Affine Grassmannians

Nicholas Lai

March 6th, 2020

Intuition

Let G be a connected reductive algebraic group, k a field.

Affine Grassmannian "=" {trivialisable G-bundles on formal punctured disc}/{triv G-bundles on formal disc

If $k = \mathbb{C}$, *G*-bundles are

- Trivialisable after finite number of punctures
- Then, bundles "is" taking disc over each punctures as trivialising cover, and specify transition maps.

 $\{\text{triv } G\text{-bundle over Spec} A, \text{trivialisation}\} \leftrightarrow \{\text{triv of trivial bundle}\} = \max(\text{Spec} A, G) = G(A).$

punctured disc \leftrightarrow Speck((t)) disc \leftrightarrow Speck[[t]]

Naively, we want

$$\operatorname{Gr}_G = G(k((t)))/G(k[[t]]).$$

Affine Grassmannians for GL_n .

We will do everything over \mathbbm{Z} and base change to a field later.

Definition. For any ring R, an R-family of lattice is a finite locally free R[[t]]-submodules $\Lambda \subseteq R((t))^n$ such that $\Lambda \otimes_{R[[t]]} R((t)) = R((t))^n$. e.g. the standard lattice $\Lambda_0(R) = R[[t]]^n$. Def. An affine Grassmannian is the functor

$$\operatorname{Gr}_{\operatorname{GL}_n} : \operatorname{\mathbf{Rings}} \to \operatorname{\mathbf{Sets}}$$

$$R \mapsto \{R - \text{lattice}\}.$$

Here **Rings** are commutative. We would like this functor to be a scheme, but it's not.

However, it is an ind-scheme, a colimit of schemes.

The affine Grassmannian can be decomposed into a "system" of schemes, and we can study the geometry piecewise.

We want to say $\operatorname{Gr}_{\operatorname{GL}_n} = \bigcup_N \operatorname{Gr}_{\operatorname{GL}_n}^{(N)}$.

Def. For integers $a \leq b$, define

$$\operatorname{Gr}_{[a,b]}(R) = \{\Lambda \in \operatorname{Gr}_{\operatorname{GL}_n}(R) : t^b \Lambda_0(R) \subseteq \Lambda \subseteq t^a \Lambda_0(R) \}.$$

This gives a filtered system, and as functors,

$$\operatorname{Gr}_{\operatorname{GL}_n}(R) = \operatorname{colim}_{a \le b} \operatorname{Gr}_{[a,b]}(R).$$

(finite locally free over R implies finitely generated)

The main point is the following:

Theorem. The functor $\operatorname{Gr}_{[a,b]}$ is represented by a closed subscheme of

$$Grass(M_{[a,b]}) : \mathbf{Rings} \to \mathbf{Sets}$$

 $R \mapsto \{N \subseteq t^a \Lambda_0(R)/t^b \Lambda_0(R) : t^a \Lambda_0(R)/t^b \Lambda_0(R) \text{ is f.g. loc free } R - mod\}.$

Rem. Grass $(M_{[a,b]})$ is represented by a smooth proper scheme over \mathbb{Z} and is the finite disjoint union over $0 \le k \le \mathrm{rk} t^a \Lambda_0(R)/t^b \Lambda_0(R)$ of classical Grassmannians of rank k.

What is $Gr_{[a,b]}$ exactly?

Define $\operatorname{Grass}^{t}(M_{[a,b]})(R) = \{N \in \operatorname{Grass}(M_{[a,b]})(R) : tN \subset N\}.$

This is a closed subscheme of $Grass(M_{[a,b]})$.

Remark $\operatorname{Grass}^{t}(M_{[a,b]})$ is a union of Springer fibres.

Claim: $\operatorname{Gr}_{[a,b]} \to \operatorname{Grass}^t(M_{[a,b]})$

$$\Lambda \mapsto \Lambda/t^b \Lambda_0(R).$$

Key idea: $\operatorname{Grass}^t(M_{[a,b]}) \to \operatorname{Spec}\mathbb{Z}$ of finite type.

 $N \in \text{Grass}^t(M_{[a,b]})$ is defined over finitely-generated Z-algebra. So we can ssume that R is Noetherian.

 $R[t] \rightarrow R[[t]]$ is flat (Noetherian assumption is necessary).

Therefore, $\Lambda = \ker(t^a \Lambda_0(R) \to t^a \Lambda_0(R)/t^b \Lambda_0(R))$

 $\Lambda_f = \operatorname{Ker}(t^a R[t] \to t^a R[t]/t^b R[t])$

 Λ_f is finite locally free, so the map is surjective.

Remark. The idea of replacing R[[t]] with R[t] is a special case of Beauville-Laszlo's realisation of Gr via a global curve.

Digression. (strict)-Ind Schemes.

Example: $\mathbb{A}^{\infty} = \bigcup_{i>0} \mathbb{A}^i$, $\mathbb{A}^i \subseteq \mathbb{A}^{i+i}$ on the first *i*-coordinates.

Definition. A (strict) ind-schemes is a functor

 $X : \mathbf{Aff} - \mathbf{sch}^{op} \to \mathbf{Sets}.$

Which can be written as $X \approx \operatorname{colim}_{i \in I} X_i$ as a filtered colimit of schemes where all transition maps $X_i \to X_j$, $i \leq j$ are closed immersions.

Remark. We will identify $\mathbf{AffSch}^{op} = \mathbf{Rings}$.

e.g. $\mathbb{A}^{I}_{\mathbb{Z}}: T \mapsto \bigoplus_{i \in I} P(T, \mathcal{O}_{T}) = \operatorname{colim}_{J \subset I} \mathbb{A}^{J}_{\mathbb{Z}} \to \mathbb{A}^{|J|}.$

Remark. We will not reference the fpqc topology on AffSch. However,

Lemma. Every ind-scheme satisfies the sheaf condition for the fpqc topology on **AffSch**.

- This works over colimits of schemes over filtered index category
- Ran spaces are not ind-schemes.

Lemma. Let $X \to Y$ be a map of functors **AffSch**^{op} \to **Sets**.

Suppose for all affine schemes $T \to Y$ the fibre product $X \times_Y T$ is a scheme. Then if Y is an ind-scheme, so is X.

Cor. $X_i \subset X$ is representable by close immersion.

Lemma. The category of ind-schemes IndSch has the properties:

- SpecZ is the final object
- Closed under fibre products (admits finite limits)
- Directed limits with affine transitions
- Arbitrary disjoint union

Definition. For a local property P of schemes, an Ind-scheme has P if there exists a representation $X = \operatorname{colim}_{i \in I} X_i$ such that every X_i has P.

Lemma. Scheme has property P if and only if it has P as an ind-scheme.

Def. Same for morphism

Lemma. The same lemma is true but only for quasi-compact map of schemes.

Base change. Can do all of this over scheme S instead $Spec\mathbb{Z}$, we get $IndSch_S$, (called a slice category).

- AffSch_S has a notion of fpqc topology.
- $S = \operatorname{Spec} R$, $\operatorname{AffSch}^{op} = R \operatorname{Alg}$.

Can run the whole machinery verbatim.

Algebraic spaces can be extended to IndAlgSp.

Lemma. $AlgSp \cap IndSch = Sch.$

Back to affine Grassmannians

Base change $\operatorname{Gr}_{\operatorname{GL}_n,S}$: AffSch^{op} \rightarrow Set.

 $T = \operatorname{Spec} R \mapsto \operatorname{Gr}_{\operatorname{GL}_n, \mathbb{Z}}(R)$ is representable by Ind-proper, ind-scheme

 $\operatorname{Gr}_{\operatorname{GL}_n} \times_{\operatorname{Spec}\mathbb{Z}} S \to S$

Some geometry

Want to construct ind-affine open covers of $\operatorname{Gr}_{\operatorname{GL}_n}$ for $\mu \in \mathbb{Z}^n$, let

$$t^{\mu} = \operatorname{diag}(t^{\mu_1}, \cdots, t^{\mu_n}) \in \operatorname{GL}_n(\mathbb{Z}((t))).$$

For a ring R, let

$$\Lambda_{\mu}^{-}(R) = t^{\mu}(t^{-1}R[t^{-1}]^{n})$$

considered as $R[t^{-1}]$ -submodule of R((t)).

Define $U_{\mu}(R) = \{\Lambda \in \operatorname{Gr}_{\operatorname{GL}_n}(R) : \Lambda_{\mu}(R) \oplus \Lambda \equiv R((t))^n \text{ as } R \operatorname{-mod} \}.$

Note that $\Lambda_0 \subset U_0$, U_{μ} is t^{μ} -translate of U_0 under the action of $\operatorname{GL}_n(\mathbb{Z}((t)))$ on $\operatorname{Gr}_{\operatorname{GL}_n}$.

This is related to Birkhoff decomposition for Kac-Moody algebras and double Tits-systems (twin buildings).

 $\operatorname{Gr}_{\operatorname{GL}_n} = \bigcup_{\mu \in \mathbb{Z}^n} U_{\mu}$, in particular, $U_{\mu} \subseteq \operatorname{Gr}$ is represented by open immersions on schemes.

Idea: $U_{\mu} \cap \operatorname{Gr}_{[a,b]}$ is pullbacks of standard open covers of classical Grassmannians. Cor. $U_{\lambda} \cap U_{\mu} \neq \emptyset \Leftrightarrow |\mu| = |\lambda|$. This this case, all fivers of $U_{\lambda} \cap U_{\mu} \to \operatorname{Spec}\mathbb{Z}$ are nonempty.