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Abstract

This paper aims to give an basic understanding of Hopf algebras. Such
structures are both algebras and a dual version, coalgebras and they generalize
the notion of inversion for the algebra product.

We’ll work on building this algebra in a first part, with several examples and
propositions to do some work and understand better the tools we’re creating.
This will lead us to defining algebras, coalgebras, bialgebras and finally Hopf
algebras. We’ll provide simple canonical examples of each of these structures,
some very important to understand why we’re doing this construction.

In the second and last part, we’ll build a nontrivial example, the Hopf
algebra on rooted trees, which is a well-studied object, especially in the context
of combinatorics. We’ll first consider the algebra of rooted forests of trees, and
a universal construction of a Hopf algebra will arise from the notion of graded
connected algebras and bialgebras. This example is used a lot in combinatorics
and gives some constructions of numerical analysis integrators, it is in relation
to the algebra of transverse differential operators introduced by Connes and
Moscovisci.

1 Introduction
"Chaque objet abstrait est devenu concret par l’usage [...] un objet concret est un

objet abstrait auquel on a fini par s’habituer." Laurent Schwartz

Named after Heinz Hopf, a german mathematician, Hopf algebras first appear in
texts from the 60’s, after the latter death. They describe a very large restrictive
kind of algebra with both algebra operations and their symmetrical operations,
and a generalized inverse mapping. Although this symmetrical point of view seems
purely abstract it is actually very natural in some algebras.

Hopf algebras are useful in a lot of domains of mathematics, they play a big
role in the noncommutative approach to geometry and physics. A lot of examples
of such algebras are known as "quantum groups", providing algebraic deformations
of the classical transformation groups.

In the first part, we’ll start from scratch, with the definition of algebras, and
their dual structure, coalgebras. Then we will see structures simultaneously algebra
and coalgebra and end up with the definition of Hopf algebras. Along the way we’ll
prove useful theorems and build examples for each step. We’ll also take a look at
morphisms between these algebras. Then we will be able to define Hopf algebras,
show its basic properties, and talk about the construction of such an algebra from
any compact group.

We’ll continue on one Hopf algebra of rooted trees. Rooted trees play a sig-
nificant role in a lot of domains, they began being used since the work of Cayley
in the context of differential equations. We can also link them to the algebra of
transverse differential operators of Connes and Moscovici, in the combinatorics of
perturbative renormalization in quantum field theories and in local index formulas
in noncommutative geometry. Thus this structure helps linking seemingly disjoint
fields of mathematics. In all these fields the Hopf algebra of rooted trees character-
izes combinatorial aspects of the underlying problems.
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The construction of such a Hopf algebra will require us to work with the notion
of graded connected algebras, characterizing a certain type of algebras, and giving
a universal and unique construction of Hopf algebras from them.

2 Definitions

2.1 Algebra

Definition 1 (Algebra). Let V be a vector space over a field K. We say V is an
algebra if there is a map ∇ : V ⊗V → V such that the following axioms are verified
:

(i) (Left distributivity) ∇(a⊗ b+ c) = ∇(a⊗ b) +∇(a⊗ c) ∀a, b, c ∈ V .

(ii) (Right distributivity) ∇(a+ b⊗ c) = ∇(a⊗ c) +∇(b⊗ c) ∀a, b, c ∈ V .

(iii) (Compatibility with scalars) ∇(λa⊗µb) = λµ∇(a⊗b) ∀a, b ∈ V ∀λ, µ ∈ K.

We note this algebra (V,∇) where ∇ is called the multiplication.

Remark 1. The conditions for the multiplication just mean that the multiplication
is bilinear.

Definition 2 (Associative and Unital algebras). Let (A,∇) be an algebra, let IdA
be the identity on A.

We say A is an associative algebra if

∇ ◦ (∇⊗ IdA) = ∇ ◦ (IdA ⊗∇) : A⊗A⊗A→ A.

i.e. ∇(∇(a⊗ b)⊗ c) = ∇(a⊗∇(b⊗ c)) ∀a, b, c ∈ A.
We say A is unital if there exist a linear map η : K→ V such that

∇(η ⊗ IdA) = ∇(IdA ⊗ η) = IdA : A→ A (Unity),

such a η is called the unit map, or just unit, we note 1A = η(1K) and we write the
unital algebra (V,∇, η).

The commutative diagram for the associativity and unity are :

A⊗A⊗A A⊗A K⊗A ∼= A ∼= A⊗K A⊗A

A⊗A A A⊗A A

∇⊗ IdA

IdA ⊗∇ ∇

∇

η ⊗ IdA

IdAIdA ⊗ η ∇

∇

Proposition 1. Let (A,∇, η) be an associative unital algebra, and let a ∈ A. Sup-
pose there is b, c ∈ A such that ∇(a⊗ b) = ∇(c⊗ a) = 1A, then b = c.
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Proof. Just compute

c = ∇(c⊗ 1A) = ∇(c⊗∇(a⊗ b)) =
associativity

∇(∇(c⊗ a)⊗ b) = ∇(1A ⊗ b) = b.

Definition 3 (Invertible element). Let (A,∇, η) be a unital algebra, we say g ∈ A
is an invertible element if there is g′ ∈ A such that ∇(g ⊗ g′) = ∇(g′ ⊗ g) = 1A.
We’ve shown this g′ is unique, we note it g−1.

Example 1. On any group G, we can define a vector space over a field K noted
KG = span{kg | k ∈ K, g ∈ G}, so G is used as a Hamel basis of KG, the
cardinality of G is the dimension of the vector space. We can define a multiplication

∇ :
∣∣∣∣∣ KG⊗KG −→ KG

(k1g1 ⊗ k2g2) 7−→ (k1k2)(g1g2)

We define this multiplication to be bilinear so the axioms hold. It is associative
because the multiplication on G and K are associative.

We define the unit map η :
∣∣∣∣∣ K→ KG
x 7→ x1G

Let x, y ∈ K, η(x+ y) = (x+ y)1G = x1G + y1G = η(x) + η(y) hence it is linear.
Let g ∈ KG, g =

∑n
i=1 kigi, k1, · · · , kn ∈ K g1, · · · , gn ∈ G and x ∈ K,

∇(η(x)⊗ IdA(g)) = ∇(x1G ⊗
n∑
i=1

kigi)

= x
n∑
i=1

ki∇(1G ⊗ gi)

= x
n∑
i=1

ki(1Ggi)

= x
n∑
i=1

kigi = IdA(xg)

=
n∑
i=1

xki(gi1G)

=
n∑
i=1

ki∇(gi ⊗ x1G)

= ∇(
n∑
i=1

kigi ⊗ x1G)

= ∇(IdA(g)⊗ η(x)).

So KG is an associative and unital algebra.
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Example 2. Let (A,∇A, ηA), (B,∇B, ηB) be two algebras over K. We can define
an algebra structure on A ⊗ B. The multiplication ∇A⊗B is defined by ∇A⊗B =
(∇A ⊗∇B) ◦ (IdA ⊗ τ ⊗ IdB) where τ : A⊗B → B ⊗A τ(a⊗ b) = b⊗ a.

i.e. ∇A⊗B :
∣∣∣∣∣ A⊗B ⊗A⊗B → A⊗B

(a1 ⊗ b1 ⊗ a2 ⊗ b2) 7→ ∇A(a1 ⊗ a2)⊗∇B(b1 ⊗ b2) .

The rest is defined by bilinearity.
If both A and B are associative, then

∇A⊗B(∇A⊗B(a1 ⊗ b1 ⊗ a2 ⊗ b2)⊗ IdA⊗B(a3 ⊗ b3))
= ∇A⊗B((∇A(a1 ⊗ a2)⊗∇B(b1 ⊗ b2))⊗ (a3 ⊗ b3))
= ∇A(∇A(a1 ⊗ a2)⊗ a3)⊗∇B(∇B(b1 ⊗ b2)⊗ b3)
= ∇A(a1 ⊗∇A(a2 ⊗ a3))⊗∇B(b1 ⊗∇(b2 ⊗ b3)) by associativity of ∇A and ∇B
= ∇A⊗B((a1 ⊗ b1)⊗ (∇A(a2 ⊗ a3)⊗∇B(b2 ⊗ b3)))
= ∇A⊗B(IdA⊗B(a1 ⊗ b1)⊗∇A⊗B(a2 ⊗ b2 ⊗ a3 ⊗ b3))

so A⊗B is associative.
If (A,∇A, ηA) and (B,∇B, ηB) are unital, we define ηA⊗B : K → A ⊗ B

ηA⊗B(1) = ηA(1)⊗ ηB(1). Let a⊗ b ∈ A⊗B, k ∈ K,

∇A⊗B(ηA⊗B(k)⊗ IdA⊗B(a⊗ b)) = ∇A⊗B(k(ηA(1)⊗ ηB(1))⊗ (a⊗ b))
= k∇A(ηA(1)⊗ a)⊗∇B(ηB(1)⊗ b)
= k(a⊗ b) because ηA, ηB are units.

The same holds for ∇A⊗B(IdA⊗B(a⊗ b)⊗ ηA⊗B(k)) hence (A⊗B,∇A⊗B, ηA⊗B) is
a unital algebra.

Definition 4. For any algebra (A,∇, η), we can define An = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
n times

, a

multiplication ∇n and a unit ηn such that (An,∇n, ηn) is still a unital algebra.

Example 3. Let V be any vector space over a field K, then its dual V ∗ =
Hom(V,K) has an unital and associative algebra structure where the multiplication
is the pointwise multiplication and the unit is the constant mapping to 1K.

2.2 Coalgebra

We want to see now a different kind of algebra, where all arrows on the diagrams
are reversed, this leads us to the notion of coalgebra.

Definition 5 (Coalgebra). Let C be a vector space over a field K, we say C is a
coalgebra if there is a linear map ∆ : C → C ⊗ C and we note it (C,∆). ∆ is
called the comultiplication.

Remark 2. If c ∈ C we write ∆(c) =
∑
c:1 ⊗ c:2 (finite sum). In the literature we

can also find ∆(c) =
∑
c(1) ⊗ c(2).
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We have the equivalent definition of associativity and unity.

Definition 6 (Coassociative and Counital algebras). Let (C,∆) be a coalgebra, we
say it is coassociative if

(∆⊗ IdA) ◦∆ = (IdA ⊗∆) ◦∆ : A→ A⊗A⊗A.

We say the algebra is counital if there is a linear map ε : C → K such that

(ε⊗ IdC) ◦∆ = (IdC ⊗ ε)∆ = IdC : A→ A (Counity).

Such a map ε is called a counit map or just counit.

Here are the commutative diagram for the coassociativity and counity :

C C ⊗ C C C ⊗ C

C ⊗ C C ⊗ C ⊗ C C ⊗ C K⊗ C ∼= C ∼= C ⊗K

∆

∆ IdC ⊗∆

∆⊗ IdC

∆

IdC
∆ IdC ⊗ ε

ε⊗ IdC

Remark 3. In the counity property, we wrote that ∀c ∈ C, (ε⊗ IdC) ◦∆(c) ∈ C
although this gives us something in K⊗C. In fact, here and in the future, we always
associate K⊗ C and C ⊗K with C because they are naturally isomorphic.

Remark 4. With the notations of remark 2, the coassociativity is
∑
c:1:1 ⊗ c:1:2 ⊗

c:2 = (∆⊗ IdC)∆(c) = (IdC ⊗∆)∆(c) =
∑
c:1 ⊗ c:2:1 ⊗ c:2:2.

The counit property can be rewritten as
∑
ε(c:1)c:2 =

∑
c:1ε(c:2) = c.

Example 4. If we take the same vector space KG from example 1, we can define
a counital coassociative coalgebra (KG,∆, ε) where

∆ :
∣∣∣∣∣ KG→ KG⊗KG
g 7→ g ⊗ g

where g ∈ G, the rest is built by linearity. Let’s show that ∆ is coassociative, let
g ∈ KG, g =

∑n
i=1 kigi, k1, · · · , kn ∈ K g1, · · · , gn ∈ G:

(∆⊗ IdKG)(∆(g)) = (∆⊗ IdKG)
(

∆
(

n∑
i=1

kigi

))

= (∆⊗ IdKG)
(

n∑
i=1

ki(gi ⊗ gi)
)

=
n∑
i=1

ki (∆(gi)⊗ Idgi)

=
n∑
i=1

ki (gi ⊗ gi ⊗ gi)

=
n∑
i=1

ki (IdKG(gi)⊗∆(gi))

= (IdKG ⊗∆) (∆(g)) .
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Thus we have the coassociativity. The counit is defined by ε(g) = 1K ∀g ∈ G the
rest is obtained by linearity. Let’s show that the counity is satisfied, let g ∈ KG,
g =

∑n
i=1 kigi as before,

(IdKG ⊗ ε) (∆(g)) = (∆⊗ ε)
(

n∑
i=1

ki(gi ⊗ gi)
)

=
n∑
i=1

ki (IdKG(gi)⊗ εgi)

=
n∑
i=1

ki (gi ⊗ 1K)

=
n∑
i=1

ki1Kgi = g

The same holds for (ε⊗ IdKG) (∆(g)), hence it is indeed a counitary coassociative
coalgebra.
Example 5. Let (C,∆C), (D,∆D) be coalgebras over K, we want to have a coal-
gebra structure on C ⊗D. We define

∆C⊗D = (IdC ⊗ τ ⊗ IdD) ◦ (∆C ⊗∆D) : C ⊗D → C ⊗D ⊗ C ⊗D

where τ : C⊗D → D⊗C is the permutation as defined in example 2, i.e.∆C⊗D(
∑
c⊗

d) =
∑

(c:1 ⊗ d:1 ⊗ c:2 ⊗ d:2). The bilinearity follows from the bilinearity of the
comultiplications, of the identities and τ .

We suppose C and D coassociative, let’s show that C ⊗D is coassociative. Let∑
c⊗ d ∈ C ⊗D,

(∆C⊗D ⊗ IdC⊗D) ∆C⊗D
(∑

c⊗ d
)

=
∑

(∆C⊗D ⊗ IdC⊗D) ((c:1 ⊗ d:1 ⊗ c:2 ⊗ d:2))

=
∑

((c:1:1 ⊗ d:1:1 ⊗ c:1:2 ⊗ d:1:2)⊗ (c:2 ⊗ d:2))

=
∑

(c:1:1 ⊗ d:1:1 ⊗ c:1:2 ⊗ d:1:2 ⊗ c:2 ⊗ d:2)

=
∑

IdC ⊗ τ ⊗ τ ⊗ IdD (c:1:1 ⊗ c:1:2 ⊗ d:1:1 ⊗ c:2 ⊗ d:1:2 ⊗ d:2)

=
∑

IdC ⊗ ((τ ⊗ τ) ◦ (IdC ⊗ τ ⊗ IdD))⊗ IdD︸ ︷︷ ︸
=T

(c:1:1 ⊗ c:1:2 ⊗ c:2 ⊗ d:1:1 ⊗ d:1:2 ⊗ d:2)

=
∑

T (c:1 ⊗ c:2:1 ⊗ c:2:2 ⊗ d:1 ⊗ d:2:1 ⊗ d:2:2) by remark 4

=
∑

(c:1 ⊗ d:1 ⊗ c:2:1 ⊗ d:2:1 ⊗ c:2:2 ⊗ d:2:2)

=
∑

(IdC⊗D ⊗∆C⊗D)(c:1 ⊗ d:1 ⊗ c:2 ⊗ d:2)

=
∑

(IdC⊗D ⊗∆C⊗D)∆C⊗D(c⊗ d)

= (IdC⊗D ⊗∆C⊗D)∆C⊗D(
∑

c⊗ d).

Thus the comultiplication on C⊗D is associative. Now suppose (C,∆C , εC), (D,∆D, εD)
are counital, we define

εC⊗D : C ⊗D → K, εC⊗D(c⊗ d) = εC(c)εD(d).
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Let’s prove that it satifies the counity property, we will note σ : C ⊗ K → K ⊗ C
the permutation :

(εC⊗D ⊗ IdC⊗D) ◦∆C⊗D
(∑

c⊗ d
)

=
∑

(IdK ⊗ IdC⊗D) (ε(c:1)ε(d:1)⊗ c:2 ⊗ d:2)

=
∑

(εC(c:1)c:2 ⊗ εD(d:1)d:2)

=
∑

(c⊗ d)

The other equality is proven likewise. So (C ⊗ D,∆C⊗D, εC⊗D) is counital. So
coalgebras are also stable under tensor products.
Definition 7. Given a coalgebra (A,∆, ε) we note (An,∆n, εn) the coalgebra we
just build on A⊗A⊗ · · · ⊗A︸ ︷︷ ︸

n times

.

Example 6. Let V be a finite dimensional vector space over a field K, and its dual
V ∗ = Hom(V,K). We want to define a coalgebra structure on it. We know a linear
map

M :

∣∣∣∣∣∣∣
V ∗ → (V ⊗ V )∗

f 7→ (f ⊗ f)
∣∣∣∣∣ V ⊗ V → K∑

a⊗ b 7→
∑
f(a)f(b)

.

V is finite dimensional so (V ⊗V )∗ is isomorphic to V ∗⊗V ∗, we call Π : (V ⊗V )∗ →
V ∗ ⊗ V ∗ an isomorphism.

We define the coprodut

∆∗ :
∣∣∣∣∣ Hom(V,K)→ Hom(V,K)⊗Hom(V,K)
f 7→ ∆∗f = ΠMf

Remark 5. In the finite dimensional case, the vector space dual of an algebra is a
coalgebra, this is not always true in infinite dimensions but the converse is always
true, i.e. the vector space dual of a coalgebra gives rise to an algebra.

2.3 Algebra and Coalgebra morphisms

Definition 8 (Algebra morphism). Let (A,∇A), (B,∇B) be two algebras, let f ∈
Hom(A,B) a linear map from A to B. We say f is an algebra morphism if it
follows the following condition :

f ◦ ∇A = ∇B ◦ (f ⊗ f).

Moreover if (A,∇A, ηA), (B,∇B, ηB) are unital algebras, then we say f is a unital
algebra morphism if f ◦ ηA = ηB.

Definition 9 (Coalgebra morphism). Let (C,∆C), (D,∆D) be two algebras, let
f ∈ Hom(C,D) a linear map from C to D. We say f is a coalgebra morphism
if it follows the following condition :

(f ⊗ f) ◦∆C = ∆D ◦ f.

Moreover if (C,∆C , εC), (D,∆D, εD) are counital algebras, then we say f is a couni-
tal algebra morphism if εD ◦ f = εC .
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2.3.1 Algebra of morphisms from a coalgebra to an algebra.

Let (C,∆, ε) be a counital coassociative coalgebra and (A,∇, η) be an unital asso-
ciative algebra. We can define an algebra structure on Hom(C,A). The product is
the convolution product :

∗ :
∣∣∣∣∣ Hom(C,A)⊗Hom(C,A)→ Hom(C,A)
f ⊗ g 7→ f ∗ g = ∇ ◦ (f ⊗ g) ◦∆

For the sake of readability we won’t use the "◦" for the composition now, so f ∗ g =
∇(f ⊗ g)∆. The linearity comes from the linearity of ∇,∆ and ⊗.
We will now show that ∗ is associative, let f, g, h ∈ Hom(C,A),

f ∗ (g ∗ h) = ∇(f ⊗ (g ∗ h))∆ = ∇(f ⊗ (∇(g ⊗ h)∆))∆
= ∇ (IdA ⊗∇) (f ⊗ g ⊗ h) (IdC ⊗∆) ∆
= ∇(∇⊗ IdA) (f ⊗ g ⊗ h) (∆⊗ IdC) ∆ by associativity and coassociativity
= ∆((f ∗ g)⊗ h)∆

Hence it is associative. The unit of this algebra is simply ηε, let’s prove that, let
f ∈ Hom(C,A).

f ∗ ηε = ∇(f ⊗ ηε)∆
= ∇ (IdA, η) (f ⊗ IdK) (IdC ⊗ ε) ∆
= IdAfIdC by unity and counity
= f

Likewise, ηε ∗ f = f .

Remark 6. This just proves the previous remark, stating that we can put an algebra
structure on the dual of a coalgebra, taking A = K.

Let’s show that this multiplication behaves well under morphisms, let (D,∆D, εD),
be a coalgebra, ∗2 be the product on Hom(D,A), f, g ∈ Hom(C,A) and let l ∈
Hom(C,D), be a coalgebra morphism, then :

(f ∗ g)l = ∇(f ⊗ g)∆l
= ∇(f ⊗ g)(l ⊗ l)∆D

= ∇(fl ⊗ gl)∆D

= (fl ∗2 gl).

Also, ηεl = ηεD, the unit of Hom(C,D).
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Now let (B,∇B, ηB), be an algebra, ∗2 be the product on Hom(C,B), f, g ∈
Hom(C,A) and let l ∈ Hom(A,B), be an algebra morphism, then :

l(f ∗ g) = l∇(f ⊗ g)∆
= ∇B(l ⊗ l)(f ⊗ g)∆
= ∇B(lf ⊗ lg)∆
= lf ∗2 lg.

Also, lηε = ηBε, the unit of Hom(C,B).

Example 7. Let’s take two associative unital algebras (A,∇A, ηA), (B,∇B, ηB), we
saw that (A ⊗ B,∇, η) is also an associative unital algebra (with ∇ = ∇A⊗B, η =
ηA⊗B). Moreover we know that if we see A and B as vector spaces then A ⊗ B ∼=
Hom(A∗, B) with the isomorphism

ϕ :

∣∣∣∣∣∣∣
A⊗B −→ Hom(A∗, B)

(a⊗ b) 7−→ ϕa⊗b

∣∣∣∣∣ A∗ → B
f 7→ f(a)b

.

But we know we can give A∗ a coalgebra (A∗,∆, ε) structure, hence we can give
Hom(A∗, B) an algebra structure with the convolution product. Let’s show that ϕ
is an algebra morphism.

Let a1 ⊗ b1, a2 ⊗ b2 ∈ A ⊗ B, we want to show that ϕ(∇((a1⊗b1)⊗(a2⊗b2))) =
ϕ(a1⊗b1) ∗ ϕ(a2⊗b2). Let f ∈ A∗

ϕ(∇((a1⊗b1)⊗(a2⊗b2)))(f) = ϕ(∇A(a1⊗a2)⊗∇B(b1⊗b2))(f)
= f(∇A(a1 ⊗ a2))∇B(b1 ⊗ b2)
= f(a1)f(a2)∇B(b1 ⊗ b2) because f ∈ A∗
= ∇B (f(a1)b1 ⊗ f(a2)b2) because ∇B is bilinear

= ∇B
(
ϕ(a1⊗b1)(f)⊗ ϕ(a2⊗b2)(f)

)
= ∇B

(
ϕ(a1⊗b1) ⊗ ϕ(a2⊗b2)

)
(f ⊗ f)

= ∇B
(
ϕ(a1⊗b1) ⊗ ϕ(a2⊗b2)

)
∆(f)

= ϕ(a1⊗b1) ∗ ϕ(a2⊗b2)

Moreover it is a unital morphism :

φη(f) = φηA(1)⊗ηB(1)(f)
= f(ηA(1))ηB(1)
= ηε

= (ηA ⊗ ηB)ε
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2.4 Bialgebras and Hopf Algebras

Definition 10 (Bialgebra). Let A be a vector space over a field K, we say it is a
bialgebra is there are ∇, η,∆, ε such that (A,∇, η) is an associative unital algebra
and (A,∆, ε) is a coassociative counital algebra such that ∆, ε are unital algebra
morphisms (Compatibility condition).

Proposition 2. The condition that ∆, ε are unital algebra morphisms is equivalent
to the condition that ∇, η are counital coalgebra morphisms.

Proof. ∆ and ε are unital algebra morphisms means that :

(i) ∆∇ = ∇2(∆⊗∆) (ii) ∆η = η2,

(iii) ε∇ = ∇K(ε⊗ ε) (iv) εη = 1K.
But remark that ∇2(∆⊗∆) = (∇⊗∇)(IdA ⊗ τ ⊗ IdA)∆ = (∇⊗∇)∆2.

Then (i) also means ∇ is a coalgebra morphism, (ii) means that η is a coalgebra
morphism, (iii) means that ∇ is counital and (iv) is just the fact that η is counital.

Hence the equivalence of the conditions.

We can write the compatibility condition with the following diagrams :

A⊗A A A⊗A

A⊗A⊗A⊗A A⊗A⊗A⊗A

∇ ∆

∆⊗∆

IdA ⊗ τ ⊗ IdA

∇⊗∇

A⊗A A

K⊗K ∼= K

∆

ε⊗ ε ε

K⊗K ∼= K

A⊗A A

η ⊗ η η

∆

K

A

K

IdK

η

ε

11



Example 8. LetG be a group, we defined both an algebra and a coalgebra structure
on KG, then (KG,∇, η,∆, ε) is a bialgebra, the proof will be done a bit later after
we define Hopf algebras.

Definition 11 (Bialgebra morphism). Let (B,∇, η,∆, ε), (B′,∇′, η′,∆′, ε′) be bial-
gebras. A bialgebra morphism from B to B′ if it is both an algebra and a
coalgebra morphism.

The definition we just gave let us talk about unital or counital bialgebra mor-
phisms.

We are ready now to talk about Hopf Algebras.

Definition 12 (Hopf Algebra). Let (H,∇, η,∆, ε) be a bialgebra, we say it is a
Hopf algebra if there is a function S ∈ Hom(H,H) such that

S ∗ IdH = IdH ∗ S = ηε.

Such a S is called the antipode ofH, we denote the Hopf algebra by (H,∇, η,∆, ε, S).

Here is the commutative diagram to express the property of S :

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H
∆ ∇

ε

∆ ∇

η

(IdH ⊗ S)

(IdH ⊗ S)

In the definition we see Hom(H,H) as an algebra, with the convolution product,
so the condition for S really is

∇(IdH ⊗ S)∆ = ∇(S ⊗ IdH)∆ = ηε.

From the work we did, we know that ηε is the unit of Hom(H,H), so the condition
is that S is the inverse of IdH in this algebra.

Remark 7. We already know that tensor product of algebras is an algebra, the ten-
sor product of coalgebras is a coalgebra, we can check that the tensor product of bial-
gebras is a bialgebra (we just have to verify the compatibility condition). Moreover,
if A, B are Hopf algebras, we can define an antipode on A⊗B by SA⊗B = SA⊗SB
,hence A⊗B is a Hopf algebra.

Proposition 3. Given a bialgebra, if we can find an antipode then it is uniquely
defined.

Proof. We just saw that the antipode is the inverse of the Identity map for the
convolution product, by proposition 2, it is unique.

12



Proposition 4. Let (H,∇, η,∆, ε, S), (H ′,∇′, η′,∆′, ε′, S′) be two Hopf algebras.
If f is a bialgebra morphism between H, and H ′ then it is also a Hopf algebra
morphism, i.e. fS = S′f .

Proof. We take H, H ′ as in the proposition, and f be a bialgebra morphism from
H to H ′. The identity in Hom(H,H ′) is η′ε. f is both an algebra and a coalgebra
morphism, a property we proved earlier gives us

fS ∗ f = f(S ∗ IdH) = fηε = η′ε = η′ε′f = (IdH′ ∗ S′)f = f ∗ S′f.

Using the associativity of the convolution product, we finally have :

S′f = η′ε ∗ S′f = (fS ∗ f) ∗ S′f = fS ∗ (f ∗ S′f) = fS ∗ η′ε = fS.

Just what we wanted.

Definition 13 (Algebra antihomomorphism). Let (A,∇), (A′,∇′) be two algebras,
we say f : A→ A′ is an algebra antihomomorphism if

f∇ = ∇′τ(f ⊗ f)

where τ : A′ ⊗A′ → A′ ⊗A′, τ (
∑

(a1 ⊗ a2)) =
∑

(a2 ⊗ a1).

Definition 14 (Coalgebra antihomomorphism). Let (C,∆), (C ′,∆′) be two coal-
gebras, we say f : C → C ′ is a coalgebra antihomomorphism if

∆′f = (f ⊗ f)τ∆

where τ : C ⊗ C → C ⊗ C, τ (
∑

(c1 ⊗ c2)) =
∑

(c2 ⊗ c1).

Proposition 5. Let (H,∇, η,∆, ε, S) be a Hopf algebra, then S is both an unital
algebra and a counital coalgebra antihomomorphism.

Proof. We have to show that S∇ = ∇τ(S ⊗ S) and ∆S = (S ⊗ S)τ∆, where τ is
the permutation function we defined in the previous definitions.

We will use proposition 2 for both proofs.
• S∇ = ∇τ(S⊗ S) :
Let’s show that S∇ ∗ ∇ = ηεH⊗H = ∇ ∗ ∇τ(S ⊗ S), it will prove the equality

because Hom(H⊗H,H) is an associative unital algebra so we can apply proposition
1.

Let a, b ∈ H,

(S∇ ∗∇)(a⊗ b) = (∇(S∇⊗∇)∆H⊗H)(a⊗ b)
= ∇(S ⊗ IdH)(∇⊗∇)∆H⊗H(a⊗ b)
= ∇(S ⊗ IdH)∇H⊗H∆(a⊗ b)
= ∇(S ⊗ IdH)∆∇(a⊗ b), because ∆ is an algebra morphism
= (S ∗ IdH)(∇(a⊗ b))
= ηε(∇(a⊗ b))
= ηεH⊗H(a⊗ b).

13



So S∇ ∗∇ = ηεH⊗H . On the other hand :

(∇ ∗∇τ(S ⊗ S))(a⊗ b) = ∇(∇⊗∇τ(S ⊗ S))∆H⊗H(a⊗ b)

= ∇(∇⊗∇τ(S ⊗ S))
(∑

a:1 ⊗ b:1 ⊗ a:2 ⊗ b:2
)

=
∑
∇((∇(a:1 ⊗ b:1))⊗ (∇(S(b:2)⊗ S(a:2))))

=
∑
∇(a:1 ⊗∇(∇(b:1 ⊗ S(b:2))︸ ︷︷ ︸

=(IdH∗S)(b)

⊗ S(a:2))), associativity of ∇

= ε(b)
(∑

∇(a:1 ⊗ S(a:2))
)

= ε(b)ε(a)1H
= ηε(∇(a⊗ b))
= ηεH⊗H(a⊗ b)

So ∇ ∗∇τ(S ⊗ S) = ηεH⊗H . We proved what we wanted, so S∇ = ∇τ(S ⊗ S).
If we take usual product notation, it means that S(ab) = S(b)S(a).

• ∆S = (S⊗ S)τ∆ :
It suffices to show that ∆ ∗∆S = ηH⊗Hε = ((S ⊗ S)τ∆) ∗∆.

∆ ∗∆S(a) = ∇H⊗H(∆⊗∆S)∆(a)
=
∑
∇H⊗H(∆a:1 ⊗∆(S(a:2)))

=
∑
∇H⊗H(∆⊗∆)(a:1 ⊗ S(a:2))

=
∑

∆∇(a:1 ⊗ S(a:2)), ∆ is an algebra morphism
= ∆(IdH ∗ S)(a)
= ∆ηHε(a)
= ηH⊗Hε(a)

And

((S ⊗ S)τ∆) ∗∆ = ∇H⊗H(((S ⊗ S)τ∆)⊗∆)∆(a)
=
∑
∇H⊗H (((S ⊗ S)τ∆)(a:1)⊗∆(a:2))

=
∑
∇H⊗H ((S(a:1:2)⊗ S(a:1:1))⊗ (a:2:1 ⊗ a:2:2))

=
∑
∇H⊗H (S(a:2:1)⊗ S(a:1)) (a:2:2 ⊗ a:1:2)

=
∑
∇ (S(a:2:1)⊗ a:2:2)⊗∇ (S(a:1:1)⊗ a:1:2)

=
∑

(S ∗ IdH)(a:2)⊗ (S ∗ IdH)(a:1)

= (ηH ⊗ ηH)
∑

ε(a:1)ε(a:2)
= ηH⊗Hε(a)
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So again we conclude ((S ⊗ S)τ∆) = ∆S.
• S(1H) = 1H :

1H = ε(1H)
= (S ∗ IdH)(1H)
= ∇(S(1H)⊗ 1H)
= S(1H)

• εS = ε :

εS = εSIdH
= εS(ε⊗ IdH)∆
= ε(ε⊗ S)∆
= (ε⊗ εS)∆
= ∇(ε⊗ ε)(IdH ⊗ S)∆
= ε(IdH ∗ S)
= ε

Example 9. Let G be a group, we take the algebra and coalgebra we defined KG.
We will put a Hopf algebra structure on it, but first we’ll prove it is a bialgebra i.e.
∆ and ε are algebra morphism, we’ll check it only on simple elements of the form
kg, k ∈ K, g ∈ G, because all the maps are linear.

Let g1 = k1g, g2 = k2g
′ k1, k2 ∈ K, g, g′ ∈ G.

• ∆ is an algebra morphism :

∆∇(g1 ⊗ g2) = ∆((k1k2)(gg′))
= k1k2(gg′ ⊗ gg′)
= k1k2∇2(g ⊗ g ⊗ g′ ⊗ g′)
= k1k2∇2(∆⊗∆)(g ⊗ g′)
= ∇2(∆⊗∆)(g1 ⊗ g2).

• ∆ is unital : Let k ∈ K,

∆η(k) = ∆k1G
= k∆(1G)
= k(1G ⊗ 1G)
= η2(k).
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• ε is an algebra morphism :

ε∇(g1 ⊗ g2) = ε((k1k2)(gg′))
= (k1k2)ε(gg′)︸ ︷︷ ︸

=1K

= (k1k2)
= (k1k2)ε(g)︸︷︷︸

=1K

ε(g′)︸ ︷︷ ︸
=1K

= ε(g1)ε(g1).

• ε is unital :

ε(1G) = 1K by definition.

Hence KG is a bialgebra. We define the antipode S : KG → KG such that
S(g) = g−1 ∀g ∈ G, the rest is built by linearity.

Let g ∈ KG, we take k1, · · · , kn ∈ K, g1, · · · , gn ∈ G such that g =
∑n
i=1 kigi.

Likewise, S ∗ IdG = ηε, hence (KG,∇, η,∆, ε, S) is a Hopf algebra.

∇(IdKG ⊗ S)∆(g) = ∇(IdKG ⊗ S)(
n∑
i=1

ki(gi ⊗ gi))

=
n∑
i=1

ki∇(gi ⊗ g−1
i )

=
n∑
i=1

kigig
−1
i

=
n∑
i=1

ki1G

=
n∑
i=1

kiε(gi)

= ε(g).

Definition 15 (Grouplike element). Let (H,∇, η,∆, ε, S) be a Hopf algebra, we
say that g ∈ H, a nonzero element, is a grouplike element if ∆(g) = g ⊗ g.

This definition holds for any coalgebra, but we will only use it for Hopf Algebras.

Proposition 6. Let H be a Hopf algebra, if g ∈ H is a grouplike element then g is
invertible, ε(g) = 1 and S(g) = g−1.

Proof. Let H be a Hopf algebra over a field K and g ∈ H a grouplike element. We’ll
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show first that ε(g) = 1K, the counity property gives us :

(IdH ⊗ ε)∆(g) = IdH(g)
⇒(g ⊗ ε(g)) = g

⇒ε(g)g = g

⇒ε(g) = 1 because g 6= 0

Then ε(g) = 1.
Now we’ll prove that g is invertible and its inverse is S(g), we write the antipode

property :

∇(IdH ⊗ S)∆(g) = ηε(g) = ∇(S ⊗ IdHS)∆(g)
⇒∇(g ⊗ S(g)) = 1H = ∇(S(g)⊗ g)

This just shows that g is invertible and g−1 = S(g).

Here is another type of elements of a Hopf algebra :

Definition 16 (Primitive Element). Let H be a Hopf algebra, an element h ∈ H
is called primitive if ∆(h) = h⊗ 1H + 1H ⊗ h.

We can have similar properties to grouplike elements :

Proposition 7. Let H be a Hopf algebra, if h ∈ H is primitive, then ε(h) = 0 and
S(h) = −h.

Proof. Let h ∈ H be a primitive element, again, we write the counit property :

(IdH ⊗ ε)∆(h) = IdH(h) = h

⇒(h⊗ ε(1H)) + (1H ⊗ ε(h)) = h

⇒h+ ε(h) = h

⇒ε(h) = 0.

So ε(h) = 0.
The antipode property gives us :

∇(S ⊗ IdH)∆(h) = ηε(h)
⇒∇(S(h)⊗ 1) +∇(S(1)⊗ h) = 0
⇒S(h) + h = 0
⇒S(h) = −h.

Just what we wanted, so the result is proved.
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3 Construction of a Hopf Algebra from a compact group
We will note K a field that can be either R or C.

Definition 17 (Group Topology). Let G be a group, a group topology on G is
a topology such that the functions∣∣∣∣∣ G×G→ G

(g, g′) 7→ gg′
and

∣∣∣∣∣ G→ G
g 7→ g−1

are continuous. A group is said to be compact if its group topology is compact.

Definition 18 (Continuous functions). Let G be a topological group, we write
C(G) the set of continuous functions from G to K.

Our motivation is to make a Hopf Algebra on C(G), but there is a problem to
define the coproduct. Indeed we can easily define a map from C(G) to C(G × G)
but then we need to end up in C(G)⊗C(G) which is a lot smaller than C(G×G).
So we cannot find a nice isomorphism between them.

Let’s recall some definitions and an important theorem.

Definition 19 (Representation).

• Let V be a K−vector space, a representation of G in V is a homomorphism
ρ : G→ GL(V ).

• A subspace W ⊆ V is said to be G−stable if ρ(G)|W ⊆ GL(W ).

• ρ is said to be irreducible if the only G−stable subspaces of V are {0} and
W .

With the same notations, we often say when it’s not ambiguous that V is the
representation and W is a subrepresentation.

Definition 20 (Representative function). Let G be a group, we say f is a rep-
resentative function, if there is a representation ρ : G → GL(V ), v ∈ V and a
functional φ ∈ V ∗ such that :

f : G→ K f(g) = φ ([ρ(g)](v)) .

We will say that f is associated with the representation ρ.
We call R(G) the set of representative functions

Remark 8. If V is a finite K−vector space, we take a base {v1, · · · , vn} a base
of V where n = dimV , we note < , > the naturally defined (complex if K = C)
inner product. If ρ : G → V is a representation, then ∀g ∈ G ρ(g) can be seen
as an invertible matrix (ai,j(g))ni,j=1, and then the ai,j generate the representative
functions associated with ρ.

Also the set of functions f such that there are u, v ∈ V such that

∀g ∈ G f(x) =< u, ρ(g)v >

is exactly the set of representative functions.
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Definition 21 (unitary representation). A representation ρ : G→ GL(V ) is said to
be unitary if for all g ∈ G, and for all u, v ∈ V , < [ρ(g)](u), [ρ(g)](v) >=< u, v > .

Now we can talk about an important theorem that will help us build our co-
product.

Theorem 1 (Peter-Weyl Theorem). If G is a compact group, then any unitary
irreducible representation is finite-dimensional, R(G) is a dense (∗-dense if K = C)
subset of C(G) and R(G) is exactly the set of functions f : G → K whose right
translates Rxf : g → f(gx) generate a finite-dimensional subspace of C(G).

We give not proof here, the reader can refer to [10, III.3] for a proof.
We will see everything turns out nicely if we restrict ourselves to representative

functions of compact groups. Thanks to the previous theorem, this is not much of
a restriction, R(G) being dense in C(G). It’s easy to see that R(G), R(G×G) are
algebras with the pointwise multiplication. The next proposition will show that we
can use R(G×G) to replace R(G)⊗R(G).

Proposition 8. R(G×G) ∼= R(G)⊗R(G).

Proof. We define

Π : R(G)⊗R(G) −→ R(G×G) Π(f ⊗ g)(x, y) 7−→ f(x)g(y).

The rest is build by linearity.
Claim : Π is an algebra isomorphism.

By construction, it is an algebra morphism, we just have to check that it is bijective.

Injective : We’ll show that Kerf = {0}. Let F =
∑n
i=1 fi ⊗ gi ∈ R(G)⊗R(G)

such that Π(F ) = 0. We consider the finite-dimensional subspace V of R(G) gener-
ated by g1, · · · , gn, and let k1, · · · , kr be a basis of V . These elements being pairwise
independent, we can take y1, · · · , yr ∈ G such that ki(yj) = δi,j ∀i, j ∈ {1, · · · , r}.
We can take λi,j , i ∈ {1, · · · , n}, j ∈ {1, · · · , r} such that gi =

∑r
j=1 λi,jkj . We

write hj =
∑n
i=1 λi,jfi for all i ∈ {1, · · · , n}, j ∈ {1, · · · , r}.

Then

F =
n∑
i=1

fi ⊗ gi =
n∑
i=1

fi ⊗
r∑
j=1

λi,jkj =
n∑
i=1

r∑
j=1

λi,jfi ⊗ kj =
n∑
i=1

hj ⊗ kj

Let x ∈ G, i ∈ {1, · · · , r} hi(x) =
∑n
i=1 hj(x)kj(gi) = Π(F )(x, gi) = 0. Thus

F =
∑n
i=1 0⊗ kj = 0, Π is injective.

Surjective : Let F ∈ R(G×G), we build

Fy

∣∣∣∣∣ G −→ K
x 7−→ F (x, y) F x

∣∣∣∣∣ G −→ K
y 7−→ F (x, y)

Let g ∈ G, (g, 1G) ∈ G × G. G being compact, G × G is also compact (it can
be deduced from Tychonoff theorem, although the proof that any finite product of
compact spaces is compact requires a lot less work and technology), so by Peter-
Weyl theorem on G × G, the right translates of F generate a finite dimensional
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space. But remark that (R(g,1G)F )(x, y) = F (xg, y) = RgFy(x), that being true
for all g ∈ G, the right translates of Fy generate a finite dimensional space so by
Peter-Weyl theorem on G, Fy ∈ R(G). Likewise (1G, g) ∈ G and F(1G,g)(x, y) =
F (x, yg) = RgF

x(y), so the right translates of F x generate a finite dimensional
space, so F x ∈ R(G).

Let k1, · · · , kr be a basis of the space spanned by the right translates of F x,
i.e. {RgF x : g ∈ G}. Then F x =

∑r
i=1 hi(x)ki for some hi(x) ∈ K. Let’s show

that for each i ∈ {1, · · · , r}, hi ∈ R(G). We chose again y1, · · · , yr ∈ G such that
ki(yj) = δi,j ∀i, j ∈ {1, · · · , r}, then for all x ∈ G,

Fyj (x) =
r∑
i=1

hi(x)ki(yj)︸ ︷︷ ︸
=δi,j

= hj(x) ∀j ∈ {1, · · · , r}.

So if j ∈ {1, · · · , r}, hj = Fyj ∈ R(G), and

∀(x, y) ∈ G×G F (x, y) = Fx(y) =
r∑
i=1

hi(x)ki(y) =
r∑
i=1

Π(hiki)(x, y).

We can deduce that F =
∑r
i=1 Π(hiki) = Π (

∑r
i=1 hiki) , hence Π is surjective.

We conclude that Π is really an algebra isomorphism.

It is much simpler to define a morphism :

M :
∣∣∣∣∣ R(G)→ R(G×G)
f 7→Mf

Mf :
∣∣∣∣∣ (G×G) −→ K

(x, y) 7→ f(xy)

It is well defined, if f ∈ R(G) then its right translates generate a finite-
dimensional space, if (x, y) ∈ G×G, R(x,y)Mf = M(Rxf,Ryf) so the right translates
of Mf generate a finite dimensional space, so Mf ∈ R(G×G).

We can finally define the coproduct ∆ : R(G) → R(G) ⊗ R(G), ∆ = Π−1M .
We define the product · the pointwise multiplication. The unit is 1, the constant
function to 1K, the counit is the function defined by ε(f) = f(1G), the antipode is
defined by S(f)(x) = f(x−1).

Proposition 9. (R(G), ·, 1) is an associative unital algebra.

Proof. Everything we need to check holds from the multiplication on K, it is linear,
associative, and 1 is the unit.

Proposition 10. (R(G),∆, ε) is a coassociative counital coalgebra.

Proof. ∆ is linear by construction, because M and Π (so Π−1 as well) are linear.
Π is an algebra isomorphism, so we just need to check the properties with M

which easily hold.

Proposition 11. (R(G), ·, 1,∆, ε, S) is a Hopf algebra.

Remark that if a ∈ R(G), there exists a representation f of G, and ek, el such
that a(x) =< ek, f(x)el > ∀x ∈ G so if we represent f as a matrix A = (ai,j)ni,j=1
and a = ak,j . Note that Π∆(a) = Ma so Π (

∑
a:1 ⊗ a:2) (x⊗ y) =

∑
a:1(x)a:2(y) =

Ma(x, y). But Ma(x, y) =< el, f(x)f(y)ek >, so Ma(x, y) =
∑n
i=1 ak,i(x)ai,l(y),

it’s the matrix product. We can deduce that ∆(a) =
∑n
i=1 ak,i ⊗ ai,l.
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Proof. Let’s take ak,l, br,s two representable functions and (ai,j)ni,j=1, (bi,j)mi,j=1 the
associated representations. ak,lbr,s is the product of the two, we can create a repre-
sentation matrix such that it is a coefficient of the matrix, and so

∇2(∆⊗∆)(ak,l ⊗ br,s) = ∇2

( n∑
i=1

ak,i ⊗ ai,l

)
⊗

 m∑
j=1

br,j ⊗ bj,s


=

n∑
i=1

m∑
j=1

(ak,ibr,j ⊗ ai,lbj,s)

It’s a matter of computing to verify that it is equal to ∆(ak,lbr,s), the other com-
patibility properties easily holds.

The prof of the antipode property is also quite straightforward, we take again a
representable function ak,l and the associated representation f = (ai,j)ni,j=1. Then

∇(S ⊗ Id)∆(a)(x) =
n∑
i=1

S(ak,i)(x)ai,l(x)

=
n∑
i=1

ak,i(x−1)ai,l(x)

=< ek, f(x−1)f(x)el >
=< ek, f(x−1x)el >
=< ek, f(1G)el >
= ηε(ak,l)(x)

So we indeed have a Hopf algebra.

Remark 9. Conversely, from a Hopf algebra over K we can add a group structure
to Hom(H,K) with the convolution product.

4 One example of a Hopf Algebra of Rooted Trees

4.1 Motivation

Consider the Cauchy problem :{
y′(t) = f(y(t))
y(t0) = y0 ∈ R f, y ∈ C∞(R)

where f is given.

When we cannot find a formula for y, we use the informations on f to approxi-
mate y thanks to Taylor formula :

y(t0 + h) =
n∑
i=0

y(i)(t0)hi

i! + o
h→0

(|h|n).
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we can find those y(i)(t0) with f , indeed :

y(t0) = y0

y′(t0) = f(y(t0))
y′′(t0) = (f ◦ y)′(t0) = y′(t0)f ′(y(t0)) = f(y(t0))f ′(y(t0))
y′′′(t0) = f(y(t0))2f ′′(y(t0)) + f(y(t0))f ′(y(t0))2

It doesn’t look connected to trees, but let’s rewrite for simplicity f = f(y(t0)), f ′ =
f ′(y(t0)), f ′′′ = f ′′′(y(t0)), · · · , then y′(t0) = f , y′′(t0) = f f ′, y′′′(t0) = f ′′ff + f ′f ′f .

And let’s write all the possible trees with n vertices (1 ≤ n ≤ 3):

• n = 1 : •

• n = 2 : •
•

• n = 3 : •
••

•
•
•

Still not very interesting, but we label the vertices. For a vertex: if k is the
number its children, it is labeled by f (k+1) :

• n = 1 : • f

• n = 2 : • f ′
• f

• n = 3 : • f ′′
• f•f

• f ′
• f ′
• f

If for each tree we multiply all the labels, and then sum those products over all
trees with the same number of vertices, we get

• n = 1 : f = y′(t0)

• n = 2 : f ′f = y′′(t0)

• n = 3 : f ′′ff + f ′f ′f = y′′′(t0)

And that is in fact true for all n ∈ N, this sum over all the trees with n vertices is
equal to y(n)(t0). For any tree t that defines a function F (t), called the elementary
differential.

So F
(
•
)

= f , F
(
•
•
)

= f f ′, F
(

•
••
)

= f ′′ff , F


•
•
•
 = f ′f ′f ,
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F


•
••
••

•
•

 = f (3)f ′′f f ′fff = f (3)f ′′f ′f4.

We also define the following functions :

• r(t) the number of vertices of t

• σ(t) the symmetry of t (number of tree automorphisms)

• γ(t) the density of t For the density of a tree, we begin from the leaves, we
label them 1, then we go down the tree recursively by labeling a node by the
sum of the labels of its children +1.

• α(t) the number of ways of labelling t with an ordered set, α(t) = r(t)!
σ(t)γ(t) .

• β(t) the number of ways of labelling t with an unordered set, β(t) = r(t)!
σ(t) .

So for our first 4 trees :

t • •
•

•
••

•
•
•

r(t) 1 2 3 3
σ(t) 1 1 2 1
γ(t) 1 2 3 6
α(t) 1 1 1 1
β(t) 1 2 3 6

Let T be the set of all rooted trees, using these numbers if we suppose y analytic,
we have :

y(t0 + h) =
∞∑
n=0

y(n)(t0)hn

n! =
∑
t∈T

α(t)hr(t)

r(t)! F (t).

This actually helps making numerical approximations of solutions of differential
equations like Runge-Kutta methods. To have more informations about the con-
structon of such Runge-Kutta methods and applied use of trees, one can refer to
[4]

4.2 Construction of one Hopf Algebra of trees

We want to construct an algebra on the rooted trees, there are several possibilities,
but we will focus on one. When we talk about a tree, it will always be up to
isomorphism.

Definition 22 (Tree). A tree is a finite, connected graph without loops.

Definition 23 (Rooted Tree). A rooted tree is a tree with oriented edges, in
which all the vertices but one have exactly one incoming edge and the remaining
vertex, the root, has only outgoing edges.
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We define F the set of all forest of rooted trees including the empty tree. We
will construct our Hopf algebra on the R-vector space over F . We define the mul-
tiplication as the juxtaposition of 2 forests of trees, here are the multiplications on
the basic trees we saw :

· • •
•

•
••

•
•
•

• • • • •
• • •

•• •
•
•
•

•
•

•
• • •

•
•
•

•
•

•
••

•
•

•
•
•

•
••

•
•• • •

••
•
•

•
••

•
••

•
••

•
•
•

•
•
•

•
•
•
•

•
•
•

•
•

•
•
•

•
••

•
•
•

•
•
•

It is a unital algebra if we define the unit as the empty tree, we call the algebra
H, and its unit 1, and it is clearly associative and it is commutative (the order in
which the trees are juxtaposed is not important. Let us define the counit before
defining the coproduct, the latter will take more work. The counit is defined by
ε(1) = 1 and ε(T ) = 0 if T 6= 1.

Definition 24 (Cut, Trunk, Branches). By cutting one edge of a tree, we get 2
trees, one containing the root and the other. If T is a tree, we call c a cut that cuts
at least one edge. After the cut c, only one connected component will be connected
to the root, which will be called the trunk, denoted by Rc(T ); the other parts are
the branches, we write Pc(T ) for the product of all the branches obtained after
the cut.

We now define our coproduct by

∆(T ) = T ⊗ 1 + 1⊗ T +
∑
c

Pc(T )⊗Rc(T ),

the rest is defined by linearity, and ∆(1) = 1⊗ 1. So we just split a tree in all the
possible ways, here are again our basic examples :

T ∆(T )
• • ⊗ 1 + 1⊗ •

•
•

•
• ⊗ 1 + 1⊗ •

• + • ⊗ •

•
••

•
•• ⊗ 1 + 1⊗ •

•• + 2 • ⊗ •
• + • • ⊗ •

•
•
•

•
•
•
⊗ 1 + 1⊗

•
•
•

+ •
• ⊗ • + • ⊗ •

•
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The counit property is easy to check, if T 6= 1 is a tree, then

(Id ⊗ ε)∆(T ) = (Id ⊗ ε)
(
T ⊗ 1 + 1⊗ T +

∑
c

Pc(T )⊗Rc(T )
)

= (Id(T )⊗ ε(1)) + (Id(1)⊗ ε(T )︸ ︷︷ ︸
=0

) +
∑
c

(Id(Pc(T ))⊗ ε(Rc(T ))︸ ︷︷ ︸
=0

)

= (T ⊗ 1)
= T

Likewise :

(ε⊗ Id)∆(T ) = (ε⊗ Id)
(
T ⊗ 1 + 1⊗ T +

∑
c

Pc(T )⊗Rc(T )
)

= (ε(T )︸ ︷︷ ︸
=0

⊗ Id(1)) + (ε(1)⊗ Id(T )) +
∑
c

(ε(Pc(T ))︸ ︷︷ ︸
=0

⊗ Id(Rc(T )))

= (1⊗ T )
= T.

And
(Id ⊗ ε)∆(1) = (Id(1)⊗ ε(1)) = (1⊗ 1) = 1,

(ε⊗ Id)∆(1) = (ε(1)⊗ Id(1)) = (1⊗ 1) = 1.

We can consider a vector space on T considering that all trees are independent, and
can be multiplied by scalars. We define the multiplication (we use the . to denote
the multiplication) of 2 trees t1, t2 by adding a common root to them.

We define the antipode by S(1) = 1, and if T 6= 1, we define S by recursion :

S(T ) = −T −
∑
c

S(Pc(T ))Rc(T ).

With our basic examples :

T S(T )
• − •

•
• − •

• + • •

•
•• − •

•• + 2 • •
• − • • •

•
•
•

−
•
•
•

+ 2 • •
• − • • •
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Let’s verify the antipode property for •
•• .

∆
(

•
••
)

= •
•• ⊗ 1 + 1⊗ •

•• + 2 • ⊗ •
• + • • ⊗ •

(S ⊗ Id)∆
(

•
••
)

=
(
− •

•• + 2 • •
• − • • •

)
⊗ 1 + 1⊗ •

••

+ 2
(
− •

)
⊗ •
• +

(
− •

) (
− •

)
⊗ •

= − •
•• ⊗ 1 + 2 • •

• ⊗ 1− • • • ⊗ 1

+ 1⊗ •
•• − 2 • ⊗ •

• + • • ⊗ •

∇ (S ⊗ Id) ∆
(

•
••
)

= − •
•• + 2 • •

• − • • • + •
•• − 2 • •

• + • •

= 0

(Id ⊗ S) ∆
(

•
••
)

= •
•• ⊗ 1 + 1⊗

(
− •

•• + 2 • •
• − • • •

)

+ 2 • ⊗
(
− •
• + • •

)
+ • • ⊗

(
− •

)
= • ⊗ 1− 1⊗ • + 21⊗ • •

• − 1⊗ • • • − 2 • ⊗ •
•

+ 2 • ⊗ • • − • • ⊗ •

∇ (Id ⊗ S) ∆
(

•
••
)

= •
•• − •

••

+ 2 • •
• − • • • + 2 • •

• + 2 • • • − • • •

= 0

The compatibility condition is easily verified, the only nontrivial properties left
to verify are the antipode property, and the coassociativity of the coproduct, for
that we’ll take a look at the nature of this bialgebra.

4.3 Graded bialgebras

Remark 10. If (A,∇) is an algebra, and A1, A2 linear subspaces, we define A1A2 =
{∇(x⊗ y)|x ∈ A1, y ∈ A2} ⊆ A. If (C,∆) is a coalgebra, and D a linear subspace,
we write ∆D = {∆(d)|d ∈ D} ⊆ C ⊗ C.
Definition 25 (Graded algebra, coalgebra, bialgebra). Let (A,∇) be an algebra,
we say A is a graded algebra if there is a collection {Ai}∞i=1 of linear subspaces
such that

A =
∞⊕
i=0

Ai and AiAj ⊆ Ai+j ∀i, j ∈ N.
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Let (C,∇) be a coalgebra, we say C is a graded coalgebra if there is a collec-
tion {Ci}∞i=1 of linear subspaces such that

C =
∞⊕
i=0

Ci and ∆Ci ⊆
⊕

m+n=i
Cm ⊗ Cn.

Let B =
⊕∞
i=0Bi be a bialgebra (each Bi is a bialgebra), then it is a graded

bialgebra is it is both a graded algebra and coalgebra, i.e.

∀i, j ∈ N BiBj ⊆ Bi+j ∆(Bi) ⊆
∞⊕

m+n=i
Bm ⊗Bn.

It is connected if B0 = K1B = Im(η). Also if b ∈ Bi we say the degree of b is i.

Now let’s see how similar such algebras are to our tree algebra ...

Proposition 12. Let H =
⊕∞

i=0Hi be a connected graded bialgebra (we note 1H =
1) and h ∈ H, then

(i) ∆(h) = 1⊗ h+ h⊗ 1 +
∑
h:1 ⊗ h:2.

(ii) ε(h) =
{

0 if h 6= 1
1 if h = 1 .

(iii) H is a Hopf algebra and S(h) = −h−
∑
S(h:1)h:2 = −h−

∑
h:1S(h:2).

Proof. We suppose there is n ∈ N such that h ∈ Hn, the general case can be then
deducted by linearity. H is graded as a coalgebra, so ∆(h) ∈

⊕
i+j=nHi ⊗Hj . so

we can write ∆(h) =
∑
i+j=n hi ⊗ h′j with hi, h′i ∈ Hi∀i ∈ {1, · · · , n}.

So ∆(h) = h0⊗h′n+hn⊗h′0 +
∑
i+j=n,i,j 6=0 hi⊗h′j . We can suppose h0 = h′0 = 1

because h0 ⊗ h′n = 1⊗ h0h
′
n, likewise with h′0.

The counit property gives :

(ε⊗ Id)∆(h) = ε(1)h0h
′
n +

n∑
j=1

ε(hn−j)h′j︸ ︷︷ ︸
∈Hj

= h ∈ Hn

But H being graded, by unicity of the decomposition of h in the direct sum,
ε(hi) = 0 if i ≥ 1, and ε(1)h0h

′
n = h so h0h

′
n = h. Then we do the same with the

other counit property ((Id ⊗ ε)∆ = Id) and we get that we can write ∆(h) like in
(i), and we also get (ii).

For (iii), let’s write the antipode property :

∇(S ⊗ Id)∆(h) = ∇ε(h)
So if h = 1, then ∆(h) = 1 so S(h) = 1, else, we get

S(h)⊗ 1 + S(1)⊗ 1 +
n∑
i=1

S(hi)h′n−i = 0,

So S(h) = −h −
∑n
i=1 S(hi)h′n−i (the other antipode property gives us the other

form of (iii)). Let’s observe we can always define such a S on any h because in
the sum, the hi have a strictly lower degree than h, so the recursion ends when we
arrive in H0.
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Proposition 13 (Corollary). In a graded connected bialgebra, degree 1 elements
are primitive.

4.4 Back to the trees

If we look at our algebra, and the definition of the coproduct, it matches the def-
inition of the coproduct of a graded bialgebra, and of t is a nonempty tree, Pc(t)
and Rc(t) have a stritly lower degree (number of nodes) than t. Actually, degrees
of trees correspond to degrees of the element in the graded bialgebra.

More formally, if we define Hi = span{t ∈ H|t has i nodes}. Then H ∼=
⊕

iHi,
a graded connected bialgebra.

Obviously, H0 contains the empty tree, so it’s just R1. Also for any trees t, t′ of
degree i and i′ respectively, tt′ has a degree of i+ i′, so HiH

′
i ⊆ Hi+i′ , it is a graded

algebra.
For the bialgebra, it directly comes from the definition of the coproduct, if t is

a tree, and c a cut, then the sum of the degree of Pc(t) and Rc(t) is the degree of t,
because they correspond to complementary parts of t, so ∆(Hi) ⊆

⊕
m+n=iHi⊗Hj .

We can therefore say that S is indeed the antipode, it corresponds to the definition
we saw for graded connected bialgebras.

Remark 11. We could have avoided the talk about the graded bialgebra and just
stated the antipode property ∇(S ⊗ Id)∆(t) = ηε(t), so if t = 1 then S = 1
else S(t)1 + S(1)t +

∑
c S(Pc(t))Rc(t) = 0, thus we could define S(t) = −t −∑

c S(Pc(t))Rc(t) it is well defined because we use recursion on lower degree trees,
it is defined on 1, and it is the antipode by construction.

That would’ve been faster, but it is interesting to see the general structure of the
Hopf Algebra H, and put a name on it, so all results for graded bialgebras can be
used for trees.

We’ve still been ignoring one element that we need to prove to complete our
Hopf algebra, that is H is coassociative.

4.4.1 Coassociativity of the algebra of trees

Let’s first consider the linear map given by

B+ : H → H B+(1) = • B+(t1 · · · tn) = t

where t is defined as follows : we add a node, and connect it to the roots of t1, · · · , tn,
making it the root of a new tree, which it t.

Examples :

B+
(

•
••
)

= •
• •

•
B+

(
•
•
•
•
)

=
•

• •
••

We can compute B+(t1t2) where t1 and t2 are our basic trees :
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t1\t2 • •
•

•
••

•
•
•

• •
•• •

• •
•

•
• •

•
•

•
•
•

•
•

•
• •

• •
•

•
• •

••

•
• •
• ••

•
• •

•
•

•

•
•• •

• •
• •

•
• •
•• •

•
• •
• •• •

•
• •

•
•• •

•
•
• •

•
•

•
• •

••
•
•

•

•
••

•
• ••

•
••

•
• •

•

Remark 12. B+ raises the degree of any element of any tree, and if a tree t has
a degree greater or equal to 1 then there are t1, · · · , tn of lower degree such that
B+(t1, · · · , tn) = t, which is easy to see, we cut the root off t and get some disjoint
trees, applying B+ on them adds the root back, so we get t.

Let’s call A = {t ∈ H|(Id ⊗∆)∆(t) = (∆⊗ Id)∆(t)} . Clearly, ∆ and Id being
algebra morphisms, A is a subalgebra of H. Moreover by definition of ∆, 1 ∈ A,
so R1 ∈ A, so if we can prove that A is stable under B+, we get that H ∈ A (so
A = H, and we win) because from R1 we can obtain any element using B+ enough
times, thanks to last remark (it’s just an induction on the degree).

Let’s show that A is stable under B+. It’s just a computation, let t ∈ A.

(∆⊗ Id)∆(B+(t)) = ∆(B+(t))⊗ 1 + (∆⊗ Id)(Id ⊗B+)∆(t)
= B+(t)⊗ 1⊗ 1 + (Id ⊗B+)∆⊗ 1 + (Id ⊗ Id ⊗B+)(∆⊗ Id)∆(t)

(Id⊗∆)∆(B+(t)) = B+(t)⊗ 1⊗ 1 + (Id ⊗ (∆B+))∆(t)
= B+(t)⊗ 1⊗ 1 + (Id ⊗B+)∆(t)⊗ 1 + (Id ⊗ Id⊗B+)(Id ⊗∆)∆(t)

Thus A is stable under B+, it is also stable under ∇ so H is coassociative.

Remark 13. The map B+ is called more generally a 1-cocycle, when talking about
Hochschild cohomology and Hochschild cohomology groups.
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5 Conclusion
We now covered the basic elements of understanding of this mathematical object, it
is hopefully now clear and the reader is able to visualise the structure of Hopf Alge-
bra through some examples. Coalgebras should be now a natural dual construction
of algbras, and Hopf algebras a bigger version gathering algebras, coalgebras and
an inverse map, the antipode.

The construction of the algebra of trees is also important, it leads to a lot of
results. The work we did is just the construction of such structures, a lot more
needs to be done to be able to use it, and link it to noncommutative geometry, and
quantum field theories, but we now have the basic tools to tackle bigger problems.
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