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0.1 Introduction
"You know, for a mathematician, he did not have enough imagination. But he has

become a poet and now he is fine." -David Hilbert

A fundamental result in the representation theory of finite and compact groups
is that every representation factors into a sum of finite dimensional irreducible rep-
resentations. However, when we drop the hypothesis of compactness it is no longer
the case. We will study the representations of totally disconnected locally com-
pact groups, with a focus on whether the space of vectors fixed by a compact open
subgroup has finite dimension. This will give us the notion of admissibility. This
property has many consequences, for example a unitary admissible representation
will factor as a Hilbert direct sum of irreducible representations. An interesting
property of a locally compact totally disconnected group is that if all irreducible
unitary representations are admissible, then this group will be of type I, which
means that every irreducible unitary representation has a trace function. The exis-
tence of a trace gives rise to the existence of a character and character theory can
give us lots of information on the group and its representations. We will give special
attention to reductive p−adic groups, and in particular to GLn(F ), the group of
n × n invertible matrices over a local non-Archimedean field.

Throughout the first Chapter, we will give the basic theory of totally discon-
nected locally compact groups and we investigate the Hecke algebra of a group. In
particular we will prove the categorical isomorphism between representations of a
group and representations of its associated Hecke algebra. Another major result
links the admissibility of representations of groups with admissibility of representa-
tions a finite index subgroup, namely, we prove the following :

Theorem. Let G be a totally disconnected locally compact group and H a closed
finite index subgroup. Then all irreducible smooth representations of G are (uni-
formly) admissible if and only if all the irreducible smooth representations of H are
(uniformly) admissible.

Chapter 2 will give important decompositions in the group GLn(F ) that are
used when studying the representations of that group. Then, in Chapter 3, we will
discuss algebraic groups over topological fields and how to put a topology on them.
We will conclude that the p−adic algebraic groups have the structure of a totally
disconnected locally compact group.

Chapter 4 is where we prove that admissibility of irreducible smoooth represen-
tations.
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Theorem. Every irreducible smooth representation of GLn (F ) is admissible.

The key ingredients in the proof are the notions of parabolic induction and su-
percuspidal representations. We will show that irreducible representations either
can be obtained through induction from a parabolic subgroup, or they are supercus-
pidal and prove admissibility for such representations. The main result will follow
from Harish-Chandra Theorem :

Theorem (Harish-Chandra). A representation of GLn (F ) is supercuspidal if and
only if it is compact modulo center.

Then, we will strengthen our result through Chapter 5, proving that the ir-
reducible smooth representations of GLn(F ) are uniformly admissible. To that
extent, we will study the relative Hecke algebra and find a bound on the dimension
of the finite-dimensional simple modules over this algebra. We will conclude with
the following stronger result :

Theorem (Bernstein). The collection of irreducible smooth representations of GLn(F )

is uniformly admissible.

Lastly, in Chapter 6, we will study unitary representations. We will build the
categorical equivalence between unitary representations of a group and unitary rep-
resentations of its Hecke algebra. We will link the previous results on smooth
representations by proving the following theorem:

Theorem. Let G be a totally disconnected locally compact group. The collection of
irreducible smooth representations is uniformly admissible if and only if the collec-
tion of irreducible unitary representations is uniformly admissible.



Chapter 1

Totally disconnected locally
compact groups

1.1 Totally disconnected locally compact groups
Definition 1.1 (Totally disconnected). A topological space is said to be totally
disconnected if its connected components are singletons.

Definition 1.2 (Locally compact). A topological space is said to be locally com-
pact if every point admits a compact neighborhood. Equivalently, a locally compact
space is a space where each point admits a neighborhood basis of compact sets.

We will abbreviate “totally disconnected locally compact” by the initials tdlc.

Definition 1.3 (Topological group). A topological group is a group with a topol-
ogy under which the inversion and multiplication are continuous maps.

Definition 1.4 (Compact and Locally Compact groups). A compact group is a
compact and Hausdorff topological group. Likewise a locally compact group is a
topological group that is Hausdorff and locally compact.

Notation. If G is a topological group, we will write K ≤
c.o.

G to say that K is a
compact open subgroup of G.

We recall a useful fact about locally compact Hausdorff spaces, which will help
us studying locally compact groups.

Lemma 1.5. If X is a compact Hausdorff space and x ∈ X, then the connected
component of x is the intersection of clopen sets containing x.

Proof. Let Cx be the connected component of x. If U is a clopen set containing x
then Cx ∩U is a clopen in Cx, so

Cx = (Cx ∩U) ∪ (Cx ∩U
c
)

is an open separation. Since Cx is connected, one of the two sets must be empty.
We have x ∈ Cx ∩ U ≠ ∅, therefore Cx ∩ U = Cx, so Cx ⊆ U . Thus, Cx is contained
in the intersection of the clopen sets containing x.

7
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For the converse, let {Uα}α∈A be the set of clopen sets containing x. For the
sake of contradiction, assume that Cx ⊊ ⋂α∈AUα. Let U = ⋂α∈AUα. Then U strictly
contains a connected component so it cannot be connected. We may therefore write
U = V ∪W with V,W disjoint nonempty open subsets of U , and without loss of
generality we suppose x ∈ V . Now, both U and V are clopen. In particular they
are closed in X. Since X is compact and Hausdorff, it is normal. Take N open
in X such that V ⊆ N and N ∩W = ∅. So U ∩ N = V , but N ∩W = ∅. Then
⋂α∈A (Uα ∩ ∂N) = U ∩ (∂N) = ∅ where ∂N = N ∖ N. In other words, the set
{(Uα ∩ ∂N) ∣α ∈ A} is a family of closed sets in X with empty intersection, so it
cannot have the finite intersection property since X is compact. That is, there are
α1,⋯, αn such that ⋂ni=1Uαi∩∂N = ∅. The set S = ⋂

n
i=1Uαi is a clopen set containing

x, and S ∩ ∂N = ∅ so S ∩N = S ∩ N̄ . Hence, S ∩N is both closed and open in X
and it contains x, so it is one of the Uα’s and therefore W ⊆ U ⊆ S ∩N ⊆ N , which
is absurd by the construction of N E. Thus, Cx = U , as required.

Corollary 1.6. Let X be a locally compact totally disconnected space. Then the
set of closed open susbsets of X form a basis for the topology.

Proof. The result is obvious when X is compact using Proposition 1.5, with the
singletons being connected components.

For general X, let x ∈ X. We will show that there is a neighborhood basis of x
consisting of open closed subsets. Take Y a compact neighborhood of x. Since X
is a Hausdorff space, for all x ≠ y ∈ Y , there are two disjoint open neighborhoods
Uy, Vy of x and y respectively. Observe that ∂Y = Y ∩ (X ∖ Y ) is a closed subset
of a compact space, hence it is compact. Note that {Vy ∶ y ∈ Y } is an open cover
of ∂Y so take a finite subcover {Vyi}

n
i=1 and let Z = ⋂

n
i=1Ui. The set Z is open,

contains x and Z ∩ ∂Y = ∅. Without loss of generality, we may suppose Z ⊂ Y ,
otherwise replace it with Z ∖ (X ∖ Y ) which is still open. Using Lemma 1.5 on Y ,
which is compact and totally disconnected, we obtain a neighborhood basis of x
consisting of clopen sets in Y , that we may assume to be contained in Z. Since
they are contained in Z, which is open in Y , they are also open in X, so we have
our neighborhood basis.

Now let us state an important theorem about tdlc groups.

Theorem 1.7. Let G be a group. Then G is totally disconnected locally compact if
and only if it is Hausdorff and admits a basis of open compact subgroups.

Proof. (⇐) First note that since G has a topology basis consisting of compact sets,
it is locally compact. In addition, an open subgroup has to be closed, since it is the
complement of the union of its nontrivial cosets, all open since the multiplication
is continuous. Therefore, the filter of neighborhoods at the identity, has a basis of
open closed subsets. Hence, {1} is the intersection of open closed subsets and so it
is the connected component of 1. Since G is uniform, being a topological group, all
connected components are singletons.

(⇒) Since X is locally compact, there exists a compact neighborhood K of 1.
Since {1} is a connected component, we can conclude by Corollary 1.6 that there
is a neighborhood basis of 1 consisting of clopen sets. Let U be a clopen set inside
K. Since it is closed inside a compact, U is compact in G. Suppose we can find
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a compact neighborhood V of 1 such that UV ⊆ U . We can take V symmetric
by replacing it with V ∩ V −1. By induction UV n ⊆ U . Define H = ⋃n∈N V

n, the
subgroup generated by V . Then H ⊆ UH ⊆ U and H is an open subgroup. Thus U
contains a compact open subgroup of 1. So starting from any neighborhood N of
1, we can find a clopen subset, and apply this result to get an open subgroup of G
inside N . We now construct V .

First note that for all x ∈ U , the map

G ×GÐ→ G (y, y′)z→ xyy′

is continuous, so since U is open, there is an open neighborhood of 1, say Vx, such
that xV 2

x ⊆ U . Since 1 ∈ Vx, we have xVx ⊆ xV 2
x ⊆ U , and hence ⋃x∈U xVx = U . Now,

U is a closed set inside a compact set so it is compact, meaning that there is a finite
open subcover {xiVxi}

n
i=1 of U . Let V = ⋂

n
i=1 Vxi . Then

UV ⊆ (
n

⋃
i=1
xiVxi)V ⊆

n

⋃
i=1
xiV

2
xi ⊆ U,

so we got our desired set.

Corollary 1.8. Let G be a locally compact group. Then the connected component
of the identity is the intersection of all the open subgroups.

Proof. Note that all open subgroups are clopen and therefore contain the connected
component of the identity, so if we call C the intersection of all such subgroups, C is
a closed subgroup of G and contains the connected component of the identity. Call
G0 the connected component of the identity. We will show that it is a (closed)normal
subgroup of G as well.

The inversion map is a homeomorphism, so G−1
0 is connected, and contains the

identity hence so G0
−1 ⊆ G0. If g ∈ G0 then left multiplication by g is also a home-

omorphism. We therefore deduce that gG0 is connected. Since g−1 ∈ G0
−1 ⊆ G0, we

get that gG0 ⊆ G0. The set G0 is stable by both inversion and multiplication, so it is
a subgroup, and closed because in any topological space, connected components are
closed. For all g ∈ G, the subgroup gG0g

−1 is connected and contains the identity
so gG0g

−1 ⊆ G0. Therefore, G0 is a normal subgroup of G and so G/G0 is a group.
Let π be the projection map onto G/G0, which is totally disconnected. By the

continuity of π, we have

C ≤ ⋂
H≤G/G0
H open

π−1
(H) = π−1

⎛
⎜
⎜
⎝

⋂
H≤G/G0
H open

H

⎞
⎟
⎟
⎠

= π−1
({1G/G0}) = G0

using theorem 1.7. Hence C = G0.

Proposition 1.9. Let G be a tdlc group, and X1, . . . ,Xk ⊆ G be compact open sets
in G. Then there is K ≤ G compact open and x1,1, . . . , x1,n1 , xn,1, . . . , xn,nk ∈ G such
that X` = ⋃

n`
i=1 x`,iK for all 1 ≤ ` ≤ k, i.e. X1, . . . ,Xk are all unions of finitely many

left cosets of K.
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Proof. By Theorem 1.7, the group G has a neighborhood basis around the identity
consisting of open compact subgroups. Since X1 is compact open, it is the finite
union of left cosets, g1,1K

(1)
1 , . . . , g1,m1K

(1)
m1 , likewise for all ` ∈ {1, . . . , k}, write

X` = ⋃
m`
i=1 g`,iK

(`)
i . Then define K = ⋂

k
`=1 (⋂

m`
i=1K

(`)
i ) . The group K is a compact

open subgroup of G contained in all the K(`)i , which are compact, therefore each
K
(`)
i is a finite union of left cosets of K. We conclude that X` is a finite union of

cosets of K for all 1 ≤ ` ≤ k.

Example 1.10. GLn(Qp) is a totally disconnected locally compact group where the
topology of the group GLn(Qp) is obtained as the subspace topology of Mn(Qp) =

Qn2
p .

The fact that it is a Hausdorff topological group is immediate because of the
metric topology on Qp.

We find a neighborhood basis around In, the identity matrix of size n × n, con-
sisting of open compact subgroups. Notice that the family {pαZp}α∈N is a neighbor-
hood basis around 0 in Qp consisting of compact open subgroups (they are the balls
around 0 relative to the p−adic norm). So in Mn(Qp), the family {pαMn(Zp)}α∈N is
a neighborhood basis around 0 consisting of open compact subgroups (with respect
to the “+” operation). The family {In + pαMn(Zp)} ∩GLn(Qp) is a neighborhood
basis around In consisting of open compact subgroups.

Example 1.11. The example above is easily generalized to GLn(F ) where F is a
local non-archimedean field. In general, it is true that every p−adic groups is a tdlc
groups.

1.2 Unitary and smooth representations
We now set our language with representations.

Definition 1.12 (Algebraic representation of a group). Let G be a group, an
algebraic representation of G is a C−vector space V together with a group
homomorphism ρ ∶ G→ GL(V ).

Also, let CG be the group algebra over a group G. Then the map ρ ∶ G→ GL(V )

gives V a CG−module structure with g.v = ρ(g)(v) for all g ∈ G, v ∈ V , which
extends to the whole algebra by linearity. Conversely, if V is a CG-module, we
can get the map ρ by defining ρ(g)(v) = g.v for all g ∈ G, v ∈ V . So we will often
think of a representation in terms of CGmodule (or simply G−modules) and use
the notation g.v (or gv when there is no confusion) instead of ρ(g)(v).

Definition 1.13 (Unitary representation). If G is a topological group, a unitary
respresentation of G is a G−module V together with an inner product ⟨, ⟩ on V
such that

(i) The inner product ⟨, ⟩ endows V the structure of a Hilbert space.

(ii) The action G×V → V ∶ (g, v)↦ gv is continuous where V is given the Hilbert
space topology.
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(iii) For every g ∈ G and for all u, v ∈ V , we have ⟨gu, gv⟩ = ⟨u, v⟩ .

Remark 1.14. Note that the last condition implies that for all g, the operator
ρ(g) has norm 1, hence is continuous.

Definition 1.15 (Irreducible representation). Let G be a group and V be an al-
gebraic representation of G. Then V is said to be algebraically reducible if V
contains a nontrivial CG-submodule, or alternatively if V has a nontrivial subvec-
tor space stable under the action of G. A representation that is not algebraically
reducible is said to be algebraically irreducible.

When V is a unitary representation, we say it is topologically reducible if it
contains a nontrivial closed invariant subspace, and topologically irreducible if
not.

Notation. Let G be a group, H ≤ G a subgroup and V a representation of G.
Then we let V H = {v ∈ V ∶ hv = v ∀h ∈H}. It is clearly a subspace of V .

Definition 1.16 (Haar measure, Unimodular group). Let G be a group, a Haar
measure on G is a left and right-invariant measure on G. If such a measure exists,
we say G is unimodular.

Proposition 1.17. GLn(Qp) is unimodular.

Proof. Note that Qp is locally compact so has a left invariant measure, which is
also right invariant since Qp is abelian.

This measure gives us an integral, dM , which gives a Haar integral on the
additive group Mn(Qp) given by

∫Mn(Qp)
f(M)dM = ∫

Qp
. . .∫

Qp
f(Mi,j)dMi,j .

We claim that an invariant Haar measure on GLn(Qp) is dM
∣det(M)∣n . It is left

invariant since if we fix N ∈ GLn(Qp),

dNM
∣det(NM)∣n

= ∣det(N)∣
n dM
∣det(N)∣n∣det(M)∣n

=
dM

∣det(M)∣n
.

Similarly, dM
∣det(M)∣n is right invariant.

Definition 1.18 (Averaging operator). If G is a unimodular group, and V is a
unitary representation of G, then we have a Lebesgue integral on functions from G
to V (since V is in particular a banach space). If H ≤ G is a compact subgroup,
the averaging operator over H, denoted eH ∶ V → V is defined by eH(y) =

∫H gy dµ(g), where µ is the normalized Haar measure of H.

Notation. For the sake of simplicity we will write dg instead of dµ(g).

Remark 1.19. Note that if x, y ∈ H then ⟨eH(x), y⟩ = ∫H ⟨gx, y⟩dg and by Riesz
representation lemma, eH is the unique operator satisfying that property.
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Remark 1.20. In the previous setting, if v ∈ V , and K ≤ G is a compact subgroup,
then eK(v) is K−invariant. Indeed, if k ∈K, then

k∫
K
gy dg = ∫

K
(kg)y dg

= ∫
kK

gy dg

= ∫
K
gy dg = eK(v).

Definition 1.21 (Smooth representation). Let G be a group, a smooth repre-
sentation of G is a G−module V such that

V = ⋃
K ≤
c.o.

G

V K .

Proposition 1.22. Let V be a representation of a group G, then

V is smooth ⇐⇒ G × V → V ∶ (g, v)↦ gv is continuous

where V is given the discrete topology.

Proof. (⇒) Suppose V is smooth, and call m the map in question. Then we just
have to check that for all v ∈ V , the set m−1(v) is open. Fix v ∈ V . Note that for
all w ∈ V the set Sw ∶= {g ∈ G ∶ gw = v} is open. Indeed, there is K ≤ G compact
open such that Kv = v, so if h ∈ G we get (Kh)w = v. Therefore, Kh ⊆ Sw is an
open neighborhood of h, thus Sw is open.

Now
m−1

(v) = ⋃
w∈V

m−1
(v) ∩ (G × {w}) = ⋃

w∈V
Sw × {w}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

open in G×V

is open. Indeed, every set in the union is open in G×V since V is given the discrete
topology.

(⇐) Fix v ∈ V and suppose m is continuous. Then, the set A ∶= {(g,w) ∈ G×V ∶

gw = v} is open, so G × {v} ∩ A is open, and its projection on G gives an open
subgroup of G, the stabilizer of v. Since we are working with a totally disconnected
locally compact group, we can take an open compact subgroup of the stabilizer
thanks to Theorem 1.7, call it K. Obviously, v ∈ V K , so we are done.

Remark 1.23. This last condition gives us a similar condition as smoothness when
talking about Lie groups.

Definition 1.24 (Smooth part). Let V be a representation of a group G. The
smooth part of V is the subspace

Vsm ∶= ⋃
K ≤
c.o.

G

V K .
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Remark 1.25. The space Vsm is a subspace of V . Indeed, if v,w ∈ Vsm, then
v ∈ V K1 and w ∈ V K2 for some K1,K2 ≤

c.o.
G. It is immediate that v,w ∈ V K where

K =K1 ∩K2.
Moreover, Vsm is a subrepresentation of V . To that extent, we just need to

check that it is stable under the action of G. Let v ∈ Vsm and K ≤
c.o.

G such that

v ∈ V K . For every g ∈ G, we have gv ∈ V gKg−1 . Indeed, for every k ∈ K, we have
(gkg−1)(gv) = g(kv) = gv, as desired.

Definition 1.26 (Pre-unitary representation). Let G be a group and V a smooth
representation. We say that V is pre-unitary if V has an inner product, such that

(i) The action of G on V is continuous where V has the norm topology given by
the inner product.

(ii) For all u, v ∈ V and all g ∈ G we have ⟨gu, gv⟩ = ⟨u, v⟩.

Proposition 1.27. If V is a pre-unitary representation, then its completion V̄ is
unitary. Also, if V is a unitary representation, then Vsm is pre-unitary and Vsm = V .

Proof. For the first part, suppose V is a pre-unitary representation. By density,
the inner product extends to the completion of V (the completion of a pre-Hilbert
space is a Hilbert space). The action of G still satisfies ⟨gu, gv⟩ = ⟨u, v⟩ for all
u, v ∈ V and g ∈ G, so elements of G have norm 1 on V . Hence, elements of G give
continuous maps, and therefore extend to V . We verified that we have a unitary
representation.

For the second part, suppose V is a unitary representation. Then Vsm ⊆ V so
Vsm ⊆ V = V since V is a Hilbert space. Therefore, we only need to show that Vsm is
dense in V . Let v ∈ V and ε > 0. Since the representation is continuous, and 1v = v,
there is an open neighborhood of the identity U such that for all g ∈ U , ∥gv−v∥ < ε.
Since G is tdlc there is K ≤ G an open compact subgroup such that K ⊆ U . Then,
by the triangle inequality for integrals,

∥eK(v) − v∥ ≤ µ−1
(K)∫

K
∥gv − v∥ dg

≤ εµ−1
(K)∫

K
dg

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=µ(K)

≤ ε.

As seen before, eK(v) ∈ V K , so d(v, Vsm) ≤ ε for all ε > 0, hence Vsm is dense in V ,
which is what we wanted.

We now state an easy lemma which will be very useful in the future.

Lemma 1.28. Let G be a group and V a smooth nonzero representation.
(i) If V is a finitely generated G−module then it has an irreducible quotient.
(ii) V has an irreducible subquotient.
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Proof. (i) Consider the set of all proper subrepresentations of V . It is nonempty
and since V is finitely generated, it is closed under union of chains. Using Zorn’s
lemma, we can take W , a maximal subrepresentation. Since W is maximal, V /W
is a simple G−module, therefore an irreducible representation of G.

(ii) Choose v ∈ V . By point (i), we have that Span (Gv) has an irreducible
quotient, as desired.

1.3 Admissible representations and Bernstein’s Theo-
rem

Definition 1.29 (Admissible representation). Let G be a group and V a represen-
tation of G. We say that V is an admissible representation if for any compact
open subgroup K ≤ G, we have dimC V

K <∞

Proposition 1.30. Let G be a group and V an admissible unitary representation.
Then there is a set I, and closed irreducible G−subrepresentations Vi, i ∈ I such
that

V = ⊕̂
i∈I
Vi,

where we take the Hilbert space direct sum, i.e. the closure of the direct sum of the
vector subspaces.

Proof. Let V be an admissible unitary representation. Suppose that Vsm is a
semisimple G−module, then Vsm = ⊕i∈I Vi where the Vi’s are simple G−modules.
Using proposition 1.27 we get that V = Vsm = ⊕̂i∈IVi. Therefore we can reduce the
proof to proving that a preunitary smooth admissible representation V is semisim-
ple as a G−module. To show that, we take W ≤ V a submodule and we want to
prove that W is a direct summand of V .

First, note that W ⊥ is another G−submodule. Indeed, for all g ∈ G we have

⟨w, gv⟩ = ⟨ g−1w
²
∈W

, v
®
∈W ⊥

⟩ = 0

where w ∈ W and v ∈ W ⊥, hence gv ∈ W ⊥. Let us prove that V = W ⊕W ⊥. The
fact that W ∩W ⊥ = {0} is immediate, so we only need to check that W +W ⊥ = V .
Let v ∈ V . Since V is smooth, v ∈ V K for some K ≤c.o. G. The inner product on V
restricts to a nondegenerate inner product on V K . ClearlyWK =W ∩V K and since
V K is finite dimensional we have the decomposition V K = WK ⊕ ((WK)

⊥
∩ V K).

Therefore, v = w+w′ with w ∈WK ⊂W and w′ ∈ ((WK)
⊥
∩ V K). Let us show that

((WK)
⊥
∩ V K) ⊂W ⊥. If w ∈W and x ∈ ((WK)

⊥
∩ V K), we have

⟨w,x⟩ =
since x∈V K

⟨w, eKx⟩ = ⟨eKw
±
∈WK

, x
®

∈(WK)⊥
⟩ = 0,

thus x ∈W ⊥. We proved that V =W ⊕W ⊥, and therefore any submodule is a direct
summand. We may therefore conclude that V is semisimple.
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Definition 1.31 (Uniformly Admissibility). Let G be a group. A collection of
representations of G is uniformly admissible if for all compact open subgroups
K ≤ G, there is N ∈ N such that for any representation V in the collection, we have
dimC V

K ≤ N .

Proposition 1.32. Let G be a compact totally disconnected group (i.e. profinite
group). Then the irreducible representations of G are uniformly admissible.

Proof. Since G is compact and totally disconnected, it has a neighborhood basis
of the identity consisting of normal compact open subgroups. If K ≤ G is compact
open, let H ≤ G compact open and normal in G such that H ≤ K. Since G is
compact, H has finite index in G. Let n = [G ∶H].

Claim: For all irreducible representations V of G, we have dim (V H) ≤ n.

Let V be an irreducible representation of G. Either V H = 0, and so we are done.
Else there is 0 ≠ v ∈ V H . If g ∈ G, then for all h ∈ H there is h′ ∈ H such that
hg = gh′, and so h(gv) = hgv = gh′v = g(h′v) = gv. Therefore, V = Span (Gv) ⊂

V H by irreducibility of V , so V = V H . Hence, H acts trivially on V , and so V
is an irreducible representation of G/H which is a finite group of order n, thus
dim(V ) ≤ n.

Since V K ≤ V H , we have dim(V K) ≤ dim(V H) ≤ n, so we are done.

Now we state a result of Bernstein we will prove later in the text. We will not
define all the terms now.

Theorem 1.33 (Bernstein). If G is a reductive algebraic group over a non-archi-
medean local field F , then the irreducible smooth representations of G(F ), the group
of F−points of G, are uniformly admissible.

Example 1.34. We can take G = GLn, SLn or On as algebraic groups. Then for
example we get that all the irreducible representations of GLn(Qp) are uniformly
admissible.

Example 1.35. A direct consequence of Peter-Weyl Theorem is that every irre-
ducible representation of a compact group is finite dimensional. However, one can
have irreducible representations of arbitrarily large dimension. Consider the special
unitary group

SU(2) = {M ∈ M2 (C) ∶
tM =M−1 and det (M) = 1} .

Note that SU(2) is not a tdlc group, therefore we cannot talk about smooth
representations.

We will construct irreducible representations of SU(2) of arbitrarily large di-
mension.

Consider the map α ∶ M2 (C) → M2 (C) defined by α(M) = tMM . Let I2 =

(
1 0
0 1 ) ∈ M2 (C) bet the identity matrix. Note that SU(2) = α−1 (I2)∩det−1 ({1}) ,

and therefore it is closed in M2 (C) ⊂ C4.
Also, if M ∈ SU (2), then for all i ∈ {1,2} we have 1 = (tMM)

ii
= ∑

2
k=1MkiMki =

∑
2
k=1 ∣Mki∣

2. Therefore ∥M∥ = ∑
2
i,j=1 ∣Mij ∣ = 2 and SU(2) is a bounded subset of C4.

We found that SU(2) is closed and bounded in C4 so it is compact.
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Fix n ∈ N. Let Chn[x1, x2] be the C−vector space of homogeneous polynomials in

C[x1, x2] of degree n. The group SU(2) acts on Chn[x1, x2] as follows: if f (
x1
x2

) ∈

Chn[x1, x2] and M ∈ SU(2), then

Mf(
x1
x2

) = f (M−1
(
x1
x2

)) .

Or in a more explicit way, ifM = (
a b

−b a
) ∈ SU(2) and f(x1, x2) ∈ SU(2) then

Mf (x1, x2) = f (ax1 + bx2,−bx1 + ax2) .

This representation is irreducible. Indeed let V be a nonzero invariant subspace,
and let f ∈ V . If a ∈ C is such that ∣a∣ = 1 then f(ax1, ax2) ∈ V .

Claim: This implies that all monomials in f are in V .
For n = 1 it is simple. Write f(x1, x2) = αx1 + βx2. Take 2 values for a such

that the vectors (a, a) are linearly independant, for example 1 and i. We have
f(ix1,−ix2)+if(x1,x2)

2i = αx1, and if(x1,x2)−if(ix1,−ix2)
2i = βx2.

This argument generalizes to higher n by taking linear combination the functions
f(ω`x1, ω

`x2) where ω = e
iπ
2n and ` ∈ {0, . . . ,2n} we can isolate a single term.

Claim: All monomials are contained in V . Let g(x1, x2) = x
`xn−` a monomial

of f . Let us show that there are a, b ∈ [0,1] such that the coefficients of all the
monomials of g (ax1 + ibx2,−ibx1 + ax2) are nonzero.

Let b ∈ [0,1], define ab =
√

1 − b2. Then Mb (
ab ib
ib ab

) ∈ SU(2). We have

Mbg(x1, x2) = g (abx1 + ibx2, ibx1 + abx2) = (abx1 + ibx2)
`i(bx1 + abx2)

n−`.

Since all monomials of f are in V , fix such a monomial g(x1, x2) = x
`
1x
n−`
2 . Each

coefficient of Mbg is a polynomial in b and ab =
√

1 − b2 and therefore it cancels at
only finitely many points, so we can find b such that all the coefficients are nonzero.
Using the previous claim with this MbG we have that all the monomials and so all
of Chn[x1, x2] is in V .

The only nontrivial submodule is Chn[x1, x2] so the representation is irreducible
and note that dimC (Chn[x1, x2]) = n + 1.

Example 1.36. In previous example, we do not have a locally compact totally
disconnected group. Give SU(2) the discrete topology. The singleton {I2} is a com-
pact open subgroup so all representations are smooth. For all n ∈ N the irreducible
smooth representations Vn = Chn[x1, x2] satisfy dimC (V

{I2}
n ) = dimC (Vn) = n + 1.

We built a collection of admissible irreducible representations that is not uniformly
admissible.

Note however that the irreducible representations of SU(2) as an abstract (dis-
crete) group need not be finite dimensional. Therefore, not all irreducible represen-
tations of SU(2) given the discrete topology are admissible.
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Remark 1.37. In [13], the author builds a unital algebra which only admits finite-
dimensional irreducible representations (all representations are smooth since the
algebra is unital) with arbitrarily large irreducible representations (we will go over
smooth representations of algebras in the next section). Therefore, this algebra is
admissible but not uniformly admissible. However, we do not know of any example
of tdlc groups that is admissible but not uniformly admissible.

Example 1.38. Let V be any infinite dimensional C−vector space and G = GL (V ) .
The space V is clearly an irreducible representation of G. Endow G with the discrete
topology, so that it is a tdlc group. The subgroup K = {Id} is compact open, where
Id is the identity in G. Note that V = V K therefore the representation is not
admissible.

1.4 The Hecke Algebra

In this section our groups are always assumed to be totally disconnected locally
compact.

Definition 1.39 (Locally constant, compactly supported function). If X is a topo-
logical space and Y is any set, a function f ∶X → Y is said to be locally constant
if for all x ∈ X, there is an open neighborhood of x, say U ⊆ X, such that f ∣U is
constant. The closure of the set {x ∈ X ∶ f(x) ≠ 0} is called the support of f ,
denoted Supp(f). If that set is compact, we say that f is compactly supported.

Definition 1.40 (The Hecke Algebra). If G is unimodular, then we define the
Hecke Algebra of G to be

H(G) ∶= {f ∶ G→ C ∶ f is locally constant and compactly supported } .

When G is clear from the context, we will only write H for the Hecke algebra.
The multiplication of the algebra is given by

(f ⋆ g)(y) ∶= ∫
x∈G

f(x)g(x−1y) dx

for all f, g ∈ H, y ∈ G, where dx denotes dµ(x), with µ is a fixed Haar measure.
This product is called the convolution product.

Remark 1.41. The multiplication depends on the choice of Haar measure on the
group G. One can define it without fixing a Haar measure by considering measures,
rather than functions.

Proposition 1.42. H(G) is an associative algebra.

Proof. We check that the convolution product is associative. Let f, g, h ∈H.
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(f ⋆ (g ⋆ h)) (y) = ∫
x∈G

f(x) (g ⋆ h) (x−1y) dx

= ∫
x∈G∫z∈G

f(x)g(z)h(z−1x−1y) dz dx

changing the letters x↔ z and the order of integration

= ∫
z∈G∫x∈G

f(z)g(x)h(x−1z−1y) dz dx

x← z−1x integrating first over x with z constant

= ∫
z∈G∫x∈G

f(z)g(z−1x)h((z−1x)−1z−1y) dz dx

= ∫
x∈G∫z∈G

f(z)g(z−1x)h(x−1zz−1y) dz dx

= ∫
x∈G

(f ⋆ g) (x)h(x−1y) dx

= ((f ⋆ g) ⋆ h) (y),

as desired.

Notation. We denote the indicator function on the set A by 1A.

Proposition 1.43. Let f ∈ H. There exist some open compact subgroup K ≤ G,
ai ∈ C and gi ∈ G, i = 1, . . . n, such that f = ∑

n
i=1 ai1giK where ai ∈ C and gi ∈ G for

all i ∈ {1, . . . , n}.

Proof. Let f ∈ H. Since f is locally constant and G is tdlc, for every g ∈ Supp(f)
there is a compact open neighborhood of g say Ug ⊂ Supp(f) such that f ∣Ug is
constant. Clearly Supp(f) = ⋃g∈Supp(f)Ug. By compactness, there are g1, . . . , gn ∈ G
such that Supp(f) = ⋃ni=1Ugi . Using propostion 1.9 we take K ≤ G compact open
such that for all i ∈ {1, . . . , n} we can write Ui as a union of finitely many left cosets
of K, and thus there are h1, . . . , hm ∈ G such that Supp(f) = ⋃

m
i=1 hiK and f is

constant on each coset. We conclude that f = ∑
m
i=1 f(hi)1hiK .

Corollary 1.44. The algebra H is generated as a vector space by functions of the
form 1gK with g ∈ G and K ≤

c.o.
G.

Proof. It is immediate from Proposition 1.43.

By symmetry we also have:

Proposition 1.45. Let f ∈ H. There is some compact open subgroup K ≤ G such
that f = ∑

n
i=1 ai1Kgi where ai ∈ C and gi ∈ G for all i ∈ {1, . . . , n}.

Proof. We obtain it exactly the same way as Proposition 1.43 since Proposition 1.9
can be done with right cosets as well.

Definition 1.46 (Left/Right Invariance). Let f ∈ H and K ≤ G a compact open
subgroup. We say that f is left K−invariant if for all k ∈ K and g ∈ G we have
f(kg) = f(g). Likewise we say that f is right K−invariant if for all k ∈ K and
g ∈ G we have f(gk) = f(g). If f ∈H is both left and right K−invariant we say that
f is bi-K-invariant.
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Proposition 1.47. For every f ∈H there is K ≤
c.o.

G such that f is bi-K-invariant.

Proof. Propositions 1.43 and 1.45 lets us write f = ∑
n
i=1 ai1giK = ∑

m
i=1 bi1K′hi with

K,K ′ ≤
c.o.

G, ai, bi ∈ C and gi, hi ∈ G . Without loss of generality, we can assume
K = K ′ by replacing them with K ∩K ′ and have a finer decomposition. If k ∈ K
and g ∈ G, then

f(gk) =
n

∑
i=1
ai1giK(gk) =

n

∑
i=1
ai1giK(g) = f(g).

Indeed, gk ∈ gK if and only if g ∈ gKk−1 = gK. Therefore, f is right K−invariant.
Likewise

f(kg) =
m

∑
i=1
bi1Khi(kg) =

m

∑
i=1
bi1Khi(g) = f(g),

so f is also left K−invariant.

If G is a group and K ≤ G is a compact open subgroup, then we define eK =

µ−1(K)1K .

Lemma 1.48. Let K,K ′ ≤ G be compact open subgroups with K ′ ≤ K. Then
eK ⋆ eK′ = eK′ ⋆ eK = eK .

Proof. Let y ∈ V , then

eK ⋆ e′K(y) = µ(K)
−1µ(K ′

)
−1
∫
G
1K(x)1K′(x−1y) dx

= µ(K)
−1µ(K ′

)
−1
∫
K

1K′(x−1y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x−1y∈K′⇔x∈yK′

dx

= µ(K)
−1µ(K ′

)
−1µ(K ∩ yK ′

).

Notice that yK ′ ⊂ K if y ∈ K and yK ′ ∩K = ∅ if y ∉ K. Therefore, µ(K ∩ yK ′) =

{
µ(K ′) if y ∈K
0 else = µ(K ′)1K(y). Thus,

eK ⋆ e′K(y) = µ(K)
−1µ(K ′

)
−1µ(K ′

)1K(y)

= µ(K)
−11K(y) = eK ,

as desired.
We do the other equality similarly,

(eK′ ⋆ eK)(y) = µ(K ′
)
−1µ(K)

−1
∫
G
1K′(x)1K(x−1y) dx

= µ(K ′
)
−1µ(K)

−1
∫
K′
1K(x−1y) dx

= µ(K ′
)
−1µ(K)

−1µ(K ′
∩ yK)

= µ(K ′
)
−1µ(K)

−1µ(K ′
)1K(y)

= µ(K)
−11K(y)

Since K ′ ≤K, if y ∈K, then yK =K ⊃K ′, and otherwise yK ∩K = ∅.
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Remark 1.49. The lemma implies in particular that for all K ≤ G compact open
the function eK is idempotent.

Remark 1.50. The set of idempotents in H(G) becomes a directed set by setting
e ≤ e′ when e′ee′ = e. Lemma 1.48 implies that the set {eK ∶ K ≤c.o. G} is a totally
directed set.

Definition 1.51 (Idempotented algebra). An algebra A is called idempotented
if for all a1, . . . , an ∈ A there is an idempotent e ∈ A such that

ea1e = a1
⋮

eane = an

i.e. a1, . . . , an ∈ eAe.

Remark 1.52. If A is a unital algebra then it is clearly idempotented — take e = 1.

Proposition 1.53. Let K ≤ G be a compact open subgroup. A function f ∈ H is
left K−invariant if and only if eK ⋆ f = f . Similarly f is right K−invariant if and
only if f ⋆ eK = f .

Proof. (⇒) Suppose f ∈H is left K−invariant. Then for all y ∈ G, we have

(eK ⋆ f)(y) = µ−1
(K)∫

G
1K(x)f(x−1y) dx

= µ−1
(K)∫

K
f(x−1y) dx

= µ−1
(K)∫

K
f(y) dx since f is left K − invariant

= µ−1
(K)f(y)∫

K
1 dx = f(y)

Likewise if f is right K−invariant,

(f ⋆ eK)(y) = µ−1
(K)∫

K
f(x)1K(x−1y) dx

= µ−1
(K)∫

yK
f(x) dx

= µ−1
(K)∫

K
f(yx) dx

= µ−1
(K)∫

K
f(y) dx = µ−1

(K)f(y)∫
K

dx = f(y).

(⇐) Suppose f = eK ⋆ f . Then, for all k ∈K and g ∈ G, we have

f(kg) = (eK ⋆ f)(kg) = µ−1
(K)∫

G
1K(x)f(x−1kg) dx

x← kx

= µ−1
(K)∫

G
1K(kx)f(x−1g) dx

= µ−1
(K)∫

G
1K(x)f(x−1g) dx

= (eK ⋆ f)(g) = f(g).
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If f = f ⋆ eK , then

f(gk) = (f ⋆ eK)(gk) = µ−1
(K)∫

G
f(x)1K(x−1gk) dx

= µ−1
(K)∫

G
f(x)1K(x−1g) dx

since x−1gk ∈K⇔ x−1g ∈Kk−1
=K

= (f ⋆ eK)(g) = f(g).

Proposition 1.54. H is an idempotented algebra. More precisely, if f ∈ H, then
there is K ≤ G compact open such that eK ⋆ f ⋆ eK = f .

Proof. Let f ∈ H. From Proposition 1.47 we know that there is K ≤ G compact
open such that f is both left and right K−invariant. Using proposition 1.53 we
know that eK ⋆ f = f = f ⋆ eK thus eK ⋆ f ⋆ eK = (eK ⋆ f) ⋆ eK = f ⋆ eK = f .

Definition 1.55 (Smooth module). Let H be an idempotented algebra. A left H
module M is said to be smooth if HM =M .

Proposition 1.56 (Alternative definition of smooth modules). Let H be an idem-
potented algebra. A left H−module M is smooth if and only if for all m ∈M there
is an idempotent e ∈H such that em =m.

Proof. (⇐): Suppose that for all m ∈M there is an idempotent em ∈ H such that
emm =m. Then for all m ∈M , we have m = emm ∈Hm, so M ⊂HM . The opposite
is immediate.

(⇒): Let m ∈M . Since HM =M , then there are h1, . . . , h` ∈H and n1, . . . , n` ∈
M such that ∑`i=1 hini =m. Since H is idempotented, there is an idempotent e ∈H
such that ehie = hi for all i ∈ {1, . . . , `}. Since ehie = hi,

ehi = e(ehie) = eehie = ehie = hi,

likewise hie = hi. But then,

em = e
`

∑
i=1
hini =

`

∑
i=1
ehini =

`

∑
i=1
hini =m,

so we are done.

We will now establish a correspondence between H(G)−modules and smooth
representations of G.

First, we start with a smooth representation of G, say V . We want to transform
it into a smooth H−module. If f ∈H and v ∈ V , define

f.v = ∫
x∈G

f(x)xv dx.

That is, we average v under G with weights given by f .
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Remark 1.57. Ostensibly, this definition does not make sense when V is a smooth
representation of G, since there is no notion of limits on V . However, thanks to
Proposition 1.43, if v ∈ V , we can write f = ∑

n
i=1 ai1giK with K small enough to

have v ∈ V K , and get

f.v = ∫
G
f(x)xv dx =

n

∑
i=1
ai∫

G
1giK(x)xv dx

=
n

∑
i=1
ai∫

giK
xv dx

=
n

∑
i=1
ai∫

K
(gix)v
´¹¹¹¹¹¸¹¹¹¹¹¹¶

=gi(xv)=giv

dx

= µ(K)
n

∑
i=1
aif(gi)giv.

Thus, we can define the action of H using this sum.

Remark 1.58. If K ≤ G, we have eKv = ∫x∈G eK(x)xv dx = µ(K)−1
∫K xv dx. We

have therefore recovered the averaging operator of V .

Proposition 1.59. This construction defines a smooth H−module structure on V

Proof. We first check that it defines a module structure. Let f, g ∈H and v,w ∈ V ,
the facts that (f + g)v = fv + gv and f(v + w) = fv + fw follow directly from
the linearity of the integral and are straightforward to check. We now check that
f(gv) = (f ⋆ g)v for f, g ∈H.

f(gv) = f ∫
G
g(x)xv dx

= ∫
G
f(y)y∫

G
g(x)xv dx dy

= ∫
G
∫
G
f(y)g(x)y(xv) dx dy

= ∫
G
∫
G
f(y)g(x)(yx)v dx dy

x← y−1x

= ∫
G
∫
G
f(y)g(y−1x)xv dx dy

= ∫
G
(∫

G
f(y)g(y−1x) dy)xv dx

= ∫
G
(f ⋆ g)(x)xv dx

= (f ⋆ g)v.

So V is indeed an H-module. Now we check that it is a smooth module. If v ∈ V ,
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then there is K ≤ G compact open such that v ∈ V K . Then

eKv = ∫
x∈G

eK(x)xv dx

= µ−1
(K)∫

x∈G
1K(x)xv dx

= µ−1
(K)∫

x∈K
xv
¯

=v since x∈K,v∈V K
dx

= µ−1
(K)v∫

x∈K
dµ = µ−1

(K)vµ(K) = v.

So by Proposition 1.56, V is a smooth H−module.

Proposition 1.60. Let V be a smooth H−module and v ∈ V . There is K ≤
c.o.

G

such that eKv = v. Moreover if K ′ ≤K is compact open then eK′v = v as well.

Proof. Let v ∈ V , since V is a smoothH−module, there is an idempotenet e ∈H such
that ev = e. Since H is idempotented, using proposition 1.54 we get K ≤ G compact
open such that eKe = e. So eKv = eK(ev) = (eK ⋆ e)v = ev = v, which is what we
wanted. Now suppose K ′ ≤K is compact open. The map eK is bi-K ′-invariant, so
eK′ ⋆ eK ⋆ eK′ = eK . Therefore,

eK′v = eK′(eKv) = (eK′ ⋆ eK)v = eKv = v.

We now want to obtain a smooth G−module from a smooth H−module V . If
v ∈ V and g ∈ G, by proposition 1.60 we take K ≤

c.o.
G such that eKv = v. We define

gv ∶= µ(K)−11gKv.

Proposition 1.61. The multiplication gv is well defined and does not depend on
the choice of K.

Proof. Let K,K ′ ≤ G be a compact open subgroup such that eKv = eK′v = v. We
may assume without loss of generality thatK ′ ≤K. Indeed, we can take F =K∩K ′,
then F is compact again and if we prove the fact for K and F , then K ′ and F , we
are done.

Now we compute (µ(K ′)−11gK′) ⋆ eK :

((µ(K)
−11gK′) ⋆ eK) (y) = ∫

G
µ(K ′

)
−11gK′(x)eK(x−1y) dx

= µ(K ′
)
−1µ(K)

−1
∫
gK′

1K(x−1y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1yK(x)

dx

= µ(K ′
)
−1µ(K)

−1µ(gK ′
∩ yK).

Note that if y ∈ gK then yK = gK so gK ′ ∩ yK = gK ′, and otherwise yK ∩ gK = ∅

so yK ∩ gK ′ = ∅. Therefore,

µ(gK ′
∩ yK) = {

µ(gK ′) = µ(K ′) if y ∈ gK
∅ else = µ(K ′

)1gK(y).
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Thus ((µ(K)−11gK′) ⋆ eK) (y) = µ(K)−11gK , and therefore

(µ(K)
−11gK) v = (µ(K)

−11gK′ ⋆ eK) v = (µ(K)
−11gK′) (eKv) = (µ(K)

−11gK′) v,

hence the definition of gv is independent from the choice of K.

Proposition 1.62. This construction gives V the structure of a smooth represen-
tation of G.

Proof. To check that the structure we define is indeed a G−module structure on V
we need to check that for all g, h ∈ G, we have g(hv) = (gh)v.

Let v ∈ V and K ≤ G be compact open such that eKv = v. First we check that
ehKh−1(hv) = hv.

Note that for all k ∈ K and g ∈ G, we have 1hK(hkh−1g) = 1hK(g). Therefore,
µ(K)−11hK is left hKh−1−invariant. Thus, using proposition 1.53, we get

ehKh−1(hv) = ehKh−1(µ(K)
−11hKv) = (ehKh−1 ⋆ µ(K)

−11hK) v = µ(K)
−11hKv = hv.

We then have

g(hv) = g (µ(K)
−11hKv)

= µ(K)
−11ghKh−1 (µ(K)

−11hKv)

= µ(K)
−2 (1ghKh−1 ⋆ 1hK) v.

Let y ∈ G. Then

(1ghKh−1 ⋆ 1hK) (y) = ∫
G
1ghKh−1(x)1hK(x−1y) dx

= ∫
ghKh−1

1hK(x−1y) dx

= ∫
ghKh−1∩yKh−1

1 dx

= µ (ghKh−1
∩ yKh−1) .

We have ghKh−1 ∩ yKh−1 ≠ ∅ if and only if there are k, k′ ∈K such that ghkh−1 =
yk′h−1, which can be rewritten as y = ghkk′. Therefore, ghKh−1 ∩ yKh−1 ≠ ∅ if
and only if y ∈ ghK. If y ∈ ghK then yKh−1 = ghKh−1, so µ (ghKh−1 ∩ yKh−1) =
µ(ghKh−1) = µ(K). Thus 1ghKh−1 ⋆ 1hK = µ(K)1ghK .

Plugging this result into our previous calculation we get

g(hv) = µ(K)
−2 (1ghKh−1 ⋆ 1hK) v = µ(K)

−11ghKv = (gh)v,

which is what we wanted. We indeed have a G−module structure on V . Checking
g(u + v) = gu + gv for all g ∈ G and u, v ∈ V is straightforward.

We have to check that the representation is smooth. Let v ∈ V . We can take
K ≤ G compact open such that eKv = v, thanks to Proposition 1.60. If g ∈K, then

gV = µ(K)
−11gKv = µ(K)

−11Kv = eKv = v.

Therefore, v ∈ V K and we have proved V = ⋃K ≤
c.o.

G V
K .
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Theorem 1.63. There is a categorical isomorphism between

{smooth H(G) −modules} ≅ {smooth G − representations}

Proof. Let C be the category of smooth H(G)−modules and D the category of
smooth representations of G.

First step: Let F ∶ Ob(C)→ Ob(D) denote the map given by the construction
in Proposition 1.59 and G ∶ Ob(D)→ Ob(C) the map in Proposition 1.62.

Let us check that if V ∈ Ob(C), then the G−module structure on V is the same
as the one on FGV . Let g ∈ G and v ∈ V and take K ≤c.o G such that v ∈ V K . Let
.G ∶ G × V → V be the action of G on FGV , then

in FGV
¬
g.Gv =

in GV
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

µ(K)
−11gKv =

in V
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

µ(K)
−1
∫
G
1gK(x)xv dx

x← gx

= µ(K)
−1
∫
G
1gK(gx)(gx)v dx

= µ(K)
−1g∫

G
1K(x)xv dx

= geK(v)

= gv.

So we get FG = IdOb(C).
Conversely, we now take V ∈ Ob(C) and check that the H−module structure on

V is the same as on GFV . Since all functions of H(G) are linear combinations of
indicator functions of left and right cosets of compact open subgroups of G, it is
enough to check this with an element of the form 1gK with g ∈ G and K ≤c.o. G. Fix
such g and K and let v ∈ V . Take K ′ ≤c.o. G such that eK′v = v. We may assume
without loss of generality that K ′ ≤ K since G is tdlc. By Proposition 1.9, there
are g1, . . . , gn ∈ G such that gK = ⋃

n
i=1 giK

′. Again we let .H ∶ H × V → V be the
action of H on GFV .

in GFV
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
1gK .Hv =

in FV
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
intG1gK(x)xvdx =

in V
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
G
1gK(x)(µ(K ′

)
−11xK′)v dx

= µ(K ′
)
−1
∫
gK

1xK′v dx

= µ(K ′
)
−1

n

∑
i=1
∫
giK′

1xK′
±

constant

v dx

= µ(K ′
)
−1

n

∑
i=1
µ(K ′

)1giK′v

= (
n

∑
i=1

1giK′) v

= 1gKv.
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So we got GF = IdOb(D).
Second Step: We extend F and G to functors by setting them to be the

identity on morphisms. Let us check that this is well defined.
Let V,W be two smoothH(G)−modules and let f ∈ C(V,W ) be anH(G)−module

morphism. Let g ∈ G and v ∈ V . Take K ≤c.o. G such that eKv = v. Then

f(gv) = f(µ−1
(K)1gKv)

= µ−1
(K)1gKf(v) since f ∈ C(V,W )

= gf(v).

The last line is indeed the way we defined multiplication by g since eKf(v) =

f(eKv) = f(v). Hence, Ff = f ∈ D(FV,FW ) = D(V,W ).
Conversely, let V,W be smooth representations of G and f ∈ D(V,W ). Again,

since all functions are linear combinations of indicator functions of left cosets of
compact open subgroups, we only need to prove it for functions of the form 1gK
with g ∈ G and K ≤c.o. G. Fix such g and K, and let v ∈ V . Take K ′ ≤c.o. G such
that eK′v = v. Without loss of generality, K ′ ≤ K. Take g1, . . . , gn ∈ G such that
K = ⋃

n
i=1 giK

′. Now,

f(1gKv) = f (
n

∑
i=1

1giK′v)

=
n

∑
i=1
f (1giK′v)

=
n

∑
i=1
µ(giK

′
)f (µ(giK

′
)
−11giK′v)

=
n

∑
i=1
µ(giK

′
)f (giv) since we can see GV as GFGV

=
n

∑
i=1
µ(giK

′
)gif (v)

=
n

∑
i=1

1giK′f (v)

= 1gKf(v).

We now have that F,G are well defined. Let us check that they are indeed functors.
Clearly for all V ∈ Ob(C),W ∈ ObD we have F IdV = IdV = IdFV and GIdW = IdW =

IdGW . The fact that F and G preserve composition is also straightforward to check
since F and G act as the identity. Therefore F and G are functors, FG = IdD and
GF = IdC , hence the desired categorical isomorphism.

Remark 1.64. A consequence of the proof we just did is that since G−module
morphisms are the same as H(G)−module morphisms. Therefore for all compact
open subgroups K ≤ G and all G−module morphism f ∶ V → V , we have f(eKv) =
eK(f(v)) ∀v ∈ V .
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1.5 The Relative Hecke Algebra

Remark 1.65. If K ≤ G is a compact open subgroup, then V K = eKV , and it is a
left eKHeK module.

Definition 1.66 (Hecke Algebra relative to a compact open subgroup). If K ≤ G
is a compact open subgroup, then we call HK(G) = eKHeK the Hecke algebra of
G with respect to K.

Remark 1.67. Proposition 1.53 implies that HK(G) is the subalgebra of bi-K-
invariant functions. In the case where K is a maximal compact subgroup of G, this
algebra is sometimes called the spherical Hecke algebra of G.

Let us state a few useful lemmas for studying the relative Hecke algebra.

Proposition 1.68. HK is generated as a vector space by functions of the type 1KgK
with g ∈ G.

Proof. First notice that for all g ∈ G the map 1KgK is bi-K-invariant ant therefore
is in HK .

Let f ∈ HK . We know that f is bi-K-invariant. If x ∈ Supp(f), then for
all k ∈ K we have f(kx) = f(x) = f(xk). Therefore, Supp(f) = KSupp(f)K =

⋃x∈Supp(f)KxK. Since the support is compact, there are x1, . . . , xn such that Supp(f) =
⋃
n
i=1KxiK and the double cosets {KxiK}ni=1 are distinct. Thus,

f =
n

∑
i=1
f(xi)1KxiK .

Proposition 1.69. If V is an algebraically irreducible smooth H−module (or equiv-
alently, an algebraically irreducible smooth G−module, thanks to the category iso-
morphism) and e ∈H is an idempotent, then eV = 0 or eV is a simple eHe−module.

Proof. Since V is irreducible as an H−module, for all 0 ≠ v ∈ V , we have Hv = V .
Indeed, Hv is a submodule of V . Suppose eV ≠ 0. Then for the same reason, if we
show that for all v ∈ eKV , eHev = eV then we will be done. Let 0 ≠ v ∈ eV . Since e
is an idempotent, ev = v, so eHev = eHv = eV , which is what we wanted.

Corollary 1.70. If V is an algebraically irreducible smooth H−module, then for all
compact open K ≤ G , either V K = 0 or V K is a simple HK(G)−module.

Proof. It is immediate from proposition 1.69 since eKV = V K .

Suppose that we want to prove that irreducible representations of GLn(Qp) are
uniformly admissible. Then it suffices to show that for all K ≤ GLn(Qp) compact
open, all simple HK(GLn(Qp))−modules have bounded dimension.
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1.6 The Algebra Ĥ

The goal of this section is to be able to consider more general operations than those
of the Hecke algebra. Given a tdlc group G, we will want to consider the averaging
operators with respect to compact subgroups even when their measure is zero.

Definition 1.71. We define

Ĥ(G) = HomH (HH,HH) .

We may write Ĥ instead of Ĥ(G) when there is no ambiguity.

Remark 1.72. Note that H embeds in Ĥ(G) through f ↦ φf where φf(g) = f ⋆ g.
Also, G embeds in Ĥ(G) (when viewed as a monoid) through g ↦ δg where

δg(f)(x) = f(g−1x). Note that δ1 is the identity on H where 1 is the neutral
element in G.

Let us show that both functions are injective, in Proposition 1.74 we will add a
product in Ĥ that agrees with both products in H and G.

Let f, g ∈ H such that φf = φg. Take K ≤
c.o.

G small enough such that f, g are
both right-K-invariant. Then,

f = f ⋆ eK = φf(eK) = φg(eK) = g ⋆ eK = g.

Let g, h ∈ G such that δg = δh. For all compact open K ≤ G, we have

1gh = δg(1K) = δh(1K) = 1hK .

Indeed, for all x, y ∈ G we have δx(1K)(y) = 1K (x−1y) = 1xK(y). Thus, for all
compact open K ≤ G we have gK = hK. Hence, g−1h ∈ K for all compact open
K ≤ G, so g−1h = 1 and therefore g = h.

Proposition 1.73. If V is a smooth representation of G, then there is an action
Ĥ(G) on V that agrees with the action of H(G) and the action of G.

Proof. Let f ∈ Ĥ(G). If v ∈ V , then define fv = f (eK) v where K ≤
c.o.

G is chosen
such that eKv = v. Let us prove that this is independent of the choice of K. Let
K ′ ≤ G compact open such that eKv = v. We may assume without loss of generality
that K ′ ≤K. Then we know that eK′ ⋆ eK = eK , therefore,

f (eK) v = f (eK′ ⋆ eK) v = (f (eK′) ⋆ eK) v = f (eK′) (eKv) = f (eK′) v.

Let v ∈ V and K ≤
c.o.

G be such that eKv = v. If f ∈H(G) then

φfv = φf(eK)v = (f ⋆ eK)v = f(eKv) = fv.

Let g ∈ G, we have

δgv = δg(eK)v = eK(g−1v) = µ(K)
−11gK(v) = gv,

as required.
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Proposition 1.74. If we give Ĥ(G) the product given by composition, then it
coincides with the product on H and G.

Proof. Let f, g ∈H(G). Then for all h ∈H we have

φfφg(h) = φf (φg(h)) = f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h = φf⋆g(h).

Let g, h ∈ G then for all f ∈H(G) and x ∈ G we have

δgδh(f)(x) = δg (δh(f)(x)) = δh (f) (g
−1x) = f(h−1g−1x) = δghf(x),

as required.

Remark 1.75. Suppose we have a measure on a tdlc group G such that µ(G) <∞

and µ is supported on a compact. Then, for every f ∈H we can define µ⋆f ∶ G→ C
as follows:

(µ ⋆ f) (x) = ∫
g∈G

f(g−1x) dµ ∀x ∈ G.

It is easy to see that the operation f ↦ µ ⋆ f is in Ĥ(G). Let f ∈ H. We show
first that µ ⋆ f ∈ H. The operation given by µ is linear so it suffices to check it for
f of the form 1hK where h ∈ G and K ≤

c.o.
G.

(µ ⋆ 1hK) (x) = ∫
g∈G

1hK(g−1x) dµ = ∫
g∈G

1xKh−1(g) dµ = µ (xKh−1)

Since µ is supported on compacts, x can belong to only finitely many left cosets
of K, hence µ ⋆ eK is compactly supported. Also for all x ∈ G and k ∈ K, we have
(µ ⋆ eK) (xk) = µ (xKh−1) = (µ ⋆ eK) (x), hence µ⋆eK is constant on xK, therefore
it is locally constant. Hence, µ ⋆ eK ∈HK .

Let us show that it is a morphism of right H-modules. Let f, g ∈ H. Then for
all x ∈ G we have

((µ ⋆ f) ⋆ g) (x) = ∫
y∈G

(µ ⋆ f) (y)g(y−1x) dx

= ∫
y∈G∫z∈G

f(z−1y)g(y−1x) dµ(z) dx

= ∫
z∈G∫y∈G

f(z−1y)g(y−1x) dx dµ(z)

y ← zy

= ∫
z∈G∫y∈G

f(y)g(y−1z−1x) dx dµ(z)

= ∫
z∈G∫y∈G

(f ⋆ g) (z−1x) dx dµ(z)

= (µ ⋆ (f ⋆ g)) (x),

so µ ⋆ (f ⋆ g) = (µ ⋆ f) ⋆ g, which is what we wanted.
Let K ≤ G be a compact (not necessarily open) subgroup. We define eK ∈ Ĥ by

f ↦ µK ⋆ f where µK is the normalized Haar measure of K.
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Let K ≤ G be a compact open subgroup. Then eK ⋆ f(x) = ∫g∈G f(g
−1x) dµK =

µ(K)−1
∫g∈K f (g−1x) dµ where µ is a Haar measure on G. Therefore, there is no

ambiguity in the definition of eK , since the element eK ∈ Ĥ corresponds to the one
in H(G) through the embedding H ↪ Ĥ.

Let g ∈ G. Define the point measure µg(S) = {
1 if g ∈ S
0 else . Then for all f ∈ H,

we have
µg ⋆ f(x) = ∫

y∈G
f(y−1x) dµg = f(g−1x).

So µg corresponds to the operator δg we defined previously.
If V is a smooth representation of G then for every compact (not necessarily

open) subgroup K ≤ G we have eKv = ∫k∈K kv dµK .

Lemma 1.76. Let K be a compact group. If V is an irreducible representation of
K then for all v ∈ V we have

eKv = {
v if v ∈ V K

0 else .

Proof. Let V be an irreducible representation of K.
Note that V K = eKV is a K−submodule of V , therefore V K = 0 or V K = V .

In the first case, if v ∈ V then eKv = 0. In the second case, if v ∈ V = V K then
eKv = v.

Corollary 1.77. Let K be a totally disconnected compact group with associated
Haar measure and (σ,V ) a representation. Let K1,K2 be closed subgroups such
that K =K1K2, then eK = eK1eK2.

Proof. Define the action of K on L2(K) by left translation, i.e. for all f ∈ L2(K)

and all g, h ∈ K we have gf(h) = f(g−1h). This defines a unitary representation of
K with usual inner product.

Since K is compact, we can use Peter-Weyl’s Theorem and decompose L2(K) as
a Hilbert space direct sum of irreducible finite-dimensional representations, L2(K) =

⊕̂i∈I S
ni
i for some set I where ni = dim (Si). Since each summand is finite dimen-

sional and unitary (and so have a dense smooth part), they are smooth represen-
tations of K. Therefore, define V = ⊕i∈I Snii , it is a smooth representation of K,
dense in L2(K).

We get an action of H(K) on V by

fg(y) = ∫
K
f(x)xg(y) dµK(x) = ∫

K
f(x)g(x−1y) dµK(x) = (f ⋆ g)(y).

Note that this action extends to L2(K) by continuity, therefore we can see L2(K)

as a (non smooth) representation of H(K)

The action is faithful. Indeed, let f, g ∈ H(K) such that f and g give the same
action on L2(K). There is K ′ ≤

c.o.
K such that f and g are right K ′−invariant. Note

that eK′ ∈ L2(K), so g = g ⋆ eK′ = f ⋆ eK′ = f . So f = g, as we wanted. This implies
that V is a faithful representation of K. Indeed, if f, g ∈H(K) have the same action
on V , by density of V , they have the same action on L2(K) and so are equal.
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If we prove that eK has the same action on V as eK1 ⋆ eK2 , we are done.
To prove that eK and eK1eK2 have the same action on V , it suffices to prove it

for each of the summands Si. Let v ∈ S where S = Si for some i ∈ I is an irreducible
unitary K−module. Using Proposition 1.76, we know that

eKv = {
v if v ∈ SK
0 else .

Note that SK ⊂ SK1 and SK ⊂ SK2 therefore, if v ∈ SK , then

eK1eK2v = eK1v = v = eKv.

Otherwise, SK ≠ S is a K−submodule, so SK = 0 by irreducibility. We want to
show that eK1eK2v = 0.

Claim: If SK = 0 then SK1 and SK2 are perperndicular subspaces of S.
Note that this makes sense since S is unitary as a representation of K. Let

u ∈ SK1 and v ∈ SK2 and let k = k1k2 with k1 ∈K1 and k2 ∈K2. Then,

⟨u, kv⟩ = ⟨u, k1k2v⟩ = ⟨k−1
1 u

±
=u

, k2v
°
=v

⟩ = ⟨u, v⟩ .

Therefore,

⟨u, v⟩ = ⟨u, v⟩µK(K)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

=1

= ∫
K

⟨u, kv⟩ dµK(k)

= ⟨u,∫
K
kv dµK(k)⟩

= ⟨u, eKv⟩ = 0,

since eKv ∈ SK = 0. The claim is proved.
Claim: If SK = 0 then eK1eK2v = 0 for all v ∈ S.
Note first that if H ≤K is any compact subgroup, then for all u, v ∈ S we have

⟨u, eHv⟩ = ⟨u,∫
H
hv dµH(h)⟩

= ∫
H

⟨u,hv⟩ dµH(h)

= ∫
H

⟨h−1u, v⟩ dµH(h)

= ⟨∫
H
h−1u dµH(h), v⟩

= ⟨eHu, v⟩ .

The last line holds because H is unimodular and therefore the change of variable
h← h−1 doesn’t change the integral.

To prove the claim, we only need to show that ⟨u, eK1eK2v⟩ = 0 for all u ∈ S.
We have

⟨u, eK1eK2v⟩ = ⟨ eK1u
²
∈SK1

, eK2v
±
∈SK2

⟩ = 0,

by the previous claim. So eK1eK2v = 0.
Again eK1eK2v = eKv, as desired.
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Proposition 1.78. Let G be a totally disconnected locally compact group and K ≤ G
a compact open subgroup. Then for all g ∈ G we have

eK ⋆ δg ⋆ eK = eKgK .

Proof. Let y ∈ G. We have seen that δg ⋆ eK = µ (K)
−1
1K(g−1y) = µ (K)

−1
1gK(y).

Therefore we have

(eK ⋆ δg ⋆ eK)(y) = µ(K)
−2

(1K ⋆ 1gK) (y)

= µ(K)
−2
∫
G
1K(x)1gK(x−1y) dx

= µ(K)
−2
∫
K

1gK(x−1y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1 if and only if x∈yKg−1

dx

= µ(K)
−2µ (K ∩ yKg−1) .

Suppose K ∩ yKg−1 ≠ ∅ then there is k ∈ K such that k = yk′g−1 and therefore
y = kgk′−1 ∈KgK. We showed that Supp (eK ⋆ δg ⋆ eK) ⊂ Supp (KgK).

Now note that by construction eK ⋆ δg ⋆ eK is bi-K-invariant so it has to be
constant on KgK. Therefore it is completely determined by its value at g.

Furthermore, we have

(eK ⋆ δg ⋆ eK)(g) = µ(K)
−2µ (K ∩ gKg−1) . (†)

Claim: We have µ (KgK) =
µ(K)2

µ(K∩gKg−1) .
Consider the morphism

ϕ ∶ ∣
K →KgK/K
k ↦ kgK

It is well defined and clearly surjective since all elements of KgK/K are of the
form kgK for some k ∈ K. Note that the right handside is not a group but just a
collection of left cosets. To be more formal we could see this as an action of K on
G/K, and the image of ϕ is the orbit of gK. Let us find ϕ−1 (gK) the stabilizer of
gK. Let k ∈ K such that ϕ(k) = gK. Then kgK = gK so g−1kg ∈ K and we get
k ∈ gKg−1 ∩K. Conversely, if k ∈ gKg−1 ∩K we directly check that ϕ(k) = gK.

We have ϕ(K) = Orb (gK) ≅ K
Stab(gK) . Plug in what we just checked, and we

get
[KgK ∶K] =

µ (KgK)

µ (K)
=

µ (K)

µ (K ∩ gKg−1)
= [K ∶ gKg−1

∩K] .

Therefore our claim is verified.
From this last equality we have µ (KgK) =

µ(K)2
µ(K∩gKg−1) . Plug this into (†), we

get (eK ⋆ δg ⋆ eK)(g) = µ (KgK)
−1. Using the bi−K−invariance we can therefore

conclude that for all y ∈ G we have

(eK ⋆ δg ⋆ eK)(y) = (eK ⋆ δg ⋆ eK)(g)1KgK(y) = µ (KgK)
−1
1KgK = eKgK ,

as desired.
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1.7 Induction of representations.
For this section let G be an arbitrary tdlc group, and H a closed subgroup.

Definition 1.79 (Induced representation). Let (σ,V ) be a representation of H.
The induced representation of (σ,V ) from H to G is the subset IndGH(V ) of the
functions f ∶ G→ V such that

(i) For all h ∈H and g ∈ G we have f(hg) = σ(h)f(g).

(ii) There is K ≤c.o. G such that f is right K−invariant.

The group G acts on this space via right translations. In other words for all
f ∈ EndGH(V ) and g, h ∈ V we have (gf)(h) = f(hg). We will write IndGH(σ) the
representation map.

We further let c − IndGH(V ) be the subspace of IndGH(V ) consisting of functions
such that the image of their support in G/H is compact. It is called the compact
induction.

Let us state a few important results about induction.

Proposition 1.80. Let H ≤ G be a closed subgroup and let (σ,V ) be a smooth
representation of H. Then:

(i) The induced representations IndGH(σ) and c − IndGH(σ) are smooth represen-
tations (this doesn’t require any hypothesis on H and V ).

(ii) The maps Λ ∶ IndGH(V )→ V and Λc ∶ c − IndGH(V )→ V defined by f ↦ f(1)
are H−module morphisms.

(iii) If H/G is compact and σ is admissible then IndGH(σ) = c − IndGH(σ) and
IndGH(σ) is admissible.

(iv) (Frobenius Reciprocity) If (π,W ) is a smooth representation of G, then
composition on the right with Λ is an isomorphism from HomG(W, IndGH(V )) to
HomH(W,V ).

Proof. (i) Any function in the induced representation has to be fixed by some
compact open subgroup by definition. Therefore, induced representations are always
smooth.

(ii) This is immediate from the following observation: For all h ∈H, we have

Λ (IndGH(σ)(h)f) = (IndGH(σ)(h)f) (1) = f(h) = σ(h)f(1) = σ(h) (Λ(f)) .

The same is valid for the compactly supported case.
(iii) The fact that IndGH(σ) = c − IndGH(σ) is immediate, since H/G is compact.
Assume that σ is admissible and H/G is compact. Let K ≤ G be a compact

open subgroup. Let us show that IndGH(V )K is finite dimensional. Suppose f ∈

IndGH(V )K . Then for all g ∈ G and k ∈K ∩ g−1Hg,

f(g) = f(gk) = f(gkg−1g) = σ(gkg−1
)f(g).

since gkg−1 ∈ gKg−1 ∩H. Therefore, f(g) ∈ V gKg−1∩H .
Take a set of representatives of left cosets of K in G. Then their image in H/G is

an open cover. Since H/G is compact, we get that there are g1, . . . , gn ∈ G such that
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G = ∪ni=1HgiK. Let I = {gi ∶ 1 ≤ i ≤ n}. We can rewrite our equality as G = HIK.
Define V0 = ∑

n
i=1 V

H∩giKg−1
i , since σ is admissible and H ∩ giKg

−1
i is compact open

in H for all i, we know that dim (V H∩giKg−1
i ) <∞. Hence, dim(V0) <∞. Using the

previous paragraph, we know that f(gi) ∈ V H∩giKg−1
i , therefore f(I) ⊆ V0.

Now consider the map (IndGH(V ))
K
→ C(I, V0) defined by f ↦ f ∣I . Let us prove

that this map is injective. Suppose f, h ∈ (IndGH(V ))
K are such that f ∣I = h∣I and

let g ∈ G = HIK. There is i ∈ {1, . . . , n} such that g = `gik for some ` ∈ H and
k ∈K. Therefore

f(g) = f(`gik) = f(`gi) = σ(`)f(gi) = σ(`)h(gi) = h(`gi) = h(`gik) = h(g).

So f = h, which is what we wanted. Therefore, dim ((IndGH(V ))
K
) ≤ dim(C(I, V0)) <

∞, since I is finite and dim(V0) <∞. This shows that IndGH(σ) is admissible.
(iii) Let us first check that the morphism is well defined. If f ∈ HomG(W, IndGH(V )),

then for all w ∈W , we have

σ(h) (Λ ○ f(w)) = σ(h) (fw(1)) = fw(h)

= (IndGH(σ)(h)fw) (1)
= f (π(h)w) (1)
= Λ ○ f(π(h)w),

therefore Λ ○ f ∈ HomH (W,V ).
Let us check that Φw ∈ IndGH(V ). Let h ∈H and g ∈ G, then

Φw(hg) = f(π(hg)w)

= f(π(h)π(g)w)

= σ(h)f(π(g)w)

= σ(h)Φw(g),

which verifies the first condition.
To see that the morphism is injective, suppose Λ ○ f(w) = fw(1) = 0 for all

w ∈W . As before, for all w ∈W and g ∈H we have
fw(g) = IndGH(σ)(g)(fw)(1) = (fπ(g)w)(1) = 0.

Thus, fw = 0 for all w ∈W , so the morphism is injective.
For the surjectivity, take f ∈ HomH(W,V ). Define Φ ∶ W → IndGH(V ) by Φ ∶

w ↦ Φw where Φw(g) = f(π(g)w). Fix w ∈ W , the map Φ is easily seen to be a
G−modules morphism. Indeed

Φπ(g′)w(g) = f(π(g)π(g
′
)w) = f(π(gg′)w) = Φw(gg

′
) = (IndGH(σ)(g′)Φw) (g).

For the second condition, since π is smooth, there is K ≤ G compact open such
that w ∈WK . For all g ∈ G and k ∈K we have

Φw (gk) = f(π(gk)w)

= f(π(g)π(k)w)

= f(π(g)w)

= Φw(g)
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so Φw is right K−invariant, as we wanted.
To finish, we only need to check that Λ ○Φ = f . Clearly, for all w ∈W ,

(Λ ○Φ) (w) = Φ(w)(1) = Φw(1) = f(π(1)w) = f(w),

so we are done.

1.8 Uniform admissibility, to and from finite index sub-
groups

We will now state a few useful properties related to proving admissibility of repre-
sentations of groups.

Notation. Let G be a tdlc group. We will say that G has the property (IA) if all
irreducible smooth representations of G are admissible. Similarly, we say that G
has the stronger property (IUA) if all the irreducible smooth representations of G
are uniformly admissible.

Our goal in this section is to prove the following:

Theorem 1.81. Let G be a tdlc group, and H a finite index open subgroup. Then
G has (IA) if and only if H has (IA). Moreover G has (IUA) if and only if H
has (IUA).

Proposition 1.82. Let G be a tdlc group and let K ≤ G be a compact open subgroup.
Then the functor from smooth G−representations to vector spaces V ↦ V K is exact.

Proof. First note that this is indeed a functor. If f ∈ HomG(V,W ), then for all
v ∈ V K , we have gf(v) = f(gv) = f(g). Therefore, f ∣V K ∶ V K →WK is well defined.
It is straightforward to check that this preserves composition and IdV ∣V K = IdV K .

Take an exact sequence of G−modules

0Ð→ V
f
Ð→W

g
Ð→ U Ð→ 0.

● f ∣KV is injective: We have Ker(f ∣V K) = Ker(f)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
={0}

∩ V K = {0} as desired.

● gWK is surjective: Let u ∈ UK . By surjectivity of g, we have w ∈ W such
that g(w) = u. Note that f(eKw) = eKf(w) = eKu = u and eKw ∈ V K therefore
f ∣V K(eKw) = u as desired.

● Im(f ∣V K) = Ker(g∣WK): Let v ∈ V K . Then

g∣WK (f ∣V K(v)) = g(f(v)) = 0,

hence Im(f ∣V K) ⊃ Ker(g∣WK). Conversely, let w ∈ Ker (g∣WK). Then in particular
w ∈ Ker(g) = Im(f). Therefore there is v ∈ V such that f(v) = w. Again, f(eKv) =
eKf(v) = eKw = w and eKv ∈ V K , so f ∣V K(eKv) = w. We conclude that Im(f ∣V K) =

Ker (gWK) and thus

0Ð→ V K
f ∣
VK

Ð→ WK
g∣
WK

Ð→ UK Ð→ 0

is exact.
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Definition 1.83 (Composition series, length of a module). Let R be a ring, andM
a left R-module. We say that R admits a composition series if there is a sequence
of R −modules

M =Mn ≥Mn−1 ≥ ⋅ ⋅ ⋅ ≥M0 = {0}

such that Mi/Mi−1 is a simple module for all i ∈ {1, . . . , n}.
By the Jordan-Hölder theorem, n depends only on M and is called the length

of M . If M hasa no composition series it is said to be of infinite length.

Corollary 1.84. Let G be a tdlc group with property (IA). Then all finite-length
smooth G-modules are admissible as representations. If G has (IUA) then all
the smooth G-modules of length n for any fixed n ∈ N are uniformly admissible as
representations of G.

Proof. Suppose G has (IA). Let K ≤ G be compact open.
Let V be a G−module of length n, and take a composition series

V = Vn ≥ Vn−1 ≥ ⋅ ⋅ ⋅ ≥ V0 = {0}.

Let i ∈ {1, . . . , n}. We have the exact sequence

0Ð→ Vi−1 Ð→ Vi Ð→ Vi/Vi−1 Ð→ 0.

By proposition 1.82, we also have the exact sequence

0Ð→ V K
i−1 Ð→ V K

i Ð→ (Vi/Vi−1)
K
Ð→ 0.

Viewing those representations as C−vector spaces, the sequence splits. There-
fore, V K

i ≅ V K
i−1 ⊕ (Vi/Vi−1)

K as vector spaces. We prove by an easy induction
that for all i ∈ {1, . . . , n} we have V K

i = ⊕1≤j≤i (Vj/Vj−1)
K . In particular, V K =

⊕1≤i≤n (Vi/Vi−1)
K . Since each Vi/Vi−1 is irreducible, (Vi/Vi−1)

K has finite dimen-
sion. Therefore, dim (V K) = ∑

n
i=1 dim (Vi/Vi−1)

K
<∞, as desired.

If G has (IUA), then there is N(K) ∈ N such that dim (WK) ≤ N(K) for any
simple G-module W . If V has length n as a G-module, then using the same nota-
tions as before, dim (V K) = ∑

n
i=1 dim (Vi/Vi−1)

K
≤ nN(K) which is independent of

V . Hence, all smooth G-modules of length less than or equal to n are uniformly
admissible.

Proposition 1.85. Let G be a group and let H be a finite index subgroup. Then
there is N ≤H normal and of finite index in G.

Proof. Let n = [G ∶ H]. The action of G on the left cosets gives rise to a surjective
morphism ϕ ∶ G → Sym (G/H) ≅ Sn. The kernel of this morphism is a normal
subgroup of G and fixes H, therefore is contained in H. Call the kernel N . Then
N is a normal subgroup of G and G/N ≤ Sn. Therefore, N has finite index in G
and it is contained in H.

Proposition 1.86. Let G be a tdlc group, and H a finite index open normal sub-
group. If G has (IA) (respectively (IUA)) then H has (IA) (respectively (IUA)).
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Proof. Let n = [G ∶ H]. Write G = ⋃
n
i=1Hgi as a disjoint union of right cosets.

Suppose all irreducible smooth representations of G are uniformly admissible.
Let V be an irreducible smooth representation of H. We claim that

IndGH (V ) =
n

⊕
i=1

{f ∈ IndGH(V ) ∶ Supp (f) ⊆Hgi}

as a direct sum of H−modules.
First, let us check that it makes sense as a vector space direct sum. Let f ∈

IndGH(V ). Then f = ∑
n
i=1 f1Hgi . Let i ∈ {1, . . . , n}. We check that f1Hgi ∈ IndGH(V ).

Let g ∈ G and h ∈H. We have

(f1Hgi) (hg) = f(hg)1Hgi(hg) = hf(g)1Hgi(g)

as desired. Let K ≤ G be compact open such that kf = f for all k ∈ K. Let
K ′ =K ∩H. The subgroup K ′ is also compact open. Note that if k ∈K ′, then

(k(f1Hgi)) (g) = (f1Hgi)(gk) = f(gk)
´¹¹¹¸¹¹¹¹¶
=f(g)

1Hgik−1(g) = f1Hgi(g)

since Hgik−1 = Hgi because k ∈ H, which is normal in G. Therefore, f1Hgi ∈
IndGH(V ).

The decomposition of f is unique since the cosets of H are disjoint.
Let Vi = {f ∈ IndGH ∶ Supp (f) ⊆Hgi}. Let us show that it is an H−module. To

that extent, we only need to check that it is stable under the action of H. Let
h ∈ H and f ∈ Vi. Let g ∈ G, we have (hf)(g) = f(gh) and gh ∈ Hgi if and only if
g ∈ Hgih

−1 = Hgi since h is normal in G. Therefore Supp(hf) ⊆ Hgi and hf ∈ Vi,
as desired.

Claim: There is a vector space isomorphism Vi ≅ V .
Indeed, define a map ϕ ∶ Vi → V by f ↦ f(gi).
● ϕ is injective: Let f ∈ Ker (ϕ) and let g ∈ Supp(f). Since Supp(f) ⊆ Hgi, we

can write g = hgi ∈Hgi. We have f(hgi) = hf(gi) = hϕ(f) = 0, therefore f = 0.

● ϕ is surjective: Let v ∈ V . Define f ∶ G→ V by f(hgj) = {
hv if i = j
0 else (h ∈H).

The fact that f(hg) = hf(g) for all h ∈ H and g ∈ G is immediate from the
definition. Since V is smooth, Stab(v) is open therefore there is K ≤ H compact
open such that kv = v for all k ∈ K. We may assume without loss of generality
that for all j ∈ {1, . . . , n} and k ∈K we have gijg−1

i v = v since we can replace K by
K ∩ (⋂

n
j=1 g

−1
j Kgj).

Let k ∈K, for all h ∈H and j ∈ {1, . . . , n} we have

(kf)(hgj) = f(hgjk) = f(hgjkg
−1
j

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈H

gj)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(gjkg
−1
j )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈K

v if j=i

0 else

= {
hv if j=i
0 else = f(hgj).
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We showed that f ∈ IndGH (V ), and we clearly have that Supp(f) ⊆Hgi. Moreover,
ϕ(f) = f(gi) = v, hence ϕ is surjective. We have our desired isomorphism.

Note that this is not necessarily an H-module isomorphism. Indeed, if h ∈ H,
then

ϕ(hf) = f(gih) = f(gihg
−1
i gi) = (gihg

−1
i ) f(gi) = (gihg

−1
i )ϕ(f). (⋆)

Claim: Vi is irreducible as a representation of H.
Let 0 ≠ f ∈ Vi. According to (⋆) we have:

ϕ (Span (Hf)) = Span (giHg
−1
i ϕ(f)) = V,

since V is irreducible. The map ϕ is an isomorphism of vector spaces and therefore
we have Span (Hf) = Vi which proves that Vi is a simple H−module.

Claim: The G−module IndGH (V ) has length at most n and therefore it is
admissible.

Since IndGH (V ) = ⊕
n
i=1 Vi is an H−module direct sum, it has length n as an H

module with composition series

IndGH (V ) =
n

⊕
i=1
Vi ≥

n−1
⊕
i=1

Vi ≥ ⋅ ⋅ ⋅ ≥ V1 ≥ {0}.

Take a sequence of G-modules

IndGH (V ) =W` >W`−1 > ⋅ ⋅ ⋅ >W0.

If ` > n, then by viewing the sequence as a sequence of H-modules, it cannot be
longer than a composition series of IndGH (V ) viewed as a H−module. Therefore,
IndGH (V ) has length at most n, as desired.

By corollary 1.84 the G−representation IndGH(V ) is admissible.
Claim: The H-module V is admissible.
Let K ≤ H compact open and v ∈ V K , note that since H is open in G, the

subgroup K is also compact open in G. Take i ∈ {1, . . . , n}. Using (⋆) we get that
for all k ∈ K, we have ϕ−1(kv) = (g−1

i kgi)ϕ
−1(v) = ϕ−1(v). Therefore ϕ−1 (V K) ⊆

V g−1
i Kgi . Since ϕ is a vector space isomorphism, we have that

dim (V K) ≤ dim(V
g−1
i Kgi

i ) ≤ dim (IndGH (V ))
g−1
i Kgi

<∞.

We therefore proved that V is admissible, as desired.
Moreover, if G has (IUA), then so does H by second assertion of corollary

1.84. Indeed for all K ≤ G compact open there is N(K) such that for all irreducible
smooth representation of G, the dimension of the K-smooth part is at most N(K).

Let K ≤ H compact open. If V is an irreducible representation of H, keeping
the same notations, we saw that dim (V K) ≤ dim (IndGH (V ))

g−1
i Kgi

≤ nN(g−1
i Kgi)

which is independant of V , as desired.

Proposition 1.87. Let G be a tdlc group, and H a finite index open normal sub-
group. If H has (IA) (respectively (IUA)) then G has (IA) (respectively (IUA)).
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Proof. Again let n = [G ∶H] and write G = ⋃
n
i=1Hgi.

Suppose that H has (IA). Let us show that G has (IA) as well.
Let V be an irreducible representation of G. If 0 ≠ v ∈ V then

V = Span (Gv) = Span(
n

⋃
i=1
Hgiv) =

n

∑
i=1

Span (Hgiv) .

Thus, V is finitely generated as a H−module. Thanks to proposition 1.28, V has an
irreducible nontrivial quotient W . Let M ≤ V be the maximal proper submodule
of V such that W ≅ V /M (it is the kernel of the projection V → W ). Since H
is normal, we have that for all g ∈ G, gM is an H-module and it is therefore is a
maximal submodule of V .

If g ∈ G we can write it hgi with h ∈ H and i ∈ {1, . . . , n}. Note that gM =

hgiM = gig
−1
i hgiM = giM since H is normal in G. This implies that multiplication

by g ∈ G just permutes the modules giM . Therefore, ⊕n
i=1 V /giM is a G-module in

the obvious manner.
Define the map

ϕ ∶ ∣
V →⊕n

i=1 V /giM
v ↦⊕n

i=1 (v + giM)
.

It is a G-module morphism. Indeed, let g ∈ G. Then

ϕ(gv) =
n

∑
i=1

(gv + giM)

=
n

∑
i=1

(gv + ggiM) since g permutes the sets giM

= g (
n

∑
i=1
v + giM)

= gϕ(v).

Since ϕ is aG−module morphism, its kernel is aG−module. Therefore, Ker (ϕ) =
0 (the kernel cannot be V since giM is a proper subspace for all i ∈ {1, . . . , n}).

We proved that ϕ is an injective G−module morphism hence it is an injective
H−module morphism. Since all V /giM are simple, V embeds in ⊕n

i=1 V /giK which
is semisimple of length n. Therefore, V has length at most n as anH-module. Using
corollary 1.84, V is admissible as an H module. If K ≤ G is compact open, we can
assume as usual without loss of generality that K is small enough such that K ≤H,
and by admissibility of V as a representation of H, we know that dim (V K) <∞.

If we assume H has (IUA), and K ≤
c.o.

G, then again we take K ≤ H. There
is N(K) such that for all irreducible smooth representation W of H, we have
dim (WK) < N(K). If V is an irreducible smooth representation of G, then, keeping
the same notations as before we have that

dim (V K) ≤ dim
⎛

⎝
(
n

⊕
i=1
V /giM)

K
⎞

⎠
≤

n

∑
i=1

dim ((V /giM)
K
) ≤ nN(K)

which is independant of the choice of V as, desired. Therefore G has (IUA).

Now we can prove our theorem.
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Proof of Theorem 1.81. Let N ≤ H be open and normal in G, and of finite index.
It exists thanks to proposition 1.85.

(⇒) Suppose G has (IA) (resp. (IUA)). By proposition 1.86, we know that
N has (IA) (resp. (IUA)). Since N has finite index in G, and is contained in H,
it has finite index in H. Therefore, by Proposition 1.87, we get that H has (IA)

(resp. (IUA)).
(⇐) Suppose H has (IA) (resp. (IUA)). By proposition 1.86 we get that

N has (IA) (resp. (IUA)), and Proposition 1.87 tells us that G has (IA) (resp.
(IUA)) as desired.

Example 1.88. Consider the morphism ϕ ∶ GLn(Qp)→ Z given byM ↦ ∣det (M) ∣p.
Then for all k ∈ N, we have that ϕ−1 (kZ) is a finite index open subgroup of
GLn(Qp). In Chapter 5, we will prove that GLn(Qp) has (IUA), and therefore so
does ϕ−1 (kZ).

Note that we can do the same to GLn (F ) where F is any local non-Archimedean
field.

Example 1.89. Consider the group G = Aut (GLn(Qp)) the automorphism group
of PGLn (Qp). The subgroup GLn (Q) has order 2, its cosets being PGLn (Qp) and
(i○τ)PGLn (Qp) where i is the inversion map and τ the transpose map. The group
PGLn (Qp) has (IUA) therefore so does Aut (GLn(Qp)).



Chapter 2

Decompositions in GLn(F )

2.1 General Facts about Local Fields

Let us recall some general facts about local fields. For proofs the reader can refer
to [22].

Definition 2.1 (Local Field). A local field is a locally compact topological field
with respect to a nondiscrete topology.

Definition 2.2 (Absolute value). Let F be a field. An absolute value on F is a
function ∣ ⋅ ∣ ∶ F → R+ such that the following holds:

• ∣x∣ = 0 if and only if x = 0.

• ∣xy∣ = ∣x∣∣y∣.

• ∣x + y∣ ≤ ∣x∣ + ∣y∣.

Furthermore, we say that a field equipped with an absolute value isArchimedeanArchimedean
field if for any 0 ≠ x ∈ F we have n ∈ N such that ∣nx∣ ≥ 1. If this condition fails the
field is called non-Archimedean.

Proposition 2.3. A field that is non-Archimedean satisfies the ultrametric tri-
angle inequality, i.e. for all x, y ∈ F we have

∣x + y∣ ≤ max (∣x∣, ∣y∣) .

Theorem 2.4. In any local field, the topology is given by an absolute value.

Theorem 2.5. There are only 4 kinds of local fields.

• Local archimedean fields, all have characteristic 0:

– R,
– C.

• Local non-Archimedean fields:

– Finite field extensions of Qp, they have characteristic 0,

41
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– Finite field extensions of formal Laurent series Fq((T )) with q a power
of a prime number.

Notation. Let F be a local non-Archimedean field. We use O to denote its ring
of integers. We have that O = {x ∈ F ∶ ∣x∣ ≤ 1}.

Proposition 2.6. Let F be a local non-Archimedean field. Then O is a compact
open subgroup for “+”, and it is a discrete valuation ring.

Notation. We let π be a uniformizing parameter of O and m its maximal ideal.
Note that m = πO.

Corollary 2.7. A local non-Archimedean field is a totally disconnected and locally
compact group.

Proof. If F is a local non-Archimedean field, then the collection {πnO ∶ n ∈ N} is
a neighborhood basis of 0 consisting of compact open subgroups. Therefore, by
Theorem 1.7 we get that F is a tdlc group.

Corollary 2.8. The field F is the fraction field of O and F = ⋃n∈Z π
nO. Moreover,

O/m is a compact discrete field hence finite.

Corollary 2.9. For any 0 ≠ x ∈ F there are unique n ∈ Z and u ∈ O× such that
x = πnu.

Notation. We define a normalized additive valuation ν ∶ F → Z by letting ν(0) =∞
and if 0 ≠ x ∈ F , we take ν(x) = n where n is the one of the previous corollary, i.e.
the unique integer n ∈ Z such that xπ−n ∈ O×. The normalized absolute value
of F is defined by

∣x∣ = q−ν(x)

where q = ∣(O/m)∣. Unless specified otherwise, it is the absolute value we will use.

2.2 The group GLn(F )

Let F be a local field, and let G = GLn(F ) be the group of n×n invertible matrices
with coefficients in F .

Notation. Let K0 = GLn(O). It is a maximal compact subgroup. For all ` ≥ 1
we set K` = {M ∈ G ∶ ∥1 −M∥ ≤ ∣π∣`} = (1 + π`Mn(O)). The group K` is called a
congruence subgroup.

For all j ∈ {1, . . . , n}, let (aj) be the diagonal matrix such that (aj)ii = {
π if i ≤ j
1 if i > j .

Let A be the semigroup generated by the aj ’s. We take Z to be the center of G.
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2.2.1 Parabolic subgroups, Levi and Iwasawa decompositions

Definition 2.10 (Parabolic subgroups). Let n1, . . . , nk ∈ N with ni ≥ 1 for all
i ∈ {1, . . . , k} and n1 + ⋅ ⋅ ⋅ + nk = n. Then the group of block upper triangular
matrices of the form

⎛
⎜
⎜
⎜
⎜
⎝

GLn1(F ) ∗ ∗

0 GLn2(F ) ∗

⋱

0 GLnk(F )

⎞
⎟
⎟
⎟
⎟
⎠

is called a standard parabolic subgroup.
A parabolic subgroup is a subgroup that is conjugate to some standard

parabolic subgroup.
The subgroup of upper triangular matrices is a minimal standard parabolic

subgroup. Any subgroup conjugated to this subgroup is a minimal parabolic
subgroup or a Borel subgroup.

Theorem 2.11 (Levi Decomposition). Let P be a standard parabolic subgroup of
GLn(F ), and let n1, . . . , nk ∈ Z with ni ≥ 0 for all i ∈ {1, . . . , k} and n1 + ⋅ ⋅ ⋅ +nk = n
such that

P =

⎛
⎜
⎜
⎜
⎜
⎝

GLn1(F ) ∗ ∗

0 GLn2(F ) ∗

⋱

0 GLnk(F )

⎞
⎟
⎟
⎟
⎟
⎠

.

Then P =MN where M is the corresponding group of block diagonal matrices

M =

⎛
⎜
⎜
⎜
⎜
⎝

GLn1(F ) 0 0
0 GLn2(F ) 0

⋱

0 GLnk(F )

⎞
⎟
⎟
⎟
⎟
⎠

and N is the unipotent group of upper triangular matrices of the form

⎛
⎜
⎜
⎜
⎜
⎝

In1 ∗ ∗

0 In2 ∗

⋱

0 Ink

⎞
⎟
⎟
⎟
⎟
⎠

.

Proof. It is immediate that P =MN .

Remark 2.12. In general such a decomposition P = MN exist for all parabolic
subgroups P with unipotent radical N . Moreover, the group M is called a Levi
factor of P , it is always a reductive connected p−adic group. All Levi factors of P
are conjugate by some element of N .

2.2.2 Cartan decomposition

Proposition 2.13. We have a decomposition G = K0AZK0 where K0 = GLn (O)

and A is the semigroup generated by the elements aj of the previous section, where
j ∈ {1,⋯, n}.
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Proof. Let M ∈ GLn(F ). We take α ∈ N such that M ′ ∶= παM ∈Mn(O).
We first prove the following by induction on n: Allowing usual elementary

operations on row and columns over O (adding, multiplying by an element of O×,
swapping) we can make any matrix in Mn(O) into a diagonal matrix. The case
n = 1 is trivial.

(n − 1 ⇒ n): Given a matrix
⎛
⎜
⎝

m11 ⋯ m1n
⋮ ⋮

mn1 ⋯ mnn

⎞
⎟
⎠

in Mn(O), reorganize the

matrix’s entries by swapping rows and columns, such that the top left entry has
maximal absolute value.

Note that for all 2 ≤ i ≤ n we have ∣m11∣ ≥ ∣mi1∣, in which case one can write
m11 = πmu and mi1 = πkv with m ≤ k and u, v ∈ O×. Therefore, subtracting
πk−mvu−1 ∈ O times row 1 from row i will remove mi1. With such operations we

end up with a matrix of the form
⎛
⎜
⎝

m11 ⋯ m1n
0
⋮

⋆

⎞
⎟
⎠
. With the same reasoning as

before, if 2 ≤ i ≤ n, we have ∣m11∣ ≥ ∣m1i∣. This time we can subtract multiples of

the first column to get a matrix of the form
⎛
⎜
⎝

m11 0 ⋯

0
⋮

M̃

⎞
⎟
⎠
. Now, using the induc-

tion hypothesis, we can make M̃ into a diagonal matrix with elementary operations.
Note that those elementary operations are given by multiplying with elements ofK0.

Back to our problem, use the previous claim to get matrices N,P ∈ K0 such

that NM ′P is diagonal, and write NM ′P =
⎛
⎜
⎝

π`1λ1 0
⋱

0 π`nλn

⎞
⎟
⎠
with λi ∈ O× for

all 1 ≤ i ≤ n. Indeed, since our matrix M is invertible in G, so is M ′, and all our
operations are invertible so there cannot be any zero entry on the diagonal of this
matrix. Since swapping rows and columns can be done by multiplying with matrices
in K0, we may assume without loss of generality that `1 ≥ ⋅ ⋅ ⋅ ≥ `n. Since λ1, . . . , λn

are invertible in O, the matrix Q ∶=
⎛
⎜
⎝

λ−1
1 0

⋱

0 λ−1
n

⎞
⎟
⎠
is in K0. Let P̃ = PQ ∈ K0.

Then

NM ′P̃ =
⎛
⎜
⎝

π`1 0
⋱

0 π`n

⎞
⎟
⎠
= a`11 a

`2−`1
2 . . . a`n−`n−1

n ∈ A.

We deduce that M ′ ∈ N−1AP̃ −1 ⊆K0AK0, so

M = π−αM ′
∈ π−αK0AK0 ⊆ ZK0AK0 =K0AZK0,

since scalar matrices are in Z. Therefore G ⊆ K0AZK0. The converse inclusion is
obvious.

Remark 2.14. This decomposition is called a Cartan decomposition, or KAK
decomposition in Lie theory.
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Theorem 2.15 (Iwasawa Decomposition). For any parabolic subgroup P , we have
the decomposition G =K0P = PK0.

Proof. It is enough to prove it for standard parabolic subgroups. Indeed let P be
a standard parabolic subgroup and P ′ a parabolic subgroup such that P ′ = gPg−1

for some g ∈ G. Suppose we know that G = K0P = PK0. Then g = kp with k ∈ K0
and p ∈ P . Therefore

K0P
′
=K0gPg

−1
=K0kpPp

−1k−1
=K0Pk

−1
= Gk−1

= G.

Likewise, we have P ′K0 = G. Thus is it enough to do the proof for standard
parabolic subgroups. Since all standard parabolic subgroups contain the subgroup
of upper triangular matrices, denoted B, we only need to prove that G = K0B =

BK0.
The proof is very similar to the one of Proposition 2.13. We proceed by induction

on n. If n = 1 it is trivial.
Let n > 1. Let R ∈ G. As in the previous theorem, we can swap rows such that

R11 has the largest valuation of the first column and by row operations in K0 we
can annihilate of the entries below R11. In other words, there is k ∈ K0 such that

kR has the form
⎛
⎜
⎝

r11 ⋯ r1n
0
⋮

A

⎞
⎟
⎠
. Use the induction hypothesis on A to get that

k′A = A′ for some upper triangular A′ and k′ ∈ GLn−1 (O). Therefore

⎛
⎜
⎝

1 0 ⋯

0
⋮

k′
⎞
⎟
⎠
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈K0

R =
⎛
⎜
⎝

r11 ⋯ r1n
0
⋮

A′
⎞
⎟
⎠
∈ B.

Therefore, R ∈K0B as desired. To prove G = BK0, let B′ be the subgroup of lower
triangular matrices. Then B′ is conjugated to B via the matrix J ∈ G such that
Ji,j = δj,(n+1−i). Therefore, G = K0B

′, but we have that B′ = tB where t denotes
the transpose. Thus

G =
tG =

t (K0B
′) = tB′tK0 = BK0.

Alternatively, we could have done the same reasoning with operations on columns
and canceling all entries in the first row except the left one.

2.2.3 Lower-Upper triangular decomposition in K =K`

Let K0,+ be the subgroup of upper triangular matrices of K and K0,− the lower
triangular matrices of K with 1 on the diagonal. We want to show that K =

K0,−K0,+. Let M ∈K and write 1 + π`(mij)
n
i,j=1 with mij ∈ O.

M =

⎛
⎜
⎜
⎜
⎜
⎝

1 + π`m11 π`m12 π`m13 ⋯

π`m21 1 + π`m22 π`m23 ⋯

π`m31 π`m32 1 + π`m33 ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

.
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Multiplying a column by a an element of 1 + π`O, or adding π`O a multiple of
a column to another column on the right is an operation done by multiplying with
a matrix of K0,+ on the right. We prove that with such operations we obtain a
matrix of K0,−. We will prove it by induction on n.

n = 1 ∶ We have M = (1 + π`m11) = (1)
°
∈L

(1 + π`m11)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈U

.

n − 1⇒ n ∶ Suppose we proved it for n − 1 for some n ≥ 1.
Multiplying the first column by (1 + π`m11)

−1
∈ 1 + π`O, we get

⎛
⎜
⎜
⎜
⎜
⎝

1 π`m12 π`m13 ⋯

π`m21 (1 + π`m11)
−1 1 + π`m22 π`m23 ⋯

π`m31 (1 + π`m11)
−1

π`m32 1 + π`m33 ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

.

Now we use the first column to annihilate the entries of the first row (except the
first left corner) and thus obtain the following:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯

π`m21 (1 + π`m11)
−1 1 + π`m22 − π

` m21m12
1+π`m1

π`m23 − π
` m21m13

1+π`m11
⋯

π`m31 (1 + π`m11)
−1

π`m32 − π
` m31m12

1+π`m11
1 + π`m33 − π

` m31m13
1+π`m11

⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

If 2 ≤ i ≠ j ≤ n then write mij −
mi1m1j
1+π`m11

= ωij ∈ O. Let us now rewrite our matrix
as

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯

π`m21 (1 + π`m11)
−1 1 + π`ω22 π`ω23 ⋯

π`m31 (1 + π`m11)
−1

π`ω32 1 + π`ω33 ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0

π`m21 (1 + π`m11)
−1

π`m31 (1 + π`m11)
−1 1 + π`(ωij)ni,j=2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M

⎛
⎜
⎜
⎜
⎜
⎝

(1 + π`m11)
−1

−m12 (1 + π`m11)
−1

−m13 (1 + π`m11)
−1

⋯

0 1 0 ⋯

0 0 1 ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=N̂

.

Now we use the induction hypothesis on 1+π`(ωij)ni,j=2: there is an upper triangular
matrix Ñ with coefficient in O such that (1 + (ωij)

n
i,j=2)Ñ is lower triangular with

1s on the diagonal. Let N = N̂

⎛
⎜
⎜
⎜
⎝

1 0 ⋯

0
⋮

Ñ

⎞
⎟
⎟
⎟
⎠

∈ U . We have
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MN =MN̂

⎛
⎜
⎜
⎜
⎝

1 0 ⋯

0
⋮

Ñ

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0

π`m21 (1 + π`m11)
−1

π`m31 (1 + π`m11)
−1 (1 + (ωij)

n
i,j=2) Ñ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which is lower triangular with entries in π`O under the diagonal and 1s on the
diagonal. Call this matrix P ∈ K0,−. Then we get our decomposition M = NP−1,
as wanted.

Proposition 2.16. The decomposition K =K0,−K0,+ is unique.

Proof. Let M ∈K, write M = L1U1 = L2U2 with L1, L2 ∈K
0,− and U1, U2 ∈K

0,+.
We have L−1

2 L1
´¹¹¹¹¹¸¹¹¹¹¹¶
∈K0,−

= U2U
−1
1

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∈K0,+

but K0,− ∩K0,+ consists of only the indentity therefore

L1 = L2 and U1 = U2.

Remark 2.17. Note that we also have the decomposition K = K0,+K0,− since all
three are subgroups so K =K−1 = (K0,−K0,+)

−1
=K0,+K0,−.

2.2.4 Iwahori factorization

Recall that K` = {1+π`Mn(O)} and let P =MN be a standard parabolic subgroup
with its associated Levi decomposition. We saw that P is the group of upper block
triangular matrices of sizes n1, . . . , nk for some partition n = n1 + ⋅ ⋅ ⋅ + nk. Define
N− = tN , the transpose of N , or the matrices of the form

⎛
⎜
⎜
⎜
⎜
⎝

In1 0 0
∗ In2 0
∗ ⋱

∗ Ink

⎞
⎟
⎟
⎟
⎟
⎠

.

Theorem 2.18. Fix ` > 0, and let K = K`. For every parabolic subgroup P =

MN with associated Levi decomposition, we have the following factorization K =

K+K0K− =K−K0K+ with K+ =K ∩N , K0 =K ∩M and K− =K ∩N−.

Proof. We did the proof when P is a minimal parabolic subgroup in section 2.2.3.
The general case is done in a very similar fashion.

Notation. Unless the context is clear, since the decomposition depends on the
choice of a parabolic subgroup P , we will write the associated factorization K =

K−
PK

0
PK

+
P .
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Remark 2.19. In the more general setting for reductive p−adic group, this is known
as an Iwahori factorization. It is not true that any compact subgroup admits
such a factorization.

In the case of a general reductive p−adic group we can choose P by fixing
an orientation on some root system of the group. The subgroup N− will be the
unipotent radical of P −, the parabolic subgroup obtained by taking the opposite
orientation.

In that setting there exists a sequence {K ′
j ∶ j ≥ 0} of compact open subgroups

which forms a neighborhood basis of the identity and each of these subgroups admits
an Iwahori factorization. This is shown in [17].

Lemma 2.20. Let Λ = {diag(πm1 , . . . , πmr) ∶m1 ≥ ⋅ ⋅ ⋅ ≥mn}, then G = K0ΛK0.
Thet semigroup Λ is called the positive Weyl chamber

Proof. We already proved the Cartan decomposition G =K0AZK0 with

A = {diag(πm1 , . . . , πmn) ∶m1 ≥ ⋅ ⋅ ⋅ ≥mn ≥ 0} .

Then if g ∈ G, we can write it as g = kazk′ with k, k′ ∈K0, a = diag(πm1 , . . . , πmn) ∈
A and z ∈ Z = F . Decompose z = π−`x with x ∈ O. Then,

g = (xk)
±
∈K0

(π−`a)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

∈Λ

k′
®
∈K0

∈K0ΛK0.

Notation. If λ = diag(πm1 , . . . , πmr) ∈ Λ, let n1, . . . , nr be such that m1 =m2 = ⋅ ⋅ ⋅ =
mn1 , mn1+1 = ⋅ ⋅ ⋅ = mn1+n2 , . . . , mn1+⋅⋅⋅+nr−1+1 = ⋅ ⋅ ⋅ = mn1+⋅⋅⋅+nr . Write Pλ = MλNλ

the corresponding parabolic subgroup of upper triangular block matrices with blocks
of size n1, . . . , nr.

It is clear that all standard parabolic subgroups P are of the form Pλ for some
λ ∈ Λ.

Note that Pλ = G and Nλ = {In} if and only if λ ∈ Z(G).
If K = K` is a congruence subgroup, we will write the Iwahori factorization

given by the parabolic Pλ as K =K−
λK

0
λK

+
λ .

Lemma 2.21. Fix any λ ∈ Λ and the corresponding Pλ = MλNλ. Let K = K` for
some ` > 0, then

(i) λK+
λλ

−1 ≤K+
λ and λ−1K−

λλ ≤K
−
λ .

(ii) For all k ∈K+
λ and k′ ∈K−

λ one has λnkλ−n Ð→
n→∞

In and λ−nk′λn Ð→
n→∞

In.

(iii) We have Nλ = ⋃n≥0 λ
−nK+

λλ
n and N−

λ = ⋃n≥0 λ
nK−

λλ
−n.

Proof. Note that it suffices to do the proof for K−
λ since taking the transpose will

give us the corresponding results for K+
λ .

Take n1, . . . , nr to be the size of blocks of matrices in N−
λ .
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Let k ∈K−
λ , and write

k =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
π`M21 In2 0
π`M31 π`M32 In3 0

⋱

π`Mr1 π`Mr2 π`Mr3 ⋯ Inr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with Mi,j ∈Mni(O). Then write

λ =
⎛
⎜
⎝

πm1In1 ⋯ 0
0 ⋱ 0
0 ⋯ πmr Inr

⎞
⎟
⎠

with m1 >m2 > ⋅ ⋅ ⋅ >mr.
(i) We have

λ−1kλ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
π`πm1−m2M21 In2 0
π`πm1−m3M31 π`πm2−m3M32 In3 0

⋱

π`πm1−mrMr1 π`πm2−mrMr2 π`πm3−mrMr3 ⋯ Inr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

If i > j then (λ−1kλ)
ij
= π(mi−mj)π`Mij ∈ π

`Mni(O) since mi > mj . We then
get that (λ−1kλ − In) ∈ π

`Mn(O) and clearly (λ−1kλ) ∈ N−. Therefore,

(λ−1kλ) ∈ N−
λ ∩K =K−

λ .

(ii) Note that

λ−nkλn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
π`πn(m1−m2)M21 In2 0
π`πn(m1−m3)M31 π`πn(m2−m3)M32 In3 0

⋱

π`πn(m1−mr)Mr1 π`πn(m2−mr)Mr2 π`πn(m3−mr)Mr3 ⋯ Inr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By construction, mi −mj ≥ 1 for i > j, and therefore λ−nkλn ∈ K`+n. Let U be an
open neighborhood of In and α ∈ N such that Kα ⊆ U . Take n0 such that `+n0 ≥ α.
We have λ−nkλn ∈K`+n0 ⊆Kα ⊆ U . We proved that

λ−nkλn Ð→
n→∞

In.

(iii) Let η ∈ N−, and write it as

η =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
M21 In2 0
M31 M32 In3 0

⋱

Mr1 Mr2 Mr3 ⋯ Inr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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We have

λ−nηλn =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
πn(m1−m2)M21 In2 0
πn(m1−m3)M31 πn(m2−m3)M32 In3 0

⋱

πn(m1−mr)Mr1 πn(m2−mr)Mr2 πn(m3−mr)Mr3 ⋯ Inr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For all i > j, there is nij such that πn(mi−mj)Mij ∈ K for all n ≥ nij . Take
n0 = maxi>j(nij), then for all n ≥ n0 we have λ−nηλn ∈K so η ∈ λnKλ−n. Thus,

N−
= ⋃
n≥0

λnK−
λλ

−n.

Lemma 2.22. Let K = K`. For all λ ∈ Λ and the associated parabolic subgroup
Pλ =MλNλ. We have

(i) eK ⋆ eλK+
λ
λ−1 = eK

(ii) eλ−1K−
λ
λ ⋆ eK = eK

(iii) eK ⋆ eK0
λ
= eK = eK0

λ
⋆ eK

(iv) eλK0
λ
λ−1 = eλ−1K0

λ
λ = eK0

λ

Proof. (i) We know that λK+
λλ

−1 ≤ K+
λ ≤ K by 2.21 so it follows directly from

Lemma 1.48.
(ii) Same as (i), using λ−1K−

λλ ≤K
−
λ ≤K.

(iii) Again follows from Lemma 1.48.
(iv) This comes from the fact that K0

λ consists of diagonal matrices, therefore
it commutes with λ so λ−1K0

λλ = λK
0
λλ

−1 =K0
λ.

Remark 2.23. Note that part (iii) of Lemma 2.21 implies in particular that N is
the union of its compact open subgroups.

2.3 The Hecke algebra of GLn(F )
This section will be devoted to compute the convolution product of particular func-
tions in the Hecke algebra that will be useful in next chapters.

To simplify notations, let G = GLn(F ). If g ∈ G and K ≤ G is a congruence
subgroup, let

KgK = µ (KgK)
−1
1KgK = eK ⋆ δg ⋆ eK .

The last equality was proved in Proposition 1.78. Note that for all g ∈ G and
K ≤ G a congruence subgroup, we have that KgK ∈ HK (G). Also let K+ = K0,+

and K− =K0,−. Note that they do not correspond to the Iwahori factorization, but
rather the subgroups defined in the lower-upper triangular decomposition. We can
still link it to the Iwahori factorization. Indeed, let B be the Borel subgroup of
upper triangular matrices. Then, K+ =K0K+

B and K− =K−
B.
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Lemma 2.24. If λ ∈ Λ, then λK+λ−1 ⊆K+ and λ−1K−λ ⊂K−.

Proof. It is very similar to the proof of Lemma 2.21. Let

k =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
π`m21 1 0
π`m31 π`m32 1 0

⋱

π`mn1 π`mn2 π`mn3 ⋯ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈K−

with mi,j ∈ O. Take λ ∈ Λ and write λ = diag (πr1 , . . . , πrn). Then

λ−1kλ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
π`πr1−r2m21 1 0
π`πr1−r3m31 π`πr2−r3m32 1 0

⋱

π`πr1−rnmn1 π`πr2−rnmn2 π`πr3−rnmn3 ⋯ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈K−

since ri − rj ≥ 0 for all i > j. The proof is similar for K+.

Lemma 2.25. Let λ ∈ Λ. Then eK ⋆ eλK+λ−1 = eK = eλ−1K−λ ⋆ eK

Proof. This is immediate from the previous proposition and Lemma 1.48.

Proposition 2.26. Let g, h ∈ G. If g or h normalizes G then KgK⋆KhK =KghK.
This is true in particular if g or h lies in Z.

Proof. Assume that g normalizes K. Then, by Proposition 1.78, we have

KgK ⋆ KhK = eK ⋆ δg ⋆ eK ⋆ eK ⋆ δh ⋆ eK

= eK ⋆ δg ⋆ eK ⋆ δh ⋆ eK

= eK ⋆ δg ⋆ eK ⋆ δg−1 ⋆ δg ⋆ δh ⋆ eK

= eK ⋆ egKg−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=eK⋆eK=eK

⋆ δgh ⋆ eK

= eK ⋆ δgh ⋆ eK

=KghK

which is what we wanted. The proof is similar if h normalizes K.

Proposition 2.27. If g, h ∈ A then KgK ⋆KhK =KghK
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Proof. Note that if g, h ∈ G, then δg ⋆δh = δgh. Let g, h ∈ A. Using Proposition 1.78,
we get

KgK ⋆ KhK = eK ⋆ δg ⋆ eK ⋆ eK ⋆ δh ⋆ eK

= eK ⋆ δg ⋆ eK ⋆ δh ⋆ eK

= eK ⋆ δg ⋆ eK+ ⋆ eK− ⋆ δh ⋆ eK by Proposition 1.77
= eK ⋆ δg ⋆ eK+ ⋆ δg−1 ⋆ δg ⋆ δh ⋆ δh−1 ⋆ eK− ⋆ δh ⋆ eK

= eK ⋆ egKg−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=eK

⋆ δgh ⋆ eh−1K−h ⋆ eK
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=eK

= eK ⋆ δgh ⋆ eK by Lemma 2.25

as desired.

Proposition 2.28. Let K be a congruence subgroup. Let tx denote the transpose
of x ∈ G. The map f ↦ f⋆ ∶ HK(G) → HK (G) defined by f⋆(x) = f(tx) is a
bijective linear transformation. Moreover, for all f, g ∈HK (G), we have (f⋆)⋆ = f
and (f ⋆ g)⋆ = g⋆ ⋆ f⋆.

Proof. It is clear that f ↦ f∗ is linear and (f⋆)⋆ = f for all f ∈HK (G) therefore it
is bijective.

Note that the transposition map x↦ tx is an anti-automorphism ofK. Note that
is is also measure preserving. Indeed, in Proposition 1.17 we built the Haar measure
on Qp, which also works over F . Define the measure dtM

det(tM) . The determinant is
unchanged by the transpose and so we can check the same way that this is a Haar
measure. Since the transpose leaves the set K0 invariant, both measures agree on
K0 and by unicity of the Haar measure, they are the same. Therefore, the transpose
is measure preserving.

Let f, g ∈HK (G) and y ∈ G. We have

(f ⋆ g)⋆ (y) = ∫
x∈G

f(x)g(x−1ty) dx

x← tyx

= ∫
x∈G

f(tyx)g(x−1
) dx

x← (tx)
−1

= ∫
x∈G

f(ty (tx)
−1

)g(tx) dx

= ∫
x∈G

g(tx)f(tyt (x−1)) dx

= ∫
x∈G

g(tx)f(t (x−1y)) dx

= (g⋆ ⋆ f⋆) (y)

as desired.

Corollary 2.29. The algebra HK0 (G) is commutative. It is called the spherical
Hecke algebra.
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Proof. Let us prove that for all f ∈ HK0 (G) we have f⋆ = f . Since ⋆ is linear, it
suffices to prove it for the maps of the form K0gK0 which generate HK0 (G).

By Lemma 2.20, we have the decomposition G = K0ΛK0. Let g ∈ G, and write
g = kλk′ with k, k′ ∈K0 and λ ∈ Λ.

We have K0gK0 =K0kλk′K0 =K0λK0. Therefore for all x ∈ G we have

K0gK0
⋆
(x) =K0λK0

⋆
(tx) = µ (K0λK0)1K0λK0 (tx) .

Note that tx ∈ K0λK0 if and only if x ∈ tK0
°
=K0

tλtK0
°
=K0

= K0λK0. Indeed since λ is

diagonal, tλ = λ. Thus,

K0gK0
⋆
(x) = µ (K0λK0)1K0λK0 (x) =K0λK0(x) =K0gK0(x).

We proved that the map f ↦ f⋆ is the identity on HK0 (G) therefore it is both
an algebra morphism and antimorphism. Now, if f, g ∈HK0 (G) we have

f ⋆ g = f⋆ ⋆ g⋆ = (g ⋆ f)⋆ = g ⋆ f,

as desired.

Corollary 2.30. Let V be a nonzero irreducible smooth representation of G. Then

dimC (V K0) ≤ 1.

Proof. Let V be an irreducible smooth representation of G. Then by Corollary
1.70, we have that V K0 is either 0 or an irreducible HK0 (G)−module. In the latter
case, since HK0 (G) is commutative and of countable dimension (the decomposition
G = K0ΛK0 implies directly that maps of the type K0λK0 with λ ∈ Λ generate
HK0(G) as a vector space), dimC V

K0 = 1.
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Chapter 3

Algebraic groups

3.1 Definitions
In this section R is a fixed commutative ring.

Notation. We will denote the category of commutative R−algebras by R − Alg.
As usual, Gr and Set will denote the categories of groups and sets, respectively.

Definition 3.1 (Affine Scheme). Let R be a commutative ring. An affine scheme
over R, or affine R−scheme, is a representable functor from R −Alg to Set. An
affine scheme is said to be of finite type if it is represented by a finite type
R−algebra.

A morphism of affine R−schemes is a natural transformation between the
functors.

Definition 3.2 (Affine/Algebraic group). An affine R-group is a functor G ∶

R −Alg → Gr such that the composition with the forgetful functor U ∶ Gr → Set
is representable.

If G is represented by a finite type R−algebra, then it is called an affine al-
gebraic group of finite type. We will only consider the case of affine algebraic
groups of finite type, which we will call algebraic group for simplicity.

Equivalently, an algebraic group G is naturally isomorphic to Hom (A,−) where
A = R[a1, . . . , an] for some a1, . . . , an ∈ A.

If B is an R−algebra and X is an algebraic group, then X(B) is called the group
of B−points of X.

Remark 3.3. Every algebraic group is in particular an affine scheme.

Notation. Let FA(n) = R[x1, . . . , xn] be the free commutative algebra on n
variables.

Example 3.4. ?? Fix n ∈ N. The group GLn over R is an algebraic group.
Let L be the polynomial ringR[(xi,j)

n
i,j=1, u] andM the ideal (det ((xi,j)ni,j=1u − 1)).

Define
A = L/M = R[(xi,j)

n
i,j=1, u]

where x is the image of x in A for all x ∈ L.
Let B be an R−algebra. Let us prove that the set of R−points GLn (B) is

the isomorphic to the set of invertible n × n matrices as expected. Indeed if f ∈

55
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GLn (B) = Hom (A,B), then f is determined by its values at (xij)
n
i,j=1 and u.

But u = det ((xij)ni,j=1)
−1, so it is enough to know f (xij) for all i, j ∈ {1, . . . , n}.

Therefore the functions f in this group are in correspondence with the matrices
Mf = (f(xij))

n
i,j=1. Also note that Mf is invertible since det (Mf) f(u) = f(1) = 1,

and so det (Mf) ∈ B
×.

Conversely, for any M ∈ GLn (B) , we can define f ∈ GLn(B) by f(xij) =Mi,j

and f(u) = (detM)
−1 so that M = Mf . This justifies why we often denote A by

R[xij ,det−1].
Therefore, we have a set isomorphism, and we give GLn (B) the group structure

of GLn (B). We conclude that GLn is an algebraic group.

Example 3.5. In a similar fashion to GLn we can define the affine algebraic groups
SLn,On.

Recall Yoneda’s Lemma.

Theorem 3.6 (Yoneda’s Lemma). Consider a functor F ∶ A → Set from a locally
small category A to the category of sets, an object A ∈ A and the corresponding
representable functor A(A,−) ∶ A→ Set. Then the follwing is a bijective correspon-
dence:

θF,A ∶ Nat(A(A,−), F )
≅

ÐÐÐÐ→ FA

θF,A(α) = αA(1A)

between the set of natural transformations from A(A,−) to F and the elements of
the set FA.

Proof. Consider a given element a ∈ FA. We define, for every object B ∈ A, a
mapping

τ(a)B ∶ A(A,B)Ð→ FB,

given by τ(a)B(f) = F (f)(a). Hence, this class of mappings defines a natural
transformation

τ(a) ∶ A(A,−)⇒ F.

Since, for every morphism g ∶ B → C in A, the following relation holds.

Fg ○ τ(a)B = τ(a)C ○A(A,g),

i.e. the diagram

A(A,B) FB

A(A,C) FC

τ(a)B

A(A,g) Fg

τ(a)C
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commutes.
In fact, for allf ∈ A(A,B), by the functoriality of F we get:

Fg ○ τ(a)B(f) = Fg(Ff(a))

= Fg ○ Ff(a)

= F (g ○ f)(a)

= τ(a)C(A(A,g)(f)).

In order to finish the proof, we now have to show that θF,A and τ are the inverse
of each other.

Let a ∈ FA, we have

θF,A(τ(a)) = τ(a)A(1A) = (F1A)(a) = 1FA(a),

so θF,A ○ τ = IdFA.

On the other hand, starting from α ∶ A(A,−) ⇒ F and choosing a morphism
f ∶ A→ B in A,

τ(θF,A(α))B(f) = τ(αA(1A))B(f)

= F (f)(αA(1A))
(∗)
= αB(A(A,f)(1A))
= αB(f ○ 1A)
= αB(f),

where (∗) follows from the naturality of α. So τ(θFA(α)) and α coincide since they
have the same components.

Remark 3.7. Let X,Y be affine R−schemes where R is a commutative ring. Let
A,B be R−algebras that represent X and Y respectively. The set of morphisms
from X to Y is

Nat(X,Y ) ≅ Nat (Hom (A,−) ,Hom (B,−)) ≅ Hom (B,A) .

Therefore, there is a correspondence between affine scheme morphisms from X to
Y and ring homomorphisms from B to A.

Remark 3.8. We denote by AnR the functor B ↦ Bn. It is called the affine
n−dimensional space. Note that Hom (FA(n),B) is not a group under addition,
but we have a set isomorphism Hom (FA(n),B)

≅
Ð→ Bn ∶ f z→ (f(x1), . . . , f(xn)).

Therefore, viewing Bn as an additive group, we can make Hom (FA(n),−) into a
functor taking values in Gr.

Clearly AnR is a representable functor since AnR ≅ Hom (FA(n),−), so it is an
algebraic group.

Proposition 3.9. Let X be an affine R-scheme represented by an R−algebra gen-
erated by n elements. There is an injective natural transformation X → AnR.
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Proof. Let a1, . . . , an ∈ A denote generators of A as a R-algebra.
Define the morphism s ∶ FA(n) → A by s (f(x1, . . . , xn)) = f(a1, . . . , an) for all

f ∈ FA(n). The map s is clearly surjective since s(xi) = ai for all i ∈ {1, . . . , n}.
Define a natural transformation:

η ∶X ≅ Hom (A,−)Ð→ AnR
ηM ∶ Hom (A,M)z→ Hom (FA(n),M)

,

by ηM(f) = f ○ s.
It is straightfoward to check that it is indeed a natural transformation. Let us

check that it is injective. Let f, g ∈ Hom (A,M) such that ηM(f) = ηM(g). Let
a ∈ A. Since s is surjective we have a = s(u) for some u ∈ FA(n). Thus

f(a) = f ○ s (u) = ηM(f)(u) = ηM (g) (u) = g ○ s (u) = g(a),

so f = g as desired.

Remark 3.10. This natural transformation is an example of closed immersion.

Remark 3.11. The natural transformation defined in the proof of Proposition 3.9
depends on the choice of generators.

Proposition 3.12. Let X be an affine R−scheme represented by an R−algebra
A = R[a1, . . . , an]. Then for all B ∈ R −Alg we have the set isomorphism

X(B) ≅ {(b1, . . . , bn) ∈ B
n
∶ f(b1, . . . , bn) = 0 for all f ∈ I} ,

where I = {f ∈ FA(n) ∶ f(a1, . . . , an) = 0}.

Proof. Note that Bn ≅ Hom (FA(n),B). Therefore, by the proof of proposition
3.9 we have an injection ηB ∶ X(B) ↪Ð→ Hom (FA(n),B) ≅ Bn corresponding to the
generators a1, . . . , an.

Note that I is the kernel of the surjective morphism s ∶ FA(n)→ A. Therefore,
A ≅ FA(n)/I = R[y1, . . . , yn] where yi is the image of xi in the quotient. This
implies that Hom (A,B) ≅ Hom (FA(n)/I,B).

Let S = {(b1, . . . , bn) ∈ B
n ∶ f(b1, . . . , bn) = 0 for all f ∈ I}. We only need to show

that S ≅ Hom (FA(n)/I,B).
Define ϕ ∶ Hom (FA(n)/I,B) → S by ϕ(f) = (f(y1), . . . , f(yn)). It is well

defined. Indeed, if P (x1, . . . , xn) ∈ I and f ∈ Hom (FA(n)/I,B) then P (ϕ(f)) =

P (f(y1), . . . , f(yn)) = f ○ P (y1, . . . , yn) = 0.
Conversely we define ψ ∶ S → Hom (FA(n)/I,B) as follows: Let b = (b1, . . . , bn) ∈

S. Define fb ∈ Hom (FA(n),B) by fb(P ) = P (b), or in other words, fb(xi) = bi.
If P ∈ I then fb(P ) = P (b) = 0 so I ⊂ Ker(fb). Therefore, it gives rise to a
map f̃b ∶ FA(n)/I → B. Let ψ(b) = f̃b. Also ϕ ○ ψ(b) = (f̃b(y1), . . . , f̃b(yn)) =

(fb(x1), . . . , fb(xn)) = (b1, . . . , bn). Thus the proposition is proved.
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3.2 Topology on algebraic groups

From now on we only consider the case of algebraic F−groups where F is a topological
field.

Definition 3.13 (Affine group scheme). An affine group scheme over F is a
representable functor X ∶ F −Alg →Grp.

It is said to be of finite type if it is represented by a finite type F−algebra.
We will only consider the case of finite type affine group schemes.

Remark 3.14. It is straightforward to see that algebraic groups over F are in
particular affine group schemes over F.

Remark 3.15. LetX,Y be two affine group schemes over F. LetA,B the F−algebras
representing X and Y respectively. Thanks to Theorem 3.6, if f ∶ X → Y is a nat-
ural transformation from Hom (A,−) to Hom (B,−), it gives rise to a unique map
f∗ ∈ Hom (B,A) and vice versa.

Definition 3.16 (Closed/Open immersion). We say that a natural transformation
of affine F−schemes f ∶X → Y is a closed immersion if f∗ ∶ B → A is surjective.

In addition, we say that f is an open immersion if there are r1, . . . , rt ∈ A and
si ∈ Ari (the localization of A away from ri) for all i ∈ {1, . . . , t} such that:

• ⟨r1, . . . , rt⟩ = A

• Bri is isomorphic to (Ari)si as an Ari−algebra for all i ∈ {1, . . . , t}.

Remark 3.17. Note that the definition of an open immersion does depend on the
function f . Indeed we talk about the localization of B away from ri, which actually
denotes Bf⋆(ri) and also the Ari−algebra structure on Bri is given by f⋆.

Remark 3.18. With the same notations as in the definition, if f⋆ is of the form
A→ As for some s ∈ A, it is a special case of open immersion.

Example 3.19. As seen in previous section, for all algebraic groups X of dimension
n, the map X → AnF of Proposition 3.9 is a closed immersion. Indeed, the map
f⋆ ∶ FA(n)→ A is the usual surjection.

Example 3.20. Consider the natural transformation GLn → SLn+1 defined on
every F−algebra A by:

M ∈ GLn(A)↦M ⊕ det(M)
−1

= (
M 0
0 det(M)−1 ) ∈ SLn+1(A).

This map is a closed immersion. And so by composition of the embeddings GLn →
SLn+1 → A(n+1)2

F we obtain a closed immersion GLn → A(n+1)2
F different from the

one defined in Proposition 3.9 with the generators of Remark ??. This gives another
way to put a topology on GLn(F), but it gives the same topology, as we shall see
below.
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Example 3.21. Consider the natural transformation GLn → An2

F defined for every
F−algebra A as

(xi,j)
n
i,j=1 ∈ GLn(A)↦ (xi,j)

n
i,j=1 ∈ A

n2

F (A).

Note that GLn = Hom (F[xi,j][det−1],−) and An2

F = Hom (F[xi,j],−). And so f∗
corresponds to the inclusion

f∗ ∶ F[xi,j]↪ F[xi,j][det −1
] = F[xi,j]det .

Thus, f is an open immersion.

Remark 3.22. If X,Y are two affine group schemes over F, then the functor

X × Y ∶ R → (X × Y ) (R) = {(x, y) ∶ x ∈X(R) y ∈ Y (R)}

is an affine group scheme. Take A,B two F−algebras such that X is represented
by A and Y is represented by B. Then X × Y is represented by A ⊗F B. Indeed,
for every F−algebra R, there is a correspondence between Hom (A,R)×Hom (B,R)

and Hom (A⊗F B,R). This motivates the following definition.

Definition 3.23 (Fiber product). Let X,Y,Z be affine schemes over F represented
respectively by A,B,C, with natural maps Z → X and Z → Y . Define the fiber
product as:

(X ×Z Y ) (R) = {(x, y) ∈X(R) × Y (R) ∶ e and f have the same image in Z(R)} .

Then X ×Z Y is an affine F-scheme represented by A⊗C B.

Remark 3.24. The product of Remark 3.22 is a fiber product with Z = Hom (F,−).

Let X be an algebraic group (more generally we can take X an affine group
scheme over F). As in the previous section, we have a closed immersion X ↪ AnF.
Then X(F) embeds in AnF(F) = Fn which has the product topology and so we can
give X(F) the topology given by the inclusion. A priori this topology depends on
the immersion which itself depends on the choice of generators for the F−algebra
that represents X. However:

Proposition 3.25. Let F be a topological field. There is a unique way to topologize
the space X(F) for all finite type F−schemes in a way that is functorial in X,
compactible with fiber products, carries closed immersions to topological embeddings,
and gives F its usual topology when considered as A1

F (F). Explicitly, from any
choice of generators, the map defined in the proof of Proposition 3.9 is made into
a homeomorphism onto its image.

Also, closed immersions X → Y induce topological closed embeddings X(F) →
Y (F).

Proof. See [7, Proposition 2.1].

Remark 3.26. This result is true for all finite type affine schemes over a topological
ring.

Remark 3.27. Note that Proposition 3.25 does not a-priori make X(R) into a
topological group.
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Let X be an affine group scheme over F represented by A and let id ∶ X → X
denote the identity natural transformation. Also, let {e} play the role of our neutral
element, as the functor which assigns one point to every F−algebra. More precisely,
{e} = Hom (F,−) so it is an affine scheme over F. The group structure is given by
the following maps:

• multiplication map: m ∶X ×X →X.

• inversion map: i ∶X →X

• unit map: u ∶ {e}→X,

such that the following diagrams commute:
● Associativity:

X(R) ×X(R) ×X(R) (X ×X) (R)

(X ×X) (R) X(R)

mR × idR

idr ×mR mR

mR

● Unit:

({e} ×X) (R) ≅X(R) ≅ (X × {e}) (R) (X ×X) (R)

(X ×X) (R) X(R)

uR × idR

idR × uR idR mR

mR

● Inversion: Let ∆ ∶ X → X ×X the natural inclusion map defined by ιR ∶ x ↦
(x,x) and j the unique natural transformation from X to {e} (the latter being a
single point).

(X ×X) (R) (X ×X) (R)

X(R) {e}(R) X(R)

(X ×X) (R) (X ×X) (R)

∆R
mR

∆R

j

mR

uR

(idR × iR)

(idR × iR)

Note that using Yoneda’s Lemma, there is a dual way of seeing it. Since A⊗FA
represents X ×X, the group structure gives rise to the maps:

• comultiplication: m∗ ∶ A→ A⊗F A

• antipode: i∗ ∶ A→ A
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• counit: u∗ ∶ A→ F,

with commutative diagrams dual to the above ones. From the previous diagram,
we can see that the F−algebra A, together with those 3 maps is a Hopf algebra.

Proposition 3.28. Let X be an affine group scheme over F. The topology given
in Proposition 3.25 makes X(F) into a topological group.

Proof. We defined the multiplication, inversion and unit in terms of natural trans-
formations. By Proposition 3.25, we topologize X(F) in a functorial way, hence
natural transformations are sent to continuous mappings.

Remark 3.29. Note that if we have an open immersion X → AnF then we get an
injection X(F)↪ AnF(F) = Fn which has the product topology. This gives us a-priori
a different way to put a topology on X(F). However:

Proposition 3.30. Let F be a topological field such that F× is open. There is a
unique way to topologize X(F) for affine schemes of finite type in a way that is
functorial, compatible with fiber products, carries closed (resp. open) immersions
of schemes to closed (resp. open) topological embeddings and give F = A1

F(F) its
usual topology. This agrees with the construction of Proposition 3.9, regardless of
the choice of generators.

Proof. It is also done in [7, Proposition 3.1, p.4].

Notation (p−adic group). A p−adic group is the group of F−points of an algebraic
group over a p−adic field F. We give it the topology of previous Proposition.

Proposition 3.31. Any algebraic p−adic group is a locally compact and totally
disconnected group.

Proof. Let F be a p−adic field. By Corollary 2.7, F is Hausdorff, totally discon-
nected, locally compact and F× is closed. Let X be an algebraic group over F.
Thanks to Proposition 3.28, X(F) is a topological group. Take the closed immer-
sion X → AnF. Then the topology on the p−adic group X(F) is given by the inclusion
X(F) ↪ AnF(F) = Fn. The right hand side is Hausforff, locally compact and totally
disconnected, therefore so is X(F). Note that to have the local compactness it is
important that the image of X(F) is closed in Fn, which we know is true since closed
immersions of schemes are taken to closed topological embeddings by Proposition
3.30.

Corollary 3.32. Any algebraic p−adic group admits a (right) Haar measure.

Proof. That is true for all tdlc groups.



Chapter 4

Admissibility of irreducible
representations o GLn(F ).

4.1 Parabolic Induction in GLn(F )
Fix F a local non-Archimedean field, and let G = GLn(F ). Recall the notations
of Chapter 2. We let K0 = GLn (O), if ` > 0 then K` = {1 + π`Mn (O)}. We
let Λ = {diag(πm1 , . . . , πmr) ∶m1 ≥ ⋅ ⋅ ⋅ ≥mn} the positive Weyl chamber. For every
λ ∈ Λ, we can defined the associated parabolic subgroup with Levi decomposition
P = Pλ = MλNλ. If ` > 0 and K = K` then we have the corresponding Iwahori
factorizationK =K−

PK
0
PK

+
P =K−

λK
0
λK

+
λ whereK+

P =K+
λ =K∩N , K0

P =K0
λ =K∩M

and K−
P =K−

λ =K ∩N−.

Proposition 4.1. Let P be a parabolic subgroup of GLn(F ). For any smooth
representation (σ,V ) of P we have that IndGP (V ) = c-IndGP (V ).

Proof. We have that the map K0 → P /G ∶ k ↦ Pk is surjective by Theorem 2.15
and the image of a compact set is compact.

4.1.1 The Jacquet Module

Throughout this chapter we will not use the module notation for representations to
avoid confusion. Rather, we will specify the map G→ GL(V ) explicitly.

Let (π,V ) be a smooth representation of a connected reductive p−adic group
G and let P ≤ G be a parabolic subgroup with unipotent radical N . Let V (N) =

span{π(n)v − v∣v ∈ V n ∈ N} and VN = V /V (N). Clearly V (N) is an N−submodule,
and by construction, N acts trivially on VN .

Proposition 4.2. The N−module VN is the largest quotient of V by an N submod-
ule on which N acts trivially.

Proof. Suppose there is a N−submodule W ≤ V such that N acts trivially on
V /W . Then for all v ∈ V and all n ∈ N , we have v +W = π(n)(v) +W therefore
π(n)v − v ∈W . We conclude that V (N) ≤W so VN projects onto V /W .

Proposition 4.3. The representation (π,V ) of G gives rise to a representation
(πN , VN) of P .

63
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Proof. Let us first see that V (N) is a P−submodule. Let p ∈ P and π(n)(v) − v ∈
V (N). Since P normalizes N , there is m ∈ N such that pn =mp. Therefore

π(p) (π(n)v − v) = π(pn)v−π(p)v = π(mp)v−π(p)v = π(m) (π(p)v)−(π(p)v) ∈ V (N).

Since V (N) is a P−submodule, then the representation (πN , VN) defined by
πN(p)(v + V (N)) = π(v) + V (N) is a representation of P .

Definition 4.4 (Jacquet Module). The Jacquet module of (π,V ) associated to
P is (πN , VN) where VN = V /V (N) and πN is the representation of P obtained
from π, which is well defined since V (N) is N−invariant as seen in Proposition 4.2.

Remark 4.5. Note that since the action of N on VN is trivial, then we equivalently
see VN as a representation of M ≅ P /N .

Lemma 4.6. Fix a Haar measure on N , say µN . We have

V (N) = ⋃
K≤c.o.N

{v ∈ V ∶ ∫
K
π(n)v dn = 0} = ⋃

K≤c.o.N
Ker(π(eK)).

Proof. Let π(m)(v) − v ∈ V (N) for some m ∈ N . By Lemma 2.21, N is the union
of its compact open subgroups so there is K ≤c.o. N such that m ∈M . We have

∫
K
π(n) (π(m)v − v) dn = ∫

K
π(nm)v dn−∫

K
π(n)vdn = ∫

K
π(n)vdn−∫

K
π(n)vdn = 0.

Conversely suppose there is K0 ≤ N compact open such that ∫K0
π(n)v dn = 0.

Since π is smooth, take L ≤ G compact open such that v ∈ V L. Let K1 = L ∩K0,
it is a compact open subgroup of N . Let g1, . . . , g` be a set of representatives of
the cosets in K0/K1. Since v ∈ V K1 , the expression π(n)v is constant on the cosets
giK1. Therefore

0 = ∫
K0
π(n)v dn =

`

∑
i=1
∫
giK1

π(n)v dn =
`

∑
i=1
∫
giK1

π(gi)v dn

=
`

∑
i=1
µN (giK1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=µN (K1)

π (gi) v

= µN(K1)
`

∑
i=1
π(gi)v.

Thus v = v − 0 = 1
` ∑

`
i=1 v − π(gi)v ∈ V (N).

Corollary 4.7. For all v ∈ V and all compact open subgroup K ≤ N we have
v + V (N) = eKv + V (N)

Proof. This is direct from the fact that v − eKv ∈ Ker (eK).

Definition 4.8 (Finitely Generated representation). Let G be a group and (π,V ) a
representation of G. We say V is a finitely generated representation if it it finitely
generated at aG−module, i.e. there are v1, . . . , v` ∈ V such that V = Span {⋃

`
i=1Gvi}.
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Proposition 4.9. If (π,V ) is a smooth representation of G then (πN , VN) is a
smooth representation of P . Moreover if (π,V ) is finitely generated then so is
(πN , VN).

Proof. Let v + V (N) ∈ VN with v ∈ V . Since π is smooth there is K ≤ G compact
open such that v ∈ V K . Therefore for all n ∈ P ∩K we have πN((n)v + V (N)) =

π(n)v + V (N) = v + V (N) so v + V (N) ∈ V K∩P so πN is smooth.
Since V is finitely generated as a G−module there is a finite set {v1, . . . , v`} ⊂ V

such that V = ∑
`
i=1 Span {Gvi}. Let K ≤ G be compact open such that {vi ∶ 1 ≤

i ≤ `} ⊂ V K . Since P /G is compact, it contains finitely many cosets of K therefore
P /G/K is finite, so there is a finite set Γ such that G = PΓK. Now,

V =
`

∑
i=1

Span {Gvi} =
`

∑
i=1

Span {PΓKvi} =
`

∑
i=1

Span {PΓvi} =
`

∑
i=1
∑
γ∈Γ

Span {P (γvi)} .

We can conclude that VN = ∑
`
i=1∑γ∈Γ Span {P (γvi + V (N))} is a finitely generated

P−module.

Proposition 4.10. With the same notations, let (π,V ) be a smooth representation
of G. If U ≤ V is such that U is a K−submodule (where K is a compact subgroup
such that G = PK) and generates V as a G−module. Then the image of U in VN
generate VN as a P−module.

Proof. This is immediate from V = Span (GU) = Span (PKU) = Span (PU).

4.1.2 Functioriality and consequence of Frobenius reciprocity

Notation. From now on we will abuse the notations in the following sense. If
P = MN is a parabolic subgroup of G, and V is a representation of M , we may
write IndGP (V ) to denote IndGP (V ′) where V ′ is the representation of P obtained
from V by setting N to act trivially.

We will state a very important lemma about the Jacquet module that extends
Frobenius reciprocity.

Lemma 4.11. If M is a Levi factor of P , (π,V ) a representation of G and (σ,W )

a smooth representation of M . Then

HomG(V, IndGP (W )) ≅ HomM (VN ,W ) .

Proof. By Frobenius reciprocity from Proposition 1.80 (iv) we know that

HomG (V, IndGP (W )) ≅ HomP (V,W )

where W is seen as a representation of P by setting N to act trivially. Let us prove
that HomP (V,W ) ≅ HomM (VN ,W ).

There is clearly an injection HomM (VN ,W ) ↪Ð→ HomP (V,W ). Indeed if f ∈

HomM (VN ,W ) then we take f̂ ∈ HomP (V,W ) defined by f̂ = f ○q where q ∶ V → VN
is the quotient map.
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Since we made N act trivially, we have that for all f ∈ HomP (V,W ) and v ∈ V ,

f (π(n)v − v) = f(π(n)v) − f(v) = σ(n)f(v) − f(v) = 0 ∀n ∈ N.

Thus f (V (N)) = {0}. The universal property of quotients tells us that f factors
through HomC(VN ,W ) via a map f̃ ∶ VN →W . If m ∈M , we have

f̃πN(m)(v + V (N)) = f̃(π(m)v + V (N)) = f(π(m)v) = π(m)f(v)

for all v ∈ V . Thus, f̃ ∈ HomM(VN ,W ). The inclusion map f ↦ f̃ ∶ HomP (V,W )→

HomM(VN ,W ) is the inverse map of previous paragraph.

Remark 4.12. Looking at our construction of the Jacquet module, it is not very
surprizing that this extends to a functor JN ∶ GMod→ MMod where AMod denotes
the smooth A modules for any tdlc group A. This functor is defined by JN(V ) = VN
for all V representation of A and if f ∶ V →W is a A−module homomorphism, then
define JN(f) ∶ VN →WN by JN(f)(v + V (N)) = f(v) +W (N).

Likewise, the map IndGP ∶ V ↦ IndGP (V ) extends to a functor from MMod to
GMod.

Definition 4.13 (Left Adjoint). Let A,B be two categories with two functors
F ∶ A → B and G ∶ B → A. We say that F is a left adjoint of G if for all
A ∈ Ob (A) ,B ∈ Ob (B) we have

Hom(FA,B) ≅ Hom(A,GB).

The result of 4.11 can be rephrased in the language of category theory as such:
For any parabolic subgroup, the Jacquet functor is left adjoint to the parabolic
induction functor.

Proposition 4.14. The Jacquet functor is exact. That is to say, if P = MN is
a parabolic subgroup. Let (π,V ), (π′, V ′), (π′′, V ′′) be smooth representations of G
such that

0→ V → V ′
→ V ′′

→ 0

is an exact sequence of G−modules. Then

0→ VN → V ′
N → V ′′

N → 0

is an exact sequence of M−modules.

Proof. Label the maps f ∶ V → V ′, g ∶ V ′ → V ′′ and let fN = JN(f), gN = JN(g).
● Let us show that fN is injective. Suppose fN(v + V (N)) = 0 + V ′(N) then

f(v) ∈ V ′(N). Using Lemma 4.6 we get that there exists K ≤ N compact open such
that eK(f(v)) = 0 = f(eK(v)). Since f in injective, eK(v) = 0 for some compact
open K ≤ N , so v ∈ V (N). That is, the function fN is injective as desired.

● Let us show that gN is surjective. If v′′ + V ′′(N) ∈ V ′′
N , by surjectivity of g

there is v′ ∈ V ′ such that g(v′) = v′′ thus gN(v′ + V ′(N)) = v′′ + V ′′(N).
● If v ∈ V then gN (fN (v + V (N))) = gN (f(v) + V ′(N)) = g(f(v))

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ V ′′(N) =

0 + V ′′(N). Therefore ImfN ⊆ Ker gN .
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● Conversely let v′ + V ′(N) ∈ Ker(gN). Then, g(v′) ∈ V ′′(N). Again using
Lemma 4.6 we know that for all K ≤ N compact open, g(eKv′) = eK(g(v′)) = 0 by
remark 1.64. We deduce that eKv′ ∈ Kerg = Img and so there is v ∈ V such that
f(v) = eKv

′. Thanks to Corollary 4.7, we have fN(v + V (N)) = eKv
′ + V ′(N) =

v′ + V ′(N), hence KergN ⊆ ImfN .

Proposition 4.15. Taking the Jaquet module is transitive i.e. if P = MN is a
parabolic subgroup and P1 =M1N1 ⊂ P another parabolic subgroup, then (VN)M∩N1

≅

VN1.

Proof. Let P = MN be a parabolic subgroup of G. Suppose P1 = M1N1 ⊂ P is
another parabolic subgroup of G. It is straightforward to check that N ⊂ N1 and
M1 ⊂ M . Also the decompositions N1 = (M ∩N1)N and M ∩ P1 = M1(M ∩N1)
are easily checked. We will show them explicitely for an example in GL3(F ) which
generalizes to GLn(F ).

Take P = (
GL1(F ) ⋆

0 GL2(F )
) and P1 =

⎛
⎜
⎝

GL1(F ) ⋆ ⋆

0 GL1(F ) ⋆

0 0 GL1(F )

⎞
⎟
⎠
.

We have M ∩N1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 1 c
0 0 1

⎞
⎟
⎠
∶ c ∈ F

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

therefore

(M ∩N1)N =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

1 0 0
0 1 c
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

1 a b
0 1 0
0 0 1

⎞
⎟
⎠
∶ a, b, c ∈ F

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

1 a b
0 1 c
0 0 1

⎞
⎟
⎠
∶ a, b, c ∈ F

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= N1.

We have M ∩ P1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

a 0 0
0 b d
0 0 c

⎞
⎟
⎠
∶ a, b, c, d ∈ F a, b, c ≠ 0

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

and so

M1(M ∩N1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

a 0 0
0 b 0
0 0 c

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0
0 1 d
0 0 1

⎞
⎟
⎠
∶ a, b, c ∈ F× d ∈ F

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

a 0 0
0 b bd
0 0 c

⎞
⎟
⎠
∶ a, b, c ∈ F× d ∈ F

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=M ∩ P1

since we can take anything for d.
This tells us M1(M ∩N1) is a parabolic subgroup of M . Since N ⊂ N1 we have

V (N) ⊂ V (N1) and therefore VN1 ⊂ VN which tells us the map ϕ ∶ VN → VN1 ∶

v +V (N)↦ v +V (N1) is a well defined onto map. We will now compute its kernel.
If n1 ∈ N1, write n1 =mn with n ∈ N and m ∈M ∩N1. Then for all v ∈ V ,

π(n1)v − v + V (N) = π(n1)v − π(n)v + V (N)

= (π(mn) + V (N)) + (π(n) + V (N))

= πN(m) (π(n) + V (N)) + (π(n) + V (N)) ∈ VN(M ∩N1).
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so Ker(ϕ) = VN (M ∩N1) . By the first isomorphism theorem we deduce that

VN1 ≅ VN/ (VN (M ∩N1)) = (VN)M∩N1
.

This proves that taking Jacquet modules is transitive.

Proposition 4.16. Let (π,V ) be a smooth irreducible representation of G. Suppose
there is P = MN such that VN ≠ 0, then there is a representation W of M such
that V is a subrepresentation of IndGP (W ).

Proof. The Jacquet module VN ≠ 0 is a smooth finitely generated representation
by Proposition 4.9 (since V is irreducible, it is finitely generated). Therefore, using
Lemma 1.28 we know that it has an irreducible quotient, call it W . We have that
HomM(VN ,W ) ≠ 0 so from the adjunction of the Jacquet functor, Lemma 4.11 tells
us that HomG (V, IndGP (W )) ≠ 0. There is a nonzero G−module homomorphism
from V to IndGP (W ), but since V is irreducible, such a morphism must be an
embedding. Thus V is isomorphic to a subrepresentation of IndGP (W )

This is a key fact that we will use later. We will want to prove that irreducible
representations all rise as quotients of some admissible representations. In the next
section we will check that admissibility is preserved by the Jacquet functor.

4.1.3 Jacquet first Lemma

Theorem 4.17 (Jacquet). Let P =MN be a parabolic subgroup of G. Suppose that
K is a compact open subgroup of G that has an Iwahori factorization relative to P .
Let (σ,V ) be a smooth admissible representation of G with q ∶ V → VN the quotient
map. Then

(1) We have q (V K) = V
K0
P

N .
(2) The representation (σN , VN) is admissible.

Proof. We will prove it for any standard parabolic subgroup of GLn(F ) since all the
others are conjugated to some standard parabolic subgroup. So take n = n1+⋅ ⋅ ⋅+nk
such that P is the group of upper triangular matrices with blocks of size n1, . . . , nk.

(1) If v ∈ V K then for all k ∈ K ∩M = K0
P we have σ(k)(v) = v therefore

σN(k)(q(v)) = σN(k)(v + V (N)) = v + V (N) so q (V K) ⊆ V
K0
P

N .
For the converse inclusion, let w = q(v) ∈ V

K0
P

N and let v′ = eK0
P
v. Then, q(v′) =

q(eK0
P
v) = eK0

P
q(v) = q(v) = w since w is fixed by K0

P . Note that v′ ∈ V K0
P by

construction.
Let

a =

⎛
⎜
⎜
⎜
⎜
⎝

In1 0 0
0 π−1In2 0

0 ⋱

0 π−(k−1)Ink

⎞
⎟
⎟
⎟
⎟
⎠

∈ Z(M)

where π is a uniformizing parameter for F .
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We claim that {a−mK−
Pa

m} ⊂ N− is a neighborhood system of the identity in
N−. Those are all compact open subgroups, so we will only have to show that
{a−mK−

Pa
m} ⊆ (K−

m)P for all m ≥ 1. Let R ∈K−
P , write it in block form

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
R21 In2 0
R31 R32 In3 0

⋱

Rk1 Rk2 Rk3 ⋯ Ink

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

we get the following:

a−mRam =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In1 0 0
πmR21 In2 0
π2mR31 πmR32 In3 0

⋱

πkmRk1 π(k−1)mRk2 π(k−2)mRk3 ⋯ Ink

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is now clear that a−mRam ∈ Km therefore the groups a−mK−
Pa

m form a neigh-
borhood system of the identity in N−.

By smoothness StabG(v′) is open therefore we can fixm ∈ N such that a−mK−
Pa

m ⊂

StabG(v′). Let v′′ = σ(am)v′. If k ∈K−
P , we get

σ(k)v′′ = σ(k)σ(am)v′

= σ(kam)v′

= σ(am)σ(a−mkam)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈StabG(v′)

v′

= σ(am)v′ = v′′

so v′′ ∈ V K−
P . Also for all k ∈K0

P =K∩M , since a is in the center ofM , it commutes
with k, so we have

σ(k)v′′ = σ(k)σ(am)v′

= σ(kam)v′

= σ(am)σ(k)v′

= σ(am)v′ since v′ ∈ V K0
P

= v′′

therefore v′′ ∈ K0
P . Now set ṽ = eK+

P
v′′. We claim that ṽ ∈ V K . Thanks to the

Iwahori factorization and using an immediate corollary of Corollary 1.77 we get

eK ṽ = eK−
P
eK0

P
eK+

P
ṽ = eK−

P
eK0

P
eK+

P
eK+

P
v′′

= eK−
P
eK0

P
eK+

P
v′′ = eK+

P
eK0

P
eK−

P
v′′ since K =K+

PK
0
PK

−
P =K−

PK
0
PK

+
P

= eK+
P
v′′ = ṽ

therefore ṽ ∈ V K . Moreover

q(ṽ) = q (eK+
P
v′′) = q (eK+

P
σ(am)v′) = eK+

P
σN(a`)w = σN(a`)w
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since K+
P ⊂ N and N acts trivially on VN . We then have proved that for all w ∈ V

K0
P

N
there is some m(w) such that for all ` ≥m(w) we have σN(a`)w ∈ q(V K).

Let w1, . . . ,ws ∈ V
K0
P , and m = max(m(w1), . . . ,m(ws)). Since σ(am) is invert-

ible, we have

dim (span{w1, . . . ,ws}) = dim
⎛
⎜
⎜
⎜
⎝

span

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

σ(am)wi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈q(V K)

∶ 1 ≤ i ≤ s

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⎞
⎟
⎟
⎟
⎠

≤ dim (q(V K
)) <∞.

Thus, dim(V
K0
P

N ) ≤ dim (q(V K)) . We already proved q (V K) ⊆ V
K0
P

N therefore
q (V K) = V

K0
P

N .
(2) Take K to be a compact open subgroup of M . There is ` ≥ 1 such that

K ⊃K`∩M = (K0
` )P , so V

K
N ⊂ V

(K0
` )P

N = q (V K`) by (1). Since (σ,V ) is admissible,
dimV K <∞ and therefore dimV K`

N ≤ dim q(V K`) ≤ dimV K` <∞ which is what we
wanted.

4.2 Supercuspidal representations and admissibility

The following definition is motivated by Proposition 4.16 which tells us that if the
Jacquet module of some representation is nonzero then our representation arise as
subrepresentation of the induction of some representation of a Levi subgroup.

Definition 4.18 (Supercuspidal representation). A representation (π,V ) is called
supercuspidal if for all proper parabolic subgroups P =MN we have VN = 0.

Remark 4.19. In the literature those representations are sometimes called quasi-
cuspidal, absolutely cuspidal or just cuspidal.

Definition 4.20 (Compact modulo center). Let G be a tdlc group. A representa-
tion (π,V ) is called compact modulo center if for all v ∈ V and every compact
open K ≤ G, the function Dv,K ∶ G → V defined by Dv,K(g) = eKπ(g

−1)v has com-
pact support modulo Z(G). If the support is compact, then the representation is
said to be compact.

Notation. On an analogous manner of the definition of the averaging operator, if
A ⊂ G is any compact subset with nonzero measure, let εA = µ(A)−11A ∈ H(G).
This acts on G−modules by averaging elements on the set A. So if A =K, a compact
open subgroup then εK = eK .

If λ ∈ Λ let αK(λ) = εKλK =KλK.

Lemma 4.21. Let K = K` with ` > 0. For all λ ∈ Λ and Pλ = MλNλ parabolic
subgroup with associated Iwahori factorization we have

(i) eK ⋆ eλK+
λ
λ−1 = eK

(ii) eλ−1K−
λ
λ ⋆ eK = eK

(iii) eK ⋆ eK0
λ
= eK = eK0

λ
⋆ eK
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(iv) eλK0
λ
λ−1 = eλ−1K0

λ
λ = eK0

λ

Proof. (i) We know that λK+
λλ

−1 ≤ K+
λ ≤ K by 2.21 so it follows directly from

Lemma 1.48.
(ii) Same as (i), using λ−1K−

λλ ≤K
−
λ ≤K.

(iii) Again follows from Lemma 1.48.
(iv) This comes from the fact that K0 consists of diagonal matrices, therefore

it commutes with λ so λ−1K0
λλ = λK

0
λλ

−1 =K0
λ.

Lemma 4.22. Let (σ,V ) be a representation of G, K = K` for some ` ≥ 0 and
λ ∈ Λ, then for all n ≥ 1 we have

αK(λn)(v) = εKλnK(v) = eKσ(λ
n
)eK(v).

Proof. Let v ∈ V and n ≥ 1. We have:

αK (λn) = (eK ⋆ δλn ⋆ eK) (v) = eKσ (λn) eKv

where the first equality comes from Proposition 1.78.

Corollary 4.23. Let λ ∈ Λ and fix K =K` for some ` > 0 we have

Ker (αK(λ)∣V K) = Ker (eλ−1K+
λ
λ∣V K) .

Proof. Let v ∈ V K . Then

αK(λ)(v) = eKσ(λ)eK(v) by Lemma 4.22
= eKλeK(v)

= eK+
λ
K0
λ
K−
λ
σ(λ) eK(v)

= eK+
λ
eK0

λ
eK−

λ
σ(λ)eK(v) by Corollary 1.77

= eK+
λ
eK0

λ
σ(λ) eλ−1K−

λ
λ eK(v)

= eK+
λ
σ(λ) eK0

λ
eλ−1K−

λ
λ eK(v)

= (εK+
λ
λ ⋆ eλ−1K0

λ
λ ⋆ eλ−1K−

λ
λ ⋆ eK

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=eK

)(v)

= σ(λ)(eλ−1K+
λ
λ ⋆ eλ−1K0

λ
λ ⋆ eK

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=eK

)(v)

= σ(λ)eλ−1K+
λ
λeKv

= σ(λ)eλ−1K+
λ
λv since v ∈ V K

Since σ(λ) is invertible, αK(λ)(v) = 0 if and only if eλ−1K+
λ
λv = 0, as desired.

Corollary 4.24. Let λ ∈ Λ and fix K =K` for some ` > 0 we have

V (Nλ) ∩ V
K
= ⋃
n∈N

Ker(αK(λn)) ∩ V K .
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Proof. First note that in Corollary 4.23 just replace λ by λn ∈ Λ for any n ∈ N and
we get that

Ker (αK(λn)∣V K) = Ker (eλ−nK+
λ
λn ∣V K) .

From Lemma 2.21 the collection {λ−nK+
λλ

n} covers Nλ with compact open
subgroups. Therefore, if C ≤ Nλ is compact open, there is n > 0 such that C ≤

λ−nK+
λλ

n and it is then easy to check that Ker (eC) ≤ Ker (eλ−nK+
λ
λn) and thus

V (Nλ) = ⋃
C≤c.o.N

Ker (eC) ⊂ ⋃
n∈N

Ker (eλ−nK+
λ
λn) ⊂ V (Nλ).

So we can conclude

V (N) ∩ V K
= ⋃
n∈N

Ker (eλ−nK+
λ
λn) ∩ V

K

= ⋃
n∈N

Ker (eλ−nK+
λ
λn ∣V K)

= ⋃
n∈N

Ker (αK(λn)∣V K)

= ⋃
n∈N

Ker (αK(λn)) ∩ V K

as desired.

Lemma 4.25. Let K =K` for some ` > 0. For all λ,µ ∈ Λ we have αK(λ)αK(µ) =
αK(µ)αK(λ) = αK(λµ).

Proof. Let λ,µ ∈ Λ. Let a, b ∈ Z such that aλ, bµ ∈ A (one can take a = λ−1
nn and

b = µ−1
nn). Using Proposition 2.27 we get the following:

αK(λ)αK(µ) = αK(a−1aλ)αK(b−1bµ) = δa−1αK(aλ)δb−1αK(bµ)

= δa−1δb−1αK(aλ
¯
∈A

)αK(bµ
¯
∈A

)

= δa−1δb−1αK(aλbµ)

= δa−1δaδbδb−1αK(λµ)

= αK(λµ).

Since elements of Λ are diagonal matrices, we have λµ = µλ, as desired.

Proposition 4.26. Let (σ,V ) be a representation of G. The following are equiva-
lent:

1. V is a supercuspidal representation.

2. For all K =K` with ` > 0 and all v ∈ V , the function Λ→ V ∶ λ↦ αK(λ)v has
finite support modulo the group Z ∩Λ.
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Proof. (1⇒ 2) Assume V is supercuspidal.
Let

ν1 = diag(π,0, . . . ,0)
ν2 = diag(π,π,0 . . . ,0)
⋮

νn = diag(π,π, . . . , π).

Note that ν1, . . . , νn ∈ Λ form a basis for {diag (πm1 , . . . , πmn) ∶ (m1, . . . ,mn) ∈ Zn}
and νn ∈ Z(G).

Let λ = ∏
n
i=1 ν

mi
i ∈ Λ. Note that since we are looking for the support modulo

the center of G so we can multiply λ by any element of Z. Therefore, up to
multiplication by νn which is in the center of G , we can assume m1, . . . ,mn ≥ 0.

Since σ is supercuspidal, if µ ∈ Λ is such that Pλ ≠ G (which happens if µ is not
in the center of G), we have V (Nλ) = V therefore

V K
= V (Nλ) ∩ V

K
= ⋃
n∈N

Ker(αK(λn)) ∩ V K .

Thus, for all w ∈ V K there is nµ,w such that w ∈ Ker(αK(µnµ,w)) and therefore
a(µn)w = 0 for all n ≥ nµ,w. Let k = max (nν1,v, . . . , nνn−1,v). If there is 1 ≤ i0 ≤ n− 1
such that mi0 > k then

αK(λ)v = αK (
n

∏
i=1
νmii ) v = αK

⎛
⎜
⎜
⎝

n

∏
i=1
i≠i0

νmii

⎞
⎟
⎟
⎠

αK(ν
mi0
i0

)v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= 0

where the middle equality holds thanks to Lemma 4.25. Therefore, to get a nonzero
result we must pick (m1, . . . ,mn−1) ∈ [0, k]n−1 ∩Zn−1 which there are finitely many
of.

(2⇒ 1) Let ϕ ∶ Λ→ V be the map in question.
We know that Supp (ϕ) /Z(G) compact, so we can find a compact set Ψ ⊂ G

such that Supp (ϕ) = ΨZ(G).
Let λ = diag(πm1 , . . . , πmn) ∉ Z. Let us first prove that the cosets λiZK with

i ≥ 0 are pairwise disjoint.
Suppose λiZK ∩ λjZK ≠ ∅. We have that λi−jZ ∩K ≠ ∅, therefore there is

z ∈ F× such that zλi−j ∈ K. Write z = πγu with γ ∈ Z and u ∈ O×. We must have
1 − zπm1(i−j) = 1 − πγ+m1(i−j)u ∈ π`O×, in particular it is not invertible in O. Since
O is a d.v.r we get that πγ+m1(i−j)u is a unit, in other words γ = m1(j − i). The
same reasoning gives us γ = mn(j − i), hence (m1 −mn)(j − i) = 0. Since λ is not
central, m1 −mn > 0, thus i = j, as desired.

Since {λiKZ}
i∈N is a family of disjoint compact open sets in G/Z.

Let C be a compact set in G/Z, we claim that there are only finitely many i ∈ N
such that λi ∈ C. Indeed note that

C ⊂ (⋃
i∈N
λiKZ) ∪ (C ∖ (⋃

i∈N
λiKZ))
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is an infinite cover of C consisting of open disjoint sets. By compactness of C there
are only finitely many i ∈ N such that C ∩ λiZK ≠ ∅.

Therefore, there is N ∈ N such that for all n ≥ N we have λn ∉ Supp(ϕ).
Consequently, αK(λN)v = 0 so

v ∈ Ker (αK (λN)) ∩ V K
⊂ V (Nλ) ∩ V

K .

Thus, we have v ∈ V (Nλ), that reasoning being true for all v ∈ V we get V (Nλ) =

V . We can conclude VN = 0 for all proper standard parabolic subgroups P =

MN .

Remark 4.27. Note that since the space Λ/ (Λ ∩Z) is discrete, being compact in
this space is the same as being a finite set.

Theorem 4.28 (Harish-Chandra). A representation (σ,V ) is supercuspidal if and
only if it is compact modulo center.

Proof. (⇒) Let (σ,V ) be a supercuspidal representation and let K be any compact
open subgroup. First note that if K ′ ≤K then for all v ∈ V we have Supp(Dv,K) ⊂

Supp (Dv,K′), indeed suppose that Dv,K(g) = 0, then from Lemma 1.48 we know
that e′K ⋆ eK = eK′ and so 0 = eK′ (eKσ(g

−1)v) = (eK′ ⋆ eK)σ(g−1)v = eK′σ(g−1)v.
Let ` big enough such that v ∈ V K` and K` ≤ K, we only need to prove that Dv,K`
is compact modulo center. Therefore we can replace K with K` without loss of
generality. Thus, we can rewrite v = eKv, so

DK,v(g) = eKσ(g
−1

)eKv.

Take x1, . . . , xr a system of representatives of cosets in K0/K. Recall from
chapter 2 that K0 normalizes K, therefore those are representatives of left or right
cosets. Thanks to Lemma 2.20 we have that

G =K0ΛK0 =
r

⋃
i,j=1

KxiΛxjK =
r

⋃
i,j

xiKΛKxj .

If g ∈ G, write it g−1 = k1xiλxjk2, then

Dv,K(g) = eKσ(k1xiλxjk2)eKv

= eKσ(k1)σ(xi)σ(λ)σ(xj)σ(k2)eKv

= eKσ(xi)σ(λ)σ(xj)eKv

We have σ(k2)eKv = eKv and also for all w ∈ V we have eKσ(k1)(w) = eKw. So

Dv,K(g) = eKσ(xi)σ(λ)σ(xj)eKv

= εKxiσ(λ)εxjKv

= εxiKσ(λ)εKxjv

= σ(xi)αK(λ)σ(xj)v.

Therefore, it boils down to finding the support of λ↦ σ(xi)αK(λ)σ(xj)v mod-
ulo center.
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We Proposition 4.26 with v = σ(xj)v and conclude that

Supp(Dv,K) ⊂
r

⋃
i,j=1

xiKFZKxj

where F is finite, and thus

Supp(Dv,K)/Z ⊂
r

⋃
i,j=1

⋃
λ∈F

xiKλKxj/Z,

which is compact as a finite union of compacts.
(⇐) Suppose (σ,V ) is compact modulo center. Let P = Pλ a proper parabolic

subgroup (so λ is not central). Let v ∈ V and since V is smooth, take K = K` for
some ` ∈ N such that v ∈ V K . By exactly the same reasoning as above, with x1 = 1,
if we let ϕ ∶ Λ → V defined by ϕ(λ) = αK(λ)v then it must have compact support
modulo center. Indeed we have seen that

Supp(Dv,K) =
r

⋃
i,j=1

xiKSupp (λ↦ σ(xi)αK(λ)σ(xj)v)Kxj ⊃ Supp(ϕ).

We can conclude that the representation is supercuspidal thanks to Proposition
4.26.

Notation. Define G0 = (ν ○ det)−1
(0) = {M ∈ G ∶ det(M) ∈ O×}.

Remark 4.29. Clearly K0 ⊂ G
0 therefore G0 contains all the compact subgroups

of G. Also G0 is an open dense subgroup of G and we have

G/G0
≅ F ×

/O
×
≅ Z.

If we take G = GLn1 ×GLn2 ×GLnr then G/G0 ≅ Zr.
The set Λ(G) = G/G0 is a lattice in G.

Proposition 4.30. The subgroup ZG0 has finite index in G.

Proof. Here G = GLn(F ) and it generalizes to finite product of such groups.

Define A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱

0 0 0 ⋱ 1
π 0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Note that

A2
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 ⋯ 0
0 0 0 ⋱ 0
⋮ ⋮ ⋱ ⋱ 1
π 0 0 ⋱ 0
0 π 0 ⋯ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and An =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π 0 ⋯ 0
0 π 0 ⋯ 0
⋮ ⋮ ⋱ ⋱

0 0 0 ⋱ 0
0 0 0 ⋯ π

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= πIn.

More generally, if k ∈ N, then write the Euclidean division k = nq+r with r < n. We
have Ak = πqAr and Ar has the rth diagonal filled with π’s and n + rth diagonal
filled with 1’s. This generalizes to k ∈ Z since A−k

i,j = (Akj,i)
−1. Let A = ⟨A⟩ the cyclic
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group generated by A. We have det (Ak) = πk for all k ∈ Z. If M ∈ G then write
det (M) = πku with u ∈ O×. Note that det (A−kM) = u ∈ O× therefore G = A ⋊G0.

Thanks to the way we computed Ak we see that ∣A/(Z ∩ A)∣ = n therefore
∣G/ZG0∣ = n.

Proposition 4.31. If V is a representation of G, it is supercuspidal if and only if
it is supercuspidal as a representation of G0.

Proof. It is immediate, note that for all parabolic subgroup P ≤ G, its unipotent
subgroup lies in G0. Therefore, the space V (N) is independent of the fact that we
consider V as a representation of G or G0.

Theorem 4.32 (Harish-Chandra). Representations of G0 are compact if and only
if they are supercuspidal.

Proof. The proof is the same as Theorem 4.28. If M = kλk′ ∈ G = K0ΛK0 then
ν (det (kλk′)) = ν (det(k))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ν (det(λ))+ν (det(k′))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= ν (det(λ)). ThereforeM ∈ G0

if and only if λ ∈ G0. This implies that G0 =K0Λ0K0 where Λ0 = Λ ∩G0.
(⇒) With the notations of the proof of Theorem 4.28, it boils down to find that

the support of λ↦ σ(xi)αK(λ)σ(xj)v is compact for λ ∈ Λ0.
If λ = diag(πm1 , . . . , πmn) ∈ Λ0, we must have ∑ni=1mi = 0 therefore

λ = diag (πm1 , . . . , πmn−1 , π−∑
n−1
i=1 mi) .

In a similar fashion to last theorem we can take a basis of Zn−1 instead of Zn. That
is to say, if we let

ν1 = diag (π,π, . . . , π, π−(n−1)
)

ν2 = diag (π2, π, . . . , π, π−n)

⋮

νn−1 = diag (π2, π2, . . . , π2, π−(2(n−1))
) ,

then every vector of Λ0 is of the form λ = ∏
n−1
i=1 ν

mi
i with mi ≥ 0. The rest of the

proof is as previously, we use

V K
= V (Nλ) ∩ V

K
= ⋃
n∈N

Ker(αK(λn)) ∩ V K .

to get maximal values of each mi such that νi stays in the support. Therefore there
are only finitely many λ ∈ Λ0 such that σ(xi)αK(λ)σ(xj)v ≠ 0, doing that for all
i, k we get that Supp (DK,v) = ⋃

r
i,j=1⋃

`
k=1 xiKλi,j,kKxj for finitely λi,j,k’s in Λ0 and

therefore it is compact.
(⇐) Let P = Pλ be a proper parabolic subgroup, v ∈ V and K a compact open

subgroup such that v ∈ V K . It is straightforward to see that we can take λ ∈ Λ0.
As before, in this function µ ↦ αK(µ)v must have compact support but since λ is
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not central, the collection {λk, k ∈ N} escapes every compact set. Therefore there
is N ∈ N such that αK(λN)v = 0 thus

v ∈ (⋃
n∈N

Ker(αK(λn))) ∩ V K
= V (N) ∩ V K .

We can conclude that V = V (N).

Proposition 4.33. If G is a tdlc group, any finitely generated compact represen-
tation of G is admissible.

Proof. Let V be an irreducible supercuspidal representation of G. Let K ≤ G be a
compact open subgroup.

First, we prove that for all v ∈ V , the map Dv,K takes finitely many values. Since
Dv,K is rightK−invariant (and therefore locally constant) and compactly supported.
Note that we can take K small enough such that Dv,K is bi-K-invariant. Write
Supp (Dv,K) = KSupp (Dv,K) = ⋃g∈Supp(Dv,K) gK, by compactness of the support,
there are g1, . . . , gk ∈ G such that

Dv,K =
k

∑
i=1

1giKDv,K(gi).

In particular it takes finitely many values.
Since V is finitely generated, there are v1, . . . , vn such that V is generated by

elements of the form gvi with i ∈ {1, . . . , n}. Note that V K = eKV and therefore is
spanned by elements of the form eKgvi = Dv,K(g−1). We’ve just shown that there
are only finitely many such values for each i and therefore finitely many values in
total, thus V K is finite dimensional.

Corollary 4.34. If G is a tdlc group, any irreducible compact representation of G
is admissible.

This is a particular case of Proposition 4.33, if V is irreducible it is generated
by any nonzero element.

Corollary 4.35. Any irreducible supercuspidal representation of G is admissible.

Proof. Let V be an irreducible supercuspidal representation of G. Since [G ∶ ZG0]
is finite by Proposition 4.30, V is finitely generated as a representation of ZG0.
Since V is irreducible, the subgroup Z acts as scalars therefore V is a finitely
generated supercuspidal representation of G0. By Theorem 4.32, it compact as a
representation of G0 and so is admissible as such. Let K ≤ G be a compact open
subgroup. By Remark 4.29 we have that K ≤ G0 and so V K is finite dimensional.

Remark 4.36. Note that we proved everything for G = GLn(F ) so it is also true
for a finite product of such groups. In a product of those groups, the parabolic
subgroups are products of parabolics and so all the crucial decompositions that we
proved (Levi decomposition, Iwahori factorization) still hold. Also the following
result is very useful.
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Theorem 4.37. Let G1,G2 be tdlc groups. Then,

1. If for all i ∈ {1,2} we have that Vi is an admissible irreducible (smooth)
representation of Gi , then V1 ⊗ V2 is an admissible irreducible (smooth) rep-
resentation of G1 ×G2.

2. If V is an admissible (smooth) irreducible representation of G1×G2, then there
exist admissible irreducible (smooth) representations of Vi of Gi for i ∈ {1,2},
such that V ≅ V1 ⊗ V2. The isomorphism classes of V1, V2 are determined by
the one of V .

Proof. This is done in [11, Theorem 1, p.179].

Proposition 4.38 (Jacquet second Lemma). For every irreducible representation
(σ,V ) of G there is a parabolic subgroup P =MN such that V is a subrepresentation
of IndGP (W ) where W is an irreducible supercuspidal representation of M .

Proof. Nota that we can restrict to standard parabolic subgroup of which there
are finitely many and ordered under inclusion. Take P = MN minimal under the
condition VN ≠ 0. Suppose P1 = M1N1 ⊂ P is another parabolic subgroup of G.
Since P is chosen by minimality, using Proposition 4.15 we have that (VN)M∩N1

≅

VN1 = 0. Since any parabolic subgroup of M is of the form M ∩ P1 for some
parabolic subgroup P1 ⊊ P of G, all the parabolic subgroups of M will have a
trivial Jacquet module. So (σN , VN) is a supercuspidal representation of M . Since
V is irreducible, then VN is finitely generated by proposition 4.9. Then VN has an
irreducible quotient W , which is supercuspidal. From the proof of 4.16 we know
that V is isomorphic to a subrepresentation of IndPN(W ) as desired.

Theorem 4.39. Every irreducible smooth representations of G is admissible.

Proof. Take the notations of proposition 4.38. Since W is an irreducible super-
cuspidal representation, it is admissible by proposition 4.35. Then by proposition
1.80, since P /G is compact, we know that IndGP (W ) is admissible, and so V is also
admissible as a subrepresentation.

4.2.1 Relation with Matrix coefficients.

Recall the proof of Theorem 4.28 we used functions of the form Dv,K . It played the
role we usually give to matrix coefficients.

Definition 4.40 (Smooth dual). Let V be a representation of a tdlc group G, the
smooth dual of V denoted Ṽ is defined by

Ṽ = (V ∗
)sm ,

where V ∗ is the vector space dual of V . It is a representation of G where the latter
acts by translation on the left.

Definition 4.41 (Matrix coefficient). Let v ∈ V and ṽ ∈ Ṽ , the function g ↦
⟨ṽ, g−1v⟩ = ṽ (g−1v) = (gṽ)(v) is a matrix coefficient.
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Lemma 4.42. If V is a representation of a tdlc group with central character, then
all its matrix coefficients have compact support modulo center if and only if the
function DK,v is compactly supported modulo center for every K ≤ G compact open.

Proof. (⇐) Suppose that Dv,K is compactly supported modulo center for every
K ≤ G compact open. Let v ∈ V and ṽ ∈ Ṽ . Fix a compact open subgroup K ≤ G
small enough so that ṽ ∈ Ṽ K (we know that Ṽ is smooth by construction).

We have

⟨ṽ, g−1v⟩ = ⟨eK ṽ, g
−1v⟩

= µ(K)
−1
∫
K

⟨kṽ, g−1v⟩ dk

= µ(K)
−1
∫
K

⟨ṽ, k−1g−1v⟩ dk

= ⟨ṽ, eKg
−1v⟩ = ⟨ṽ,Dv,K(g)⟩ .

Thus, the support of the matrix coefficient given by ṽ and v is a subset of the
support of Dv,K and therefore compact modulo center.

(⇒) Assume all matrix coefficients have compact support modulo center. Let
K ≤ G compact open and v ∈ V . If v = 0, then Dv,K has an empty support so we
may assume v ≠ 0 without loss of generality.

Step 1: We observe that for every 0 ≠ w ∈ V K in the image of Dv,K there is
w ∈ Ṽ K such that ⟨w̃,w⟩ ≠ 0.

Indeed define w̃ ∈ V ∗ by taking any functional on V K such that ⟨w̃,w⟩ and then
extend it to V by setting ⟨w̃, v⟩ = ⟨w̃, eKv⟩. Therefore, for all k ∈ K and v ∈ V , we
have ⟨kw̃, v⟩ = ⟨w̃, k−1eKv⟩ = ⟨w̃, v⟩ and so w̃ ∈ Ṽ K .

Step 2: We prove that the image of Dv,K is finite dimensional.
Assume for the sake of contradiction that there are gi ∈ G with i ∈ N such that

the set {vi = Dv,K(gi) ∶ i ∈ N} is a collection of linearly independent vectors. This
implies that the cosets giKZ are disjoint (since Dv,K is right K−invariant it is
constant on the left cosets, and G has a central character, therefore Z(G) acts as
scalars). Therefore, the collection {gi} is not contained in any compact set modulo
center. Using a diagonal argument, we define ṽ ∈ V ∗ by ⟨ṽ, vi⟩ = 1 and extend it
trivially to V . By construction, we have that ṽ ∈ Ṽ K . Note that for all i ∈ N we
have

⟨ṽ, g−1
i v⟩ = ⟨eK ṽ, g

−1
i v⟩ = ⟨ṽ, eKg

−1
i v⟩ = ⟨ṽ, vi⟩ = 1.

Thus the set {gi ∶ i ∈ N} is contained in the support of the matrix coefficient
g ↦ ⟨ṽ, g−1v⟩. As a matrix coefficient the latter has compact support modulo center
which is absurd since the set {gi ∶ i ∈ N} isn’t contained in any compact set ☇.

Step 3: Let {v1, . . . , v`} be a basis for the image of Dv,K . Thanks to step 1,
there are ṽ1, . . . , ṽ` ∈ Ṽ

K such that for all i ∈ {1, . . . , `} we have ⟨ṽi, vi⟩ ≠ 0. Without
loss of generality we can take them such that ⟨ṽi, vj⟩ = δi,j . If g ∈ Supp(Dv,K) then
write Dv,K(g) = ∑`i=1 λivi ≠ 0. Take i0 ∈ {1, . . . , `} such that λi ≠ 0, we have

⟨ṽi0 , g
−1v⟩ = ⟨eK ṽi0 , g

−1v⟩ = ⟨ṽi0 , eKg
−1v⟩ = ⟨ṽi0 ,

`

∑
i=1
λivi⟩ = λi0 ≠ 0.
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This implies that g ∈ Supp{x↦ ⟨ṽi, x
−1v⟩} . Callmi the latter matrix coefficient.

We proved that Supp (Dv,K) ⊂ ⋃
`
i=1 Supp (mi) which is compact as the finite union

of compact sets, as desired.

Remark 4.43. Note that this proof is valid when G is any tdlc group, not just for
GLn(F ).



Chapter 5

Uniform admissibility

5.1 Assumptions on the group

Consider a locally compact totally disconnected group G and a compact open sub-
group K ≤ G. We wish to prove that there is a bound N(K) ∈ N such that for any
admissible representations V of G, we have dimC V

K ≤ N(K). We will compute
such a bound for any tdlc group that satisfies the following assumption:

There are subgroups Z, K0,K
−,K+ ≤ G, elements a1, . . . , a` and a finite set Ω

such that:
1) The subgroup Z is in the center of G.
2) The elements a1, . . . , a` commute among themselves : we call A the semigroup

generated by them and the identity.
3) The subgroup K0 is compact open, and G =K0AΩZK0 (Cartan decomposi-

tion).
4) We have the inclusion K ⊆K0, and K0 normalizes K.
5) We have K− ⊂K, K+ ⊂K and K =K−K+.
6) For all i ∈ {1, . . . , `}, we have aiK+a−1

i ⊂K+ and a−1
i K

−ai ⊂K−.

Remark 5.1. Note that for the assumption 5 implies that K = K−1 = K+K− as
well, since K− and K+ are subgroups.

In the following section we will check that those assertions are indeed satisfied
by GLn(F ) where F is a local non-Archimedean field.

5.1.1 Verification of those assumptions in GLn(F )

Recall the notations from Chapter 2. We take a local non-Archimedean field F . Let
G = GLn(F ). We setK0 = GLn(O). Fix ` ≥ 1 andK =K` = {M ∈ G ∶ ∥1−M∥ ≤ ∣π∣`},
the corresponding congruence subgroup. Let K+ be the upper triangular matrices
of K, and K− the lower triangular matrices of K with 1’s on the diagonal.

Let (aj)
n
j=1 the diagonal matrices such that (aj)ii = {

π if i ≤ j
1 if i > j Let A be the

semigroup generated by aj for all j ∈ {1, . . . , n}.
Also, we take Z to be the center of G and Ω = {1}.

Proposition 5.2. All the assumptions in previous section hold.

81
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Proof. 1. It is clear, since Z is the center of G.

2. The elements a0, . . . , an are diagonal matrices therefore commute among them-
selves.

3. K0 is a maximal compact subgroup and G = K0AΩZK0 is from Proposition
2.13 for Omega = {1}.

4. The inclusion is immediate. Let us prove thatK0 normalizesK. LetM ∈K0 =
GLn(O). Then for all 1+π`N ∈K, we have 1+π`N ∈K =M(1+π`N ′ ∈K)M−1

with N ′ =M−1NM , so MKM−1 =K (the converse inclusion is immediate to
check).

5. This is proved in Section 2.2.3.

6. This is Lemma 2.24.

5.2 Proof of uniform admissibility
This proof is due to Bernstein, done in [3].

We assume G,K satisfy all the assumption of previous section. We wish to
prove that the collection of admissible irreducible representations of G is uniformly
admissible. To that extent, we want to find a bound on the dimension of any
finite-dimensional HK(G)−module.

Notation. For brevity, if g ∈ G, we letKgK denote the function µ (KgK)
−1
1KgK ∈

HK . We know from Corollary 1.68 that those functions generate HK . The convo-
lution of two functions f, g ∈HK will be denoted fg instead of f ⋆ g.

Lemma 5.3. For all λ ∈ A, we have the following:

(i) eK ⋆ eλK+λ−1 = eK

(ii) eλ−1K−λ ⋆ eK = eK

Proof. The proof of is similar to Lemma 2.25.

Lemma 5.4. If either of g or h normalizes K, then KgK KhK =KghK. This is
true in particular if g or h lies in Z.

Proof. The proof of Proposition 2.26 extends verbatim to our setting.

Proposition 5.5. If g, h ∈ A, then KgK KhK =KghK

Proof. Again, the proof done of Proposition 2.27 extends verbatim to this setting,
where we use Lemma 5.3 instead of Lemma 2.25.

Notation. Let Z,A be the subalgebras of HK consisting of functions supported
on KZK and KAZK respectively. Let Ai =KaiK.

Proposition 5.6. The subalgebra Z is in the center of HK , and the algebra A is
commutative. We have Z ⊂ A, and A is generated by Z and the Ai’s.
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Proof. The algebra Z is generated by functions of the form KzK with z ∈ Z. Let
g ∈ G and z ∈ Z, then using Corollary 5.4

KgK KzK =KgzK =KzgK =KzK KgK.

So Z is in the center of HK . As for the second assertion, A is a commutative
semigroup, so Corollary 5.5 gives us the same result, i.e. if a, b ∈ A then

KaK KbK =KabK =KbaK =KbK KaK.

The inclusion Z ⊂ A is straightforward. Then, using previous lemmas, we get
that A is generated by functions of the form KzaK with z ∈ Z and a ∈ A. Now,
KzaK = KzK KaK, and KaK is a product of Ai’s. Therefore, A is generated by
Z and the Ai’s.

Proposition 5.7. There are X1,⋯,Xm, Y1, . . . , Yk ∈HK such that HK = ∑i,jXiAYj.

Proof. Assuming that Ω normalizes K. Assumption 4 tells us that K0 nor-
malizes K, so ΩK0 normalizes K (if ω ∈ Ω and g ∈ K0 then ωgK = ωKg = Kωg).
Take {xi}

n
i=1 to be a set of representatives of right cosets of K in K0, and {yj}

k
j=1

to be a set of representatives of right cosets of K in ΩK0 (there are finitely many
by compactness, in assumption 3). Since K is normalized by both K0 and ΩK0,
the representations are also representatives of left cosets and double cosets. Define
Xi = KxiK and Yi = KyjK. Let g ∈ G. We show that KgK ∈ ∑i,jXiAYj . We use
assumption 3 to decompose

G =K0AΩZK0 =K0AZΩK0 = (⋃
i

Kxi)AZ
⎛

⎝
⋃
j

yjK
⎞

⎠
=⋃
i,j

KxiAZyjK.

Let k, k′ ∈K, a ∈ A, i0, j0 and z ∈ Z be such that g = kxi0azyj0k′. We have

KgK =Kkxi0azyj0k
′K

=Kxi0azyj0K

=Kxi0K KaK KzK Kyj0K

=Xi0 KaK KzK
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈A

Yj0 ∈∑
i,j

XiAYj .

We use Corollaries 2.26 and 2.27 on the third line as well as the facts that Kxi =
KxiK and yjK =KyjK. Thus, HK ⊆ ∑i,jXiAYj . The converse inclusion is trivial.

General case: Let {xi}
n
i=1 be a collection of representative of cosets of K in

K0 as before. Again, by assumption 4, the subgroup K is normal in K0 so they
represent the left, right and double cosets. Let {yj}

m
j=1 be a set of representative

of left cosets of K in KΩK0. Define M as the space of functions supported on
KAZKΩK0. By Corollary 2.27 this is a left A−module.

We slightly change the decomposition of G with the simple remark that G =

K0AZΩK0 ⊆K0AZKΩK0 ⊆ G, hence

G =K0AZKΩK0 =⋃
i

KxiAZKΩK0 =⋃
i,j

KxiAZyjK.
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Now, if g ∈ G we take i0, j0 such that g = kxi0azyj0k′ with k, k′ ∈ K, a ∈ A and
z ∈ Z. We get

KgK =Kkxi0azyj0k
′′K

=Kxi0azyj0K

=Kxi0Kazyj0K because Kxi0 =Kxi0K
=Kxi0K Kazyj0K

=Xi0Kazyj0K
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈M

∈Xi0M.

Indeed, Kazyj0K ∈ M since Kazyj0K ⊂ KAZyj0K ⊂ KAZKΩK0. This implies
that HK = ∑iXiM .

If we show that M is finitely generated as a left A−module, it will imply that
there are Z1, . . . , Zk such that M = ∑

k
j=1AZj and therefore HK = ∑i,jXiAZj as

desired.
Claim: M is a finitely generated A−module.
Let K−

a denote a−1K−a where a ∈ A. Let a, b ∈ A. Then

KaK KbyjK =KaKbyjK

=KaK+K−byjK

=KaK+
(a−1a)(bb−1

)K−byjK

=K (aK+a−1)ab (b−1K−b) yjK

=KabK−
b yjK.

Likewise,

KabK−
abyjK =Kab((ab)−1K−ab)yjK

=KK−
°
⊂K

abyjK =KabyjK.

Combining both equalities, we get that if K−
abyjK =K−

b yjK, then

KaK KbyjK =KabyjK. (⋆)

Now, given a subgroup Γ ≤K, define

∥Γ∥ =∑
j

∣ΓyjK/K ∣ =∑
j

(number of left cosets of K in ΓyjK) .

If Γ′ ≤ Γ, then for all j we have ∣Γ′yjK/K ∣ ≤ ∣ΓyjK/K ∣ with equality if and only
if Γ′yjK = ΓyjK, therefore ∥Γ′∥ ≤ ∥Γ∥. Suppose that Γ′ ≤ Γ and ∥Γ′∥ = ∥Γ∥. Then
from the previous remark we must have Γ′yjK = ΓyjK for all j.

Define the integral quadrant D` ∶= {z = (z1, . . . , z`) ∈ Z`∣zi ≥ 0} and if z ∈ D` let
az = az1

1 . . . az`` ∈ A. Give D` the partial order given by z ≤ z′ if z′ − z ∈D` i.e. when
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for all 1 ≤ k ≤ ` we have zk ≤ z′k. Define f ∶ D` → N by f(z) = ∥K−
az∥. It is well

defined because K−
az ≤K

− ≤K. Moreover, if z < z′ then clearly

K−
az′ = a

−z′K−az
′
= a−z(a−(z

′−z)K−az
′−z

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊂K−

az ≤ a−zK−az =K−
az ,

hence ∥K−
az′ ∥ ≤ ∥K−

az∥.

The decomposition KAZKΩK0 = ⋃jKAZyjK implies that the left A−module
M is generated by elements of the form KayjK with a ∈ A. Since we can write
a = az for some z ∈ D`, we conclude that M is generated by functions of the form
KazyjK with z ∈ D`. Let z ∈ D`. If there is z′ < z such that f(z′) = f(z), then
K−
azyjK =K−

az′yjK for all j. Therefore, using (⋆) with a = az−z′ and b = az′ , we get

Kaz−z′K
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈A

Kaz′yjK =KazyjK for all j,

hence KazyjK lies in the submodule generated by Kaz′yjK for all j. It follows
that we can remove KazyjK from the set of generators.

This implies that we can restrict our generators to the set of elements KazyjK
such that for all z′ < z we have f(z) < f(z′). We will call such a z a critical point
of the function.

To conclude, we want to show that our function f has finitely many critical
points, hence we have finitely many generators forM . This is proved in the following
lemma.

Lemma 5.8. Let f ∶D` → N be a decreasing function. Then f can have only finitely
many critical points.

Proof. We argue by induction on `.
● ` = 1 ∶ The function f is a decreasing function from N0 to N. It is a decreasing

bounded sequence hence converges, call f∞ its limit. Since at each critical point f
decreases by at least 1, after n critical points the value of f will be at least f∞ and
at most f(0)−n. Therefore if n is the total number of critical points, f∞ ≤ f(0)−n,
and thus n ≤ f(0) − f∞ <∞, as desired.

● ` > 1 ∶ We proceed by induction on f(0).
−f(0) = 1 ∶ In this case since f is decreasing we must have f(z) = 1 for all

z ∈D` so there are no critical points.
−f(0) > 1 ∶ We have two cases: If f has no critical points, we are done.

Otherwise let z0 ∈ D` be a critical point of f . Let g ∶ D` → N be defined by
g(z) = f(z0 + z). Critical points of g correspond to critical points of f in the
region z0 +D` = {z ∈ D` ∶ z ≥ z

0}. The definition of a critical point gives us that
f(0) > f(z0) = g(0), so using the induction hypothesis on f(0), we deduce that g
has finitely many critical points. Therefore, f has finitely many critical points in
the region z0 +D`.

Note that z ≥ z0 if and only if zi ≥ z0
i for all 1 ≤ i ≤ `. So z /≥ z0 if and only

if there is 1 ≤ i ≤ ` such that zi < z0
i . Fix z1 /≥ z0 and i such that z1

i < z0
i . Then
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z1 ∈ {z ∈D ∶ zi = z
1
i }. We get that D` ∖ (z0 +D`) can be expressed as a finite union

D` ∖ (z0
+D`) =

`

⋃
i=1

⎛
⎜
⎝
⋃

0≤ki<z0
i

{z ∈D` ∶ zi = ki}
⎞
⎟
⎠
.

Let Ei,ki = {z ∈D` ∶ zi = ki}.

z0 +D2

E1,1 E1,2

E2,1

z0

Figure 5.1: Decomposition of D2.

Fix i ∈ {1, . . . , `} such that z0
i > 0 and 0 ≤ ki < z0

i (if z0
i = 0 then it will not appear

in the union above). Define ι ∶D`−1 → Ei,ki by

ι(ω1, . . . , ω`−1) = (ω1, . . . , ωi−1, ki, ωi, . . . , ω`−1).

Clearly ι is order preserving. Define h ∶ D`−1 → N by h = f ○ ι. By induction on `,
the function h has finitely many critical points. Note ι sends critical points of f in
Ei,ki into critical points of h. Hence, f has finitely many critical points on Ei,ki for
all i ∈ {1, . . . , `} and 0 ≤ ki < z

0
i . Therefore f has finitely many critical points on

D` ∖ (z0 +D`).
This implies that f has finitely many critical points in z0+D` and D`∖(z

0 +D`),
so f has finitely many critical points on D`.

Lemma 5.9. Let a ≥ 1. For all x, y ≥ 0 we have

(x + y)a ≤ xa + ya.
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Proof. If a = 1 this is immediate.
Assume a > 1. Fix y ≥ 0. Define fy(x) = (x + y)a − xa − ya. Then f ′y(x) =

a ((x + y)a−1 − xa−1) > 0 for all x ∈ R, since x ↦ xa−1 is increasing. Therefore,
fy(x) ≥ fy(0) = 0 for all x ≥ 0.

Proposition 5.10 (D.A. Kazhdan). Let V be an n−dimensional C−vector space
and let R = C[A1, . . . ,A`] ⊂ End(V ) be a commutative subalgebra. Then dimC R ≤

f`(n) where
f`(n) = n

2− 1
2`−1 = (n2

)
1−2−` .

Proof. Argue by induction on `.
●` = 1 ∶ We have to prove that dimK R ≤ n. We have R = K[A1], with A1 ∈

Mn(K). By the Cayley-Hamilton theorem, the characteristic polynomial of A1
is of degree n and is annihilated by A1, hence An ∈ span (1,A, . . . ,An−1). Thus,
R = span (1,A, . . . ,An−1), and therefore dimK R ≤ n.

●` > 1 ∶ Here we use induction on n. If n = 1, it is immediate, so suppose n > 1.
Let ϕ`(n) be the maximum dimension of commutative subalgebras of End(V ) with `
generators. We want to show that ϕ`(n) ≤ f`(n). First suppose that V decomposes
as a sum of R−modules V = V1 ⊕ V2. Let ni = dimK Vi with i ∈ {1,2}. Then we can
take a basis of V consisting of the union of basis of V1 and V2. In this basis, any

matrix M ∈ R will have the form M = (
M 0
0 M

). Therefore, R = R1 ⊕R2 where

R1 = C[A1, . . . ,A`] and R2 = C[A1, . . . ,A`]. This implies

R = dimK(R1) + dimK(R2)

≤ ϕ`(n1) + ϕ`(n2)

= f`(n1) + f`(n2) by induction hypothesis
≤ f`(n).

The last inequality follows from Lemma 5.9 since 2 − 1
2`−1 > 1.

Suppose now that V is indecomposable as an R−module. Assume also without
loss of generality that dimK (R) = ϕ`(n). The algebra R is finite-dimensional,
therefore we can use Fitting’s Lemma and deduce that EndR(V ) is a local ring.
For each i ∈ {1, . . . , `} take λ(i) to be an eigenvalue of Ai (it exists since C is
algebraically closed). Then Ai−λ(i) is not invertible. Since R is local and artinian,
there is ni such that (Ai − λ(i))

ni = 0. Therefore up to replacing Ai by Ai−λ(i) we
may assume that Ai is nilpotent for all i ∈ {1, . . . , `}.

We will now show that

ϕ` (n) ≤ ϕ` (⌊n −
ϕ`(n)

n
⌋) + ϕ`−1 (n) (⋆)

where ⌊x⌋ is the floor of x.
Let I be the ideal of R generated by the operators Ai and let V k denote IkV .

Since all the Ai are nilpotent, we have Ani = 0 for all n, and so In = 0. We therefore
have a chain V = V 0 ⊃ V 1 ⊃ ⋅ ⋅ ⋅ ⊃ V n = 0. Since V 1 ≠ V , we can take L ≤ V a subspace
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complementary to V 1 and let m = dimC(L) (and therefore dim(V 1) = n−m). Note
that L + IV = V so IL + V 1 = V 1 and therefore for all k ≤ 1

IkL + V k+1
= V k.

Thus, IkL generates V k modulo V k+1.
If v ∈ V = L + V 1, then we can write

v = l0 + v1 with l0 ∈ L, v1 ∈ V
1

v1 = l1 + v2 with l1 ∈ IL, v2 ∈ V
2

v2 = l2 + v3 with l2 ∈ I2L, v3 ∈ V
3

⋮

vn−1 = ln−1 + vn
¯
=0

with ln−1 ∈ I
n−1L, vn ∈ V

n
= 0,

therefore v = l0 + l1 + ⋅ ⋅ ⋅ + ln−1 ∈ RL and so RL = V .
Let P ∈ R and v ∈ V . Write v = ∑

s
i=1 Pili, with Pi ∈ R and li ∈ L. Then

P (v) = P (∑
s
i=1 Pili) = ∑

s
i=1 PPi(li) = ∑

s
i=1 PiP (li), since R is commutative. We

deduce that P is determined by its values on L, so

ϕ`(n) = dimC R ≤ dimC V dimCL =mn,

hence m ≥
ϕ`(n)
n . Since n −m ∈ N we have

n −m ≤ ⌊n −
ϕ`(n)

n
⌋ . (⋆⋆)

Let R′ = A1R and R′′ = C[A2, . . . ,A`]. Clearly R = R′ +R′′ and A1V ⊆ IV =

V 1. Since R is commutative, any element x ∈ R′ can be written as x = rA1 with
r ∈ R. Let v ∈ V . Then xv = r(A1v)

´¹¹¹¹¸¹¹¹¹¶
∈V 1

, so x is completely determined by its values

on V 1. Therefore, there is an injection R′ ↪R∣V 1 . This implies

dim(R′
) ≤ dim R∣V 1 ≤ ϕ`(dim(V 1

)) = ϕ`(n −m).

Thus, we get

dim(R) ≤ dim(R′
) + dim(R′′

) since R = R′
+R′′

≤ ϕ`(n −m) + ϕ`−1(n)

≤ ϕ` (⌊n −
ϕ`(n)

n
⌋) + ϕ`−1(n) by (⋆⋆) and because ϕ` is clearly increasing.

Therefore, (⋆) is verified.
Let us now prove that f`(n) ≥ f` (⌊n −

f`
n ⌋) + f`−1(n). Write x = 21−` < 1, so

2 − x ≥ 1. We then have

1 − n−x ≥ (1 − n−x)2−x.



5.2. PROOF OF UNIFORM ADMISSIBILITY 89

Therefore,

1 ≥ (1 − n−x)2−x
+ n−x

n2−x
±
=f`(n)

≥ (n − n1−x
±
= f`(n)

n

)
2−x

+ n2−2x
²
=f`−1(n)

,

where the last line comes from the multiplication by n2−x. So

f`(n) ≥ (n −
f`(n)

n
)

2−x
+ f`−1(n)

= f` (n −
f`
n
) + f`−1(n)

≥ f` (⌊n −
f`
n
⌋) + f`−1(n) since f is increasing.

Suppose for the sake of contradiction that ϕ`(n) > f`(n) and ϕ`(n−1) ≤ f`(n−1).
Then we would have n − ϕ`(n)

n < n −
f`(n)
n , hence

⌊n −
ϕ`(n)

n
⌋ ≤ ⌊n −

f`(n)

n
⌋ .

Since both f` and ϕ` are increasing we would have

⌊n −
ϕ`(n)

n
⌋ ≤ ⌊n −

f`(n)

n
⌋ ,

so

f` (⌊n −
ϕ`(n)

n
⌋) ≤ f` (⌊n −

f`(n)

n
⌋)

f`

⎛
⎜
⎜
⎜
⎜
⎝

⌊n −
ϕ`(n)

n
⌋

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<n

⎞
⎟
⎟
⎟
⎟
⎠

+ f`−1
±
≤ϕ`(n)

(n) ≤ f` (⌊n −
f`(n)

n
⌋) + f`−1 (n)

ϕ`(n) ≤ ϕ` (⌊n −
ϕ`(n)

n
⌋) + ϕ`−1 (n) ≤ f` (⌊n −

f`(n)

n
⌋) + f`−1 (n) ≤ f`(n),

hence ϕ`(n) ≤ f`(n), which is absurd ☇. We can therefore conclude that ϕ`(n) ≤
f`(n), which finishes the induction and the proof.

Before we prove the main theorem, let us recall Schur’s lemma.

Lemma 5.11 (Schur, general case). Let R be a ring.

1. Let S be a simple left R-module. Then EndRS is a division ring.
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2. If S and T are two nonisomorphic simple R-modules, then HomR(S,T ) = 0.

Proof. 1. Let φ ∈ EndRS. Note that Kerφ, Imφ ≤ S, and so either

(a) Imφ = 0, Kerφ = S, in which case φ = 0 ;
(b) Kerφ = 0, Imφ = S, in which case φ is an automorphism, hence invertible.

2. Similarily, a homomorphism φ ∶ S Ð→ T is either 0 or an isomorphism.

Lemma 5.12 (Other version of the lemma of schur). Let F be a field. Let A be a
finite dimensional F-algebra, and let S be a simple A-module.

1. F ↪Ð→ EndAS ↪Ð→ EndFS = Mn(F), where n = dimF S ;

2. If F is algebraically closed, then F ≅ EndAS.

Proof. 1. If S is simple, it is clearly finitely generated which implies S is finite
dimensional as a F-vector space. Therefore, EndFS ≤ Mn(F), where n = dimF S.
Obviously, EndAS is a subalgebra of EndFS, and we have an embedding F ↪Ð→
EndAS ∶ λz→ λidS .

2. Assume F algebraically closed, and let φ ∈ EndAS. Let F[X] be the poly-
nomial ring in one variable X, and define π ∶ F[X] Ð→ F[φ] ≤ EndAS ∶ X z→ φ.
Then π is a F-algebra map. By Lemma 5.11, we know that EndAS is a division
algebra, and so ρψ ≠ 0 whenever ρ,ψ ≠ 0, for ρ,ψ ∈ EndAS. Therefore, the commu-
tative subalgebra F[φ] is a domain. Since F[X] is a principal ideal domain, Kerπ
is generated by a single polynomial f which can be chosen to be monic (π cannot
be injective, because F[X] is infinite dimensional, and dim EndAS ≤ n2), i.e. f is
the minimal polynomial of φ. So F[φ] ≅ F[X]/⟨f⟩. But this is a domain, so f is
irreducible. Since F is algebraically closed, f(X) =X−λ, for a λ ∈ F. It follows that
F[φ] ≅ F[X]/⟨X−λ⟩ ≅ F, and so φ = λidS . Hence, the map FÐ→ EndSA ∶ λz→ λidS
is an isomorphism.

Proposition 5.13. Let L be an algebra, A and Z subalgebras in L. Suppose Z lies
in the center of L and A is a commutative algebra generated by Z and A1, . . .A` with
A1, . . .A` ∈ L. Also suppose L = ∑i,jXiAYj with X1, . . . ,Xp, Y1, . . . , Yq ∈ L. Then
any irreducible finite-dimensional representation of the algebra L has dimension at
most (pq)2l−1.

Proof. Let ρ ∶ L → V be a finite-dimensional irreducible representation and let
n = dim(V ). Since Z is central, so is ρ(Z). Hence, the elements of ρ(Z) are
L−module morphisms from V to V , which is simple. Therefore, by Lemma 5.12, we
have ρ (Z) = C. Jacobson’s density theorem (or its corollary, Burnside’s theorem)
states that ρ(L) = End(V ) = End(Cn) therefore dim (ρ (L)) = n2. Since ρ (Z) = C,
we have that ρ (A) is generated by ρ(A1), . . . , ρ(A`), so by Propositon 5.10 we have
dim (ρ(A)) ≤ f`(n). Since any element of L can be written in the form ∑i,jXiPijYj
with Pij ∈ A we have

n2
= dim(L) ≤ pq dim (A) ≤ pqf`(n).
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Thus

n2
≤ pqn2−21−`

n21−`
≤ pq

n ≤ (pq)2`−1

which proves the proposition.

Theorem 5.14 (Bernstein). Let G = GLn(F ) where F is a local non-Archimedean
field. Then the collection of irreducible admissible smooth representations of G is
uniformly admissible.

Proof. Let K ′ ≤ G be a compact open subgroup. Let K ≤ K ′ a congruence sub-
group (smaller than K0). We have shown that the assumptions of section 5.1 are
satisfied for K. Note that V K′

⊂ V K , hence dimC (V K′
) ≤ dimC (V K). Therefore,

it suffices to find a bound on dimC (V K), for all irreducible representation of G and
all congruence subgroup K ≤ G different from K0.

We have that HK is an algebra, Z and A are respectively central and com-
mutative subalgebras from Proposition 5.6. Also, we proved in Proposition 5.7
the existence of A1, . . . ,A` ∈ A, and of X1, . . . ,Xm, Y1, . . . , Yk ∈ Z such that A is
generated by Z and A1, . . . ,Al and X = ∑i,jXiAYj . Therefore, Proposition 5.13
with L = HK implies that all finite-dimensional irreducible representations of HK
have bounded dimension, with bound (pq)2`−1 . If V is an irreducible admissible
representation of G, then V K = 0 or V K is a simple HK−module thanks to Corol-
lary 1.70. Therefore we have dimC (V K′

) ≤ dimC (V K) ≤ (pq)2`−1 which proves the
theorem.

Corollary 5.15. The collection of irreducible smooth representations of G is uni-
formly admissible.

Proof. This is an immediate consequence of Theorem 4.39 and Theorem 5.14.

Remark 5.16. Note that all the decompositions of GLn(F ) used in the past two
chapters have analogues in the case of a general reductive p−adic group and so
it is true that the collection of irreducible smooth representations of a reductive
p−adic group is uniformly admissible. Those decompositions come from the building
structure of such groups, which we will discuss later.
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Chapter 6

Uniform admissibility of unitary
representations

Very often one prefers to study the unitary representations. In this chapter we will
prove the following Theorem:

Theorem 6.1. Let G be a tdlc group, and K ≤ G a compact open subgroup. The
following are equivalent:

(i) All irreducible unitary representations V satisfy dim (V K) ≤ n.

(ii) All irreducible smooth representations V satisfy dim (V K) ≤ n.

6.1 The Hecke algebra in the unitary case

Definition 6.2 (Involution). Let A be an algebra over C. An involution on A is
a map ⋆ ∶ A→ A such that

• (a⋆)⋆ = a for all a ∈ A.

• (a + b)⋆ = a⋆ + b⋆ for all a, b ∈ A.

• (ab)⋆ = b⋆a⋆ for all a, b ∈ A.

• (αa) = αa⋆ for all a ∈ A and α ∈ C.

An algebra together with an involution is called an involutary algebra.

Remark 6.3. Let G be a tdlc group, then H(G) has an involution given by

f∗(g) = f(g−1).

Let us show that this is an involution. Let f, g ∈ H (G). The only nontrivial

93
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fact is that (f ⋆ g)⋆ = f⋆ ⋆ g⋆. Let y ∈ G. Then

(f ⋆ g)⋆ (y) = ∫
x∈G

f(x)g(x−1y−1) dx

x← y−1x

= ∫
x∈G

f(y−1x)g(x−1) dx

= ∫
x∈G

g(x−1)f(y−1x) dx

= ∫
x∈G

g⋆(x)f⋆ (x−1y) dx

= (g⋆ ⋆ f⋆) (y).

Remark 6.4. Note that for everyK ≤ G compact open we have e⋆K = eK . Therefore,
as seen in Remark 1.50, the directed set {eK ∶K ≤c.o. G} is a subset of the directed
set {e ∈H ∶ e2 = e and e⋆ = e}.

Notation. Let I(H) = {e ∈H ∶ e2 = e and e⋆ = e}.

In the context of involutary algebras we slightly change the definition of idem-
potented algebras.

Definition 6.5 (Idempotented algebra). An algebra A is called idempotented if
for all a1, . . . , an ∈ A there is an idempotent e ∈ A such that e⋆ = e and

ea1e = a1
⋮

eane = an

i.e. a1, . . . , an ∈ eAe.

Remark 6.6. We still have that H is an idempotented algebra since e⋆K = eK for
all compact open K ≤ G.

Remark 6.7. If A is a unital involutary algebra then 1∗ = 1. Indeed, if a ∈ A, then
(1⋆a)⋆ = a⋆1 = a⋆, so

1⋆a = ((1⋆a)⋆)⋆ = (a⋆)⋆ = a.

Therefore, 1⋆ is the identity element of A. In particular, any unital involutary
algebra is idempotented.

Definition 6.8 (Unitary representation). IfA is an involutary algebra, anA−module
V is said to be a unitary representation if V is a Hilbert space such that the
following holds.

• ⟨au, v⟩ = ⟨u, a⋆v⟩ for all u, v ∈ A and a ∈ A.

• AV is dense in V . When this holds, we also say that V is essential.

• For all a ∈ A the operator v ↦ av is continuous.

A unitary representation V of an involutary algebra is irreducible if it has no
closed A−submodules either than 0 and V .

If V is a unitary representation of A, we say V is cyclic if there is v ∈ V such
that Av is dense in V .
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Remark 6.9. Let V be a unitary representation of A where A is an idempo-
tented involutary algebra. Note that A(AV ) = AV , and therefore AV is a smooth
A−module. Let Vsm = AV be the smooth part of V .

As before we have a correspondence between unitary representations of G and
unitary representations of H(G).

Proposition 6.10. Let A be an involutary algebra and V a unitary representation
of A. Then we have the following:

(i) For all v ∈ V , if Av = {0}, then v = 0.

(ii) For all v ∈ V we have v ∈ Av.

(iii) Let W be a nonzero closed A−invariant subspace of V . Then W contains a
nonzero cyclic subrepresentation.

Proof. (i) Let v ∈ V . Suppose av = 0 for all a ∈ A. Let ε > 0. Since AV is dense in
V , there is a ∈ A and w ∈ V such that ∥aw − v∥ < ε

∥v∥ . We have

∥v∥2
= ⟨v, v⟩ = ⟨v − aw + aw, v⟩

= ⟨aw, v⟩ + ⟨v − aw,x⟩

= ⟨w, a⋆v
°
=0

⟩ + ∥v − aw∥∥v∥

< ε.

This being true for all ε > 0, we get that ∥x∥ = 0 as desired.
(ii) Let v ∈ V . Consider the decomposition V = Av ⊕ (Av)⊥ and write v = x + y

with x ∈ Av and y ∈ (Av)⊥. Let a ∈ A. Let us prove that ax ∈ Av and ay ∈ (Av)⊥.
Let ε > 0. There is b ∈ A such that ∥x − bv∥ < ε

∥a∥ . Therefore

∥ax − (ab)v∥ = ∥a (x − bv) ∥ ≤ ∥a∥
ε

∥a∥
= ε,

so ax ∈ Av. If b ∈ A we have that

⟨ay, bv⟩ = ⟨y, a⋆bv⟩ = 0

hence ay ∈ (Av)⊥ . Since ay = av − ax ∈ Av, we have ay ∈ Av ∩ (Av)⊥ = {0}. Thus
ay = 0 for all a ∈ A and by (i), we have y = 0. This shows that v = x ∈ Av.

(iii) If W is a nonzero closed A−invariant subspace then for all 0 ≠ w ∈W the
space Aw is closed, cyclic and nonzero since w ∈ Aw.

Remark 6.11. In the definition of unitary representations, we can replace the
assumption that AV dense in V with any of the conditions of proposition 6.10.
Indeed to that extent, we just need to prove that (ii) implies that AV is dense in
V . Assume (ii), then for all v ∈ V we have v ∈ Av ⊂ AV therefore AV = V .

Lemma 6.12. Let V be a unitary representation of H(G). Then for all v ∈ V the
net {ev}I(H) converges to v.



96 CHAPTER 6. UNITARY REPRESENTATIONS

Proof. Let ε > 0. Since the smooth part of V is dense in V , by Proposition 1.60
there is K ≤ G compact open such that ∥eKv − v∥ ≤ ε. If e ≥ eK then eeK = eK ,
therefore

∥ev − eKv∥ = ∥ev − eeKv∥ = ∥e(v − eKv)∥

= ∥e∥∥v − eKv∥ ≤ ∥v − eKv∥

≤ ε.

Indeed, since e is self adjoint and idempotent, its norm is at most 1. We proved
that the net {ev}e∈I(H) is Cauchy, hence it converges. By proposition 1.60, we know
that the subnet {eKv}K ≤

c.o.
G converges to v, thus the net converges to v as well.

Proposition 6.13. Let V be a unitary representation of G. Then V admits the
structure of a unitary representation of H(G).

Proof. Suppose V is a unitary representation of G. For all f ∈H define

fv = ∫
x∈G

f(x)xv dx.

This is well defined since f is compactly supported and the map x ↦ f(x)xv is
continuous. Note that this integral is not just a sum like in the smooth case, since
v does not have to be fixed by a compact open subgroup.

The fact that this is indeed an H−module structure is similar to the proof of
Proposition 1.59. Let us check that V is unitary as a representation of H. We keep
the same inner product that makes V a unitary representation of G.

Let v,w ∈ V and f ∈H. Then

⟨∫
G
f(x)xv dx,w⟩ = ∫

G
f(x) ⟨xv,w⟩ dx

= ∫
G
f(x) ⟨v, x−1w⟩ dx

= ∫
G
f(x) ⟨v, x−1w⟩ dx

= ∫
G
⟨v, f(x)x−1w⟩ dx

= ∫
G
⟨v, f(x−1)xw⟩ dx since G is unimodular

= ⟨v,∫
G
f(x−1)xwdx⟩

= ⟨v, f⋆w⟩ ,

Therefore, the first assertion is verified.
Let us check that the smooth part is dense. Let v ∈ V and ε > 0.Thanks to

Proposition 1.27, there is K ≤ G compact open such that ∥eKv − v∥ < ε. Note that
eKv ∈HV , so we are done.

Lastly, if f ∈H, let us prove that the map v ↦ fv is continuous. Let f ∈H and
v ∈ V . We have
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∥fv∥ = ∥∫
G
f(x)xv dx∥

≤ ∫
G
∣f(x)∣∥xv∥ dx

= ∥v∥∫
G
∣f(x)∣ dx.

Thus the operator v ↦ fv is bounded and hence continuous.

Proposition 6.14. Let V a unitary representation of H. Then V has the structure
of a unitary representation of G.

Proof. Let V be a unitary representation of H(G). We define a G−module repre-
sentation as follows: for all g ∈ G, let

gv = lim {(δg ⋆ eK)v}K≤c.o.G .

Note that as seen in Chapter 1, δg ⋆ eK = µ(K)−11gK . Let us show that this net
converges. Note that it is enough to prove it is a Cauchy net since V is complete.

Claim: For all K ≤ G compact open, g ∈ G and v ∈ V we have

∥ (δg ⋆ eK) v∥ ≤ ∥v∥. (†)

Take K,g, v as in the claim. A quick computation gives us (δg ⋆ eK)
⋆
= eK ⋆ δg−1

and (eK ⋆ δg−1) ⋆ (δg ⋆ eK) = eK .

∥ (δg ⋆ eK) v∥2
= ⟨(δg ⋆ eK) v, (δg ⋆ eK) v⟩

= ⟨v, eKv⟩

≤ ∥v∥∥eKv∥ by Cauchy-Schwarz
≤ ∥v∥∥eK∥∥v∥

≤ ∥v∥2.

The last inequality comes from the fact that since V is unitary. The operator
eK is self-adjoint and idempotent, and hence has norm at most 1.

Let ε > 0. Since the smooth part of V is dense, we use Proposition 1.60 to get
K ≤ G compact open such that ∥eKv − v∥ < ε.

Let K ′ ≤ G compact open such that eK′ ≥ eK , or in other words K ′ ≤K.

∥ (δg ⋆ eK′) v − (δg ⋆ eK) v∥ = ∥ (δg ⋆ eK′) v − (δg ⋆ (eK′ ⋆ eK)) v∥

= ∥ (δg ⋆ eK′) (eKv − v) ∥

≤ ∥eKv − v∥ by (†)
< ε

as desired. Therefore the sequence {(δg ⋆ eK)v}K≤c.o.G converges. Note that when
V is smooth, this sequence stabilizes and thus this is the same as defined Chapter
1.
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Let us check that this gives V the structure of a unitary representation of G.
First to have the fact that it is a representation, we must prove that for all g, h ∈ G
and v ∈ V , we have g(hv) = (gh)v. Take these notations. Since for all w ∈ V ,
the net {(δg ⋆ eK)w}K≤c.o.G converges, any subnet converges to the same limit, in
particular gw = lim{(δg ⋆ eh−1Kh)w}K≤c.o.G.

We compute

g(hv) = lim
L≤c.o.G

δg ⋆ ehLh−1 ( lim
K≤c.o.G

δh ⋆ eK)v

= lim
L≤c.o.G

lim
K≤c.o.G

(δg ⋆ ehLh−1 ⋆ δh ⋆ eK) v.

For every L ≤
c.o.

G, if K ≤
c.o.

G is small enough so that K ≤ F , then

ehLh−1 ⋆ δheK = δh ⋆ eL ⋆ eK = δh ⋆ eL = ehLh−1 .

Therefore,

g(hv) = lim
L≤c.o.G

(δg ⋆ ehLh−1 ⋆ δh) v

= lim
L≤c.o.G

(δg ⋆ δh ⋆ eL) v

= lim
L≤c.o.G

(δgh ⋆ eL) v

= (gh)v.

Note that we computed this as a double limit, but we could have alternatively
taken the diagonal limit limK≤c.o. (δg ⋆ ehKh−1 ⋆ δh ⋆ eK) v which converges, as does
the double limit, therefore it has to converge to the double limit. We will use that
in following computations.

We keep the same inner product therefore V is already a Hilbert space, we only
need to check that for all g ∈ G and v,w ∈ V we have ⟨gv, gw⟩ = ⟨v,w⟩. Fix such
notations.

⟨gv, gw⟩ = lim {⟨(δg ⋆ eK)v, (δg ⋆ eK)w⟩}K≤c.o.G
= lim {⟨v, eKw⟩}K≤c.o.G
= ⟨v,w⟩ ,

since limK≤c.o.G eK is the identity in the strong, and hence weak, operator topology.

Proposition 6.15. There is a categorical isomorphism between unitary represen-
tations of G and unitary representations of H(G).

Proof. This is similar to the proof done in the smooth case in Chapter 1.

Proposition 6.16. Let V be an irreducible representation of G. If K ≤ G is com-
pact open, then V K = 0 or V K is an irreducible unitary representation of HK(G).

Proof. The proof is the same as in the smooth case.
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6.2 Unitary representations of idempotented involutary
algebras

Proposition 6.17. Let A be an idempotented involutary unital C−algebra. Then
J(A), the Jacobson radical of A, acts trivially on all unitary representations of A.

Proof. Let V be a unitary representation of A and r ∈ J(A).
First step: Suppose that r∗ = r. Since V is unitary, it means that r is a self-

adjoint operator on V . Therefore, its eigenvalues are real and ∥r∥ = sup (Spec(r)).
Suppose that 0 ≠ λ ∈ C. Then r − λ is invertible. Indeed, λ−1r − 1A is invertible
since 1+ rA ⊂ A× by characterization of the Jacobson radical. We get that the only
possible eigenvalue for r is 0, and so Spec(r) ⊂ {0}. Thus, ∥r∥ = 0 and so, rv = 0 for
all v ∈ V .

Second step: If r∗ = −r then r is anti self-adjoint. Note that r2 is then self
adjoint and in the Jacobson radical, so it acts trivially on V . If v ∈ V then

∥rv∥ = ⟨rv, rv⟩ = − ⟨v, r2v⟩ = 0.

Thus, r acts trivially on V .
Third step: Note that if r ∈ J(A), then r∗ ∈ J(A). Indeed, let us prove that

1+rA ⊂ A×. Let a ∈ A. Since r ∈ J(A), we have that 1+a⋆r = (1 + r⋆a)⋆ is invertible
with inverse u. It is straightforward to see that (1 + r⋆a)u⋆ = u⋆ (1 + r⋆a) = 1⋆ = 1.
We therefore proved that r⋆ ∈ J(A).

Fourth step: Let r ∈ J(A),and write r = r+r⋆
2 + r−r⋆

2 . Note that r+r⋆
2 ∈ J(A)

using step 3 and it is self-adjoint therefore acts trivially on V . Likewise r−r∗
2 ∈ J(A)

and it is anti self-adjoint, so by step 2, it also acts trivially on V . Therefore, r acts
trivially on V .

Definition 6.18 (Standard polynomials, Polynomial identity). Define the stan-
dard polynomial of degree n to be Sn(x1, . . . , xn) = ∑σ∈Sn sgn(σ)xσ(1) . . . xσ(n).
This makes sense as an element of the free (non commutative) algebra R ⟨x1, . . . , xn⟩
for every ring R.

Let A be an algebra over a commutative ring R. We say A satisfies a polyno-
mial identity if there is a polynomial P in the free algebra R ⟨x1, . . . , xn⟩ for some
n such that P (a1, . . . , an) = 0 for all a1, . . . , an ∈ A.

Theorem 6.19 (Amitsur-Levitzki). Let R be a commutative ring, then Mn (R) is
canceled by S2n. In other words, for every n × n matrices M1, . . . ,M2n over R we
have S2n (M1, . . . ,M2n) = 0.

Proof. See [1].

Proposition 6.20. Let F be a ring and V be a F−vector space. If V has S2n as
polynomial identity then dimF (V ) ≤ n.

Proof. We will prove the contrapositive. Assume that dim (V ) > n (it can be
infinite). Then V contains V , a finite dimensional subspace with dim (V ) = n + 1.
Note that End (V ) ↪Ð→ End (V ) through a homomorphism of non-unital rings (the
identity element is not preserved). Indeed, fix a basis B0 of V and extend it to B,
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a basis of V . If α ∈ End (V ) , we can extend it to V by making it act as zero on
B ∖ B0. Therefore, it is enough to prove the result for V .

Note that End (V ) ≅Mn+1 (F). For all i, j ∈ {1, . . . , n + 1} let eij be the matrix
defined by (eij)k` = δikδj`. It is straightforward to see that eijek` = δjkei`. This
implies that

S2n (e11, e12, e22, e23, . . . , e(n−1)n, enn, en(n+1)) = e11e12e22e23 . . . e(n−1)nennen(n+1)

= e1(n+1) ≠ 0.

Indeed, the product e11e12 . . . ennen(n+1) is the only product of those 2n element
that gives a nonzero result. Therefore, only the term with σ being the identity
will not vanish when evaluating S2n = ∑σ∈S2n sgn(σ)xσ(1) . . . xσ(2n) at our chosen
elements.

Thus, End (V ) , and in particular End (V ), do not have S2n as polynomial iden-
tity.

Theorem 6.21 (Jacobson density theorem). Let R be a ring and let S be a simple
R−module. Write D = EndR(S), so S can be seen as an (R,D)−bimodule. Then
R is dense in EndD (S) where S is given the discrete topology and EndD (S) the
product topology. In other words, if α ∈ EndD (S) and X ⊂ S is a finite D−linearly
independent subset, then there is r ∈ R such that rx = xα = α(x) for all x ∈X.

Proof. See [16, Theorem 13.14, p.185].

We will also use an analogue of this statement in the context of unitary repre-
sentations.

Definition 6.22 (Commutant, Bicommutant). Let H be a Hilbert space and B (H)

its space of bounded operators. If S is a nonempty subset of B (H) we define

S
′
= {T ∈ B (H) ∶ TS = ST for all S ∈ S}

the commutant of S and call it S′.

Remark 6.23. If H is a Hilbert space and S ⊂ B (H), then the following are
straightforward to show:

• S ⊆ S ′′ and S ′′′ = S ′.

• S ′ contains the identity and it is a closed subalgebra of B (H) in the weak
operator topology.

Theorem 6.24 (Von Neumann density theorem). Let H be a Hilbert space and let
A ⊂ B (H) be a unital subalgebra closed under taking adjoints. Then A is dense in
A′′ in the strong operator topology (and hence also in the weak operator topology).

Proof. See [19, Theorem 9.3.3, p.888].

This will be used with the following theorems.

Lemma 6.25. Let H be a Hilbert space and A ⊂ B (H) a subalgebra stable under
taking adjoints, closed in the weak operator topology and containing the identity. If
A contains no divisor of zero, then A = CId where Id is the identity operator.
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Proof. This use some basic functional analysis and the study of Von Neumann
algebras. For the proof see [19, Lemma 9.3.20, p.899].

Theorem 6.26. Let A be an involutary algebra and let V be a unitary representa-
tion of A. The following are equivalent:

(i) V is irreducible.

(ii) V = Av for every nonzero v ∈ V .

(iii) The representation is not trivial, and A′ = CId where A′ is the commutant of
the image of A in B (V ) (not necessarily an embedding) and Id is the identity
function.

(iv) The representation is not trivial and A′ contains no nonzero projection except
Id.

Proof. (i)⇒ (ii). If v ∈ V , then by proposition 6.10 we have that v ∈ Av, which is
a nonzero closed A−submodule. Since V is irreducible, we must have Av = V .

(ii)⇒ (iii) Let us prove that A′ does not have any zero divisors. LetM,N ∈ A′

such that MN = 0. Suppose N ≠ 0. Let x ∈ V such that Nx ≠ 0. By (ii), we have
V = ANx. Note that if a ∈ A, then MaNx = aMNx = 0. Therefore,

MV =MANx =MANx = AMNx = {0},

and so M = 0. We prove that A′ has no nonzero divisor so it straightforward to see
that we can use Lemma 6.25 on the weak closure of A. Therefore, CId ⊂ A′ ⊂ CId
as desired.

(iii)⇒ (iv) This is clear, the only projection in CId is Id.
(iv)⇒ (i) Let W ⊂ V be a nonzero A−invariant closed subspace. Let P ∈ B (V )

be the orthogonal projection onto W and a ∈ A. Let x ∈ V , write x = y + z with
y ∈W and z ∈W ⊥. Since W is A−stable, then W ⊥ is A−stable as well. Therefore,
we can compute

Pax = P ay
¯
∈W

+ P az
¯
∈W ⊥

= ay = aPy = aPy + a Pz
°
=0

= aP (x + y) = aPx,

which proves that aP = Pa and so P ∈ A′. By (iv) the projection P must be Id so
W = Im (P ) = V .

Theorem 6.27. Let A be an involutary unital C−algebra. The following are equiv-
alent:

(i) Every representations of A has dimension at most n.

(ii) A/J(A) has S2n as a polynomial identity.

The first two conditions implies

(iii) Every unitary representation of A has dimension at most n.

If A/J(A) has a faithful unitary representation then (iii) implies (i) and (ii).
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Proof. Let A be such an algebra. For every simple A−module we have a map
A → EndC (S) since the map s ↦ as is in EndC (S) for all a ∈ A. Let S be a set
of representative of isomorphism classes of simple A−modules (so what S is a set).
We have a map

ϕ ∶ AÐ→ ∏
S∈S

EndC (S) .

Since the Jacobson radical of A is the annihilator of all simple modules, we have
Ker (ϕ) = J(A). By the universal property of quotients, we get an inclusion

A/J(A) ↪ÐÐÐ→ ∏
S∈S

EndC (S) .

(i)⇒ (ii). Suppose that dimC(S) ≤ n for all S ∈ S . Then the space EndC(S)
embeds in Mn(C) (as a non-unital subring) and therefore by theorem 6.19 has
S2n as polynomial identity. That being valid for all S ∈ S , it is also true for
∏S∈S EndC (S) . In particular, considering the previous inclusion, A/J(A) has S2n
as a polynomial identity.

(ii) ⇒ (i). Suppose that J(A) has S2n as a polynomial identity. Let S be a
simple A−module. We have a morphism A/J(A) → EndC (S). Let T1, . . . , T2n ∈

EndC (S) and s ∈ S. Using Theorem 6.21 there are a1, . . . a2n ∈ A/J(A) such that

S2n (T1, . . . , T2n) (s) = S2n (a1, . . . , a2n) s = 0s = 0.

Therefore, EndC (S) has S2n as a polynomial identity. Using proposition 6.20, we
conclude that dimC (S) ≤ n as desired.

(ii) ⇒ (iii) Let V be an irreducible unitary representation of A. By Theorem
6.27 we know that A′ = CId and therefore A′′ = B (V ). By Theorem 6.24, since A is
closed under taking adjoints and contains the identity, it is strongly dense in B(V ).
Consider the map ψ ∶ A → B(V ). By Proposition 6.17 J(A) ⊆ Ker (ψ) so we get a
map

ψ ∶ A/J(A)→ B (V )

such that ψ(a + J(A)) = ψ(a) for all a ∈ A. Let X1, . . . ,X2n ∈ V . The image
of ψ is strongly dense in B (V ) so there are sequences (aik)k∈N ⊂ J(A) such that
limk→∞ aikv =Xiv for all v ∈ V and i ∈ {1, . . . ,2n}. For all v ∈ V we have

S2n (X1, . . . ,X2n) v = lim
k→∞

S2n (a1k, . . . , a2nk) v = 0v = 0.

Therefore, for all X1, . . . ,X2n ∈ B (V ) , we have S2n (X1, . . . ,X2n) = 0. Thus, using
proposition 6.20, we conclude that dimC (V ) ≤ n.

Finally, suppose that A/J(A) has a faithful unitary representation.
Using the Theorem from [10, Corollary 2.28], for every 0 ≠ a ∈ A/J(A) there is

an irreducible unitary representation V of A/J(A) such that a does not act trivially
on V .

Note that this is equivalent to having for all a ∈ A∖J(A) an irreducible unitary
representation of A just that a does not act trivially on Va, since we can extend the
representation to an irreducible representation of A by setting J(A) to act trivially.
Let V be such a representation.
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Assume (iii). Let I be a collection of representatives of isomorphism classes
of irreducible unitary representations of A to which we add all the representations
Va with a ∈ A. Consider the morphism

A/J(A) ↪Ð→ ∏
V ∈I
B (V ) ⊃ ∏

a∈A∖J(a)
B (Va) .

It is injective by assumption and dimC (V ) ≤ n for all V ∈ I . Therefore, by Theorem
6.19 the space ∏V ∈I B (V ) has S2n as polynomial identity, and therefore so does
A/J(A).

Remark 6.28. Note that with the notations of Theorem 6.27, if A has a faithful
representation, then J(A) = 0 (since J(A) always acts trivially by Proposition
6.17). In that case, A/J(A) = A has a faithful unitary representation and so all the
conditions are equivalent.

Proof of Theorem 6.1. Using Proposition 6.16 it boils down to proving that every
smooth HK(G) modules have dimension at most n if and only if every unitary
representation of HK (G) has dimension at most n. Since HK(G) is unital with
unit eK , every HK (G)-module is smooth.

(⇒) Suppose that every irreducible representation of HK(G) has dimension at
most n. Apply Theorem 6.27 with A =HK(G) to get that every irreducible unitary
representation of HK(G) has dimension at most n.

(⇐) Suppose that every representation of HK(G) has dimension at most n.
We want to apply 6.27 again. Consider the action of HK(G) on L2 (G), the square
integrable functions on G given by fg = f ⋆g for all f ∈HK(G) and g ∈ L2(G). Note
that this action is not transitive, since HK (G)L2(G) consists of only K−invariant
L2 functions. It is straightforward to see that it is well defined as a unitary repre-
sentation. Let us prove that this representation if faithful. Note that eK ∈ L2 (G)

and for all f ∈ HK(G) we have f ⋆ eK = f . Suppose f, g ∈ HK(G) give the same
morphism. Then

f = f ⋆ eK = g ⋆ eK = g,

as desired.
Using Remark 6.28, we conclude that HK(G)/J (HK(G)) has a faithful unitary

representation, so by Theorem 6.27 all irreducible representations of HK(G) have
dimension at most n.

Remark 6.29. Note that the representation we defined in the proof on L2 (G) is
a faithful unitary representation of the whole Hecke algebra H (G). We prove it
the same way because given f, g ∈H (G) there is K ′,K ′′ ≤c.o. G such that f is right
K ′−invariant and g is right K ′′−invariant. This implies that if they induce the same
morphism, then, letting K =K ′ ∩K ′′, we have f = f ⋆ eK = g ⋆ eK = g.

Corollary 6.30. The set of irreducible unitary representations of GLn(F ) is uni-
formly admissible, where F is a local non-Archimedean field.

Proof. In Chapter 5 we proved that the set of irreducible smooth representations of
GLn (F ) is uniformly admissible, where F is a local non-Archimedean field. Now
thanks to Theorem 6.1 we can say that the set of unitary smooth representations
of GLn (F ) is also uniformly admissible.
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