.3 Step 3

Take any point P ∉D, and use step 1 to find a line L that goes through P and does
not intersect D, we want to find a D−integral point on this line. We want to use
the same strategy as in dimension 2, but D may contain curves, and if we extend
our base field, we will have more points in those curves so we have to be careful.

By our claim in step 2 proof, there is N ≠ 0 such that if P ∈ L and P ∈D mod p
for some prime number p then p∣N so we only need to take care of a finite number
of constraints.

Let’s state two theorems, but first we have to give a definition.
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Definition 6 (Norm). Let ` be an algebraic element of a field k. We define the
norm of ` with respect to k, written Nk(`), as the number of elements of the ring
Ok/(`)

Remark 3. If ` is an element of a field k, then for any finite extension L/k we
have NL(`) = Nk(`)[L∶k]. So the norm increases when we increase the base field.

Theorem 5. For any curve C defined over a number field k there is a constant α
such that for any prime ` of Ok, C has at most αNk(`) points over Ok(`).

Theorem 6. For any curve C defined over a number field k and for any prime `
of Ok there is a constant α such that for any finite extension L/k, C has at most
αNL(`) points defined over the extension of OL/(`).

Proof. We will prove this fact for all Pn and not just P3. Take a number field k
and a curve C defined over Pn(k). We know that C contains (at least) two points
with different coordinates so we can pick two coordinates that change between the
two points, suppose without loss of generality that it is the two first coordinates, x0
and x1. Then the projection map f from C to P1(k) on those coordinates defined
by f(x0 ∶ ... ∶ xn) = [x0 ∶ x1] is not constant. The map f is a rational map between
two curves so it has a finite degree, say d. Now fix ` ∈ Ok, then P1(k) contains
Nk(`) + 1 points mod ` so there can’t be more than d(N(`) + 1) ≤ 2dNk(`) points
on C over Ok/(`). Define α = 2d and we get the desired result.

We can now proceed to proving step 3.
Note that P3(Q) mod p contains p4−1

p−1 = p3 + p2 + p + 1 points, because for each
entry we get p values to chose from, so we get p4−1 points (-1 to avoid [0 ∶ 0 ∶ 0 ∶ 0]).
We then divide by p − 1 to get rid of all the multiples, another way to say this is
that we force one of the entries to be 1, which we can because we are over a field. If
k is an algebraic field extension of Q, then for each entry we’ll have Nk(p) values to
chose from, so P3(k) mod p contains Nk(p)4−1

Nk(p)−1 = Nk(p)3 +Nk(p)2 +Nk(p)+1 points.
D contains a finite number of curves and for each curve C and each prime p∣N

there is αCpN(p) such that if we take a finite extension k, C contains at most αCpNk(p)
points in P3(k) mod p.

Define α = max{αCpN(p)∣ C ∈ D and p∣N}, then for all finite extension exten-
sion k/Q, all prime number p∣N and any C ∈ D, the latter will contain at most
αNk(p) points mod p.

Take a field extension k/Q of degree d big enough such that we ensure that for
all prime p∣N , Nk(p)4−1

Nk(p)−1 > αNk(p) and so there is a point in the extension that is not
contained in any C ∈D. It is possible by remark 3 because Nk(p) = NQ(p)[k∶Q] = pd.

For each of the finitely many remaining points of D, we take a curve containing
these points, and apply previous argument to get an extension containing a point
Pp that is not in D mod p for all p∣N .

By the Chinese remainder theorem we can get P such that P ≡ Pp mod p for all
p∣N , so this point is D−integral, which proves Step 3.

The conjecture is now proved for X = P3(Q), so let’s see about higher dimen-
sions.
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6 n-dimensional case
If we take a look at our proof for the case n = 3, all the theorems used such as
Bezout’s Theorem, or the Nullstellensatz are true in any dimension so the proof for
P3(Q) will generalise to arbitrary dimensions general proof for Pn(Q) is the latter
one. So the conjecture is true for Pn(Q) for all n ≥ 2.

However the general case is not proved. Even the general case for 2-dimensional
varieties such that rational points are Zariski dense is still open.

7 Conclusion
We covered basic notions of projective geometry, started this project with very little
notions about algebraic geometry and managed to tackle a hard problem finding
for a solution in some particular cases.

Algebraic geometry is a very broad and useful topic, and this discussion hope-
fully made some aspects clear and gave more tools and a better intuition in this
domain.
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