Talk 9 : Theta series

Julia Gordon

May 15th, 2019

Two approaches.

- Siegel, ... : Generating functions for counting problems
- Geometrically, from Jacobi map on abelian varieties.

1. Θ -functions and quadratic forms.

Quadratic form Q = Vector space with positive definite, symmetric, bilinear inner product \cdot .

Let Γ be a lattice such that if $x \cdot y \in \mathbb{Z}$ for every x if and only if $y \in \Gamma$ (*self-dual*). It corresponds to a quadratic form over \mathbb{Z} (even diagonal).

Question. In how many ways does Q represent a given integer ?

Let $r(Q, a) = |\{\overline{x} \in \Gamma : \overline{x} \cdot \overline{x} = a\}| < \infty$ since Q is positive definite.

Generating function $\Theta_{\Gamma}(t) = \sum_{x \in \Gamma} e^{-\pi t x \cdot x}$, where $t \in \mathbb{R}$. We have $\Theta_{\Gamma}(t) = \sum_{a \in \mathbb{Z}} r(Q, a) q^a$ where $q = e^{-\pi t}$.

Exercise. $\Theta_{\Gamma}(t) = t^{-n/2} \operatorname{vol}(V/\Gamma) \Theta_{\Gamma}(t^{-1})$. If Γ was not self-dual, the right Θ would be over $\Gamma' = \{y : y : x \in \mathbb{Z} \ \forall X \in \Gamma\}$, the dual of Γ . The proof is using Poisson summation formula.

Note. $r(Q, a) \leq Cq^{n/2}$ so the series converges for |q| < 1. Hence more generally we can take $q = e^{2\pi i z}$ with $z \in \mathbb{H}$ and it will converge.

Theorem.

- (1) $\dim(V)$ is divisible by 8.
- (2) Θ_{Γ} is a modular form of weight n/2 (i.e. $\Theta_{\Gamma}(-1/z) = (-iz)^{n/2}\Theta_{\Gamma}(z)$).

Corollary. There exists a cusp form of weight n/2 = 2k such that $\Theta_{\Gamma} = E_{2k} + f_{\Gamma}$ (because $\Theta_{\Gamma}(\infty) = 1$, so $\Theta - E_{2k} \in S_{2k}$).

So we get $r_Q(a) = \frac{4k}{B_k}\sigma_{2k-1}(a) + O(a^k)$.

Note. If n = 8, there are no cusp form of weight 8/2 = 4 so $\Theta_{\Gamma} = E_4$.

Genus of Γ **.** The set of quadratic forms equivalent to Q (equivalently lattices equivalent to Γ) over \mathbb{Q} .

The Minkowski-Siegel mass formula "computes" $\sum_{\Gamma' \in \text{genus}/\mathbb{Z}-\text{equiv}} \frac{1}{|\operatorname{Aut}(\Gamma')|} =: M_{\Gamma}.$

We have the Siegel-Weil identity : $\sum_{\Gamma' \in \text{genus}(\Gamma)} \frac{1}{|\operatorname{Aut}(\Gamma')|} \Theta_{\Gamma'} = M_{\Gamma} \cdot E_{2k}$ (on average, over a genus, f_{Γ} disappears). It is an example of $\Theta - lift$.

For n = 8: the genus of self dual lattices has only one isometry class : root lattice of E_8 , and $|\operatorname{Aut}(\Gamma)| = |W_{E_8}| = 2^{14} 3^5 5^2 7$.

Siegel. Natural generalization : representing a quadratic form in m variables by a quadratic form in n variables

pos. def. pos. semi-def
$$X^t \underbrace{Q}_{n \times n} X = \underbrace{A}_{m \times m} X$$

Want X to have coeffs in \mathbb{Z} . r(Q,a) is a special case when A = (a), the quadratic form is ax^2 .

$$\Theta^{n}(z,Q) := \sum_{A \text{pos. semi-def. } n \times n \text{ mat } / \mathbb{Z}} r(Q,A) \exp(\pi i \text{trace}(Az)),$$

 $z \in \mathcal{H}_g$, the Siegel upper-half plane.

Key point. The automorphy factor by $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$: $C\tau + D$. One approach (classical), scalar-valued autom factor : $\det(C\tau + D)^k$

Koecher effect : When g > 1, "holom at ∞ " condition is automatic ! (you cannot have poles, every singularity is removable for functions of several complex variables).

Definition. Siegel modular form of weight k is a holomorphic function $f : \mathcal{H}_g \to \mathbb{C}$ such that $f(\gamma(\tau)) = \det(C\tau + D)^k f(\tau)$, where $\gamma = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

Useful generalization : vector-valued siegel modular form :

if g > 1, let $\rho : \operatorname{GL}_g(\mathbb{C}) \to \operatorname{GL}(V)$ be a representation (classical : $\rho = \operatorname{det}^k$, enough to deal with irreps). A weight ρ modular form is a holom map $f : \mathcal{H}_g \to V$ such that $f(\gamma(\tau)) = \rho(C\tau + D)f(\tau)$ for $\gamma \in \operatorname{Sp}_{2g}(\mathbb{Z})$ (or congruence subgroup).

Fourier expansions $f(\tau) = \sum_{n} \underbrace{a(n)}_{\in V} \underbrace{e^{2\pi i \operatorname{trace}(n\tau)}}_{\text{``q''}}$, where the sum is taken over n elements of $\operatorname{GL}_n(\mathbb{Q})$ such that $2n \in \operatorname{M}_q(\mathbb{Z})$ with even diagonal.

Geometric picture.

Why abelian varieties ? because of abelian integrals.

Abel: Tries to compute $\int f(x, y(x)) dx$ when y satisfies an algebraic equation F(x, y(x)) = 0 for $F \in \mathbb{C}[x, y]$.

Example. $\int \frac{\mathrm{d}x}{\sqrt{x^2+ax+b}}$. Arc length of an ellipse. If y satisfies a quadratic equation then we get $\int \frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-k^2t^2)}} = \frac{\Theta_3(0)\Theta_1(v)}{\Theta_2(0)\Theta_0(v)}$ for some v, where $\Theta_{0,1,2,3}$ are the Jacobi Theta functions (Exercise for the future).

For $y^2 = x^3 + ax + b$. A point on an elliptic curve is of the form (\sqrt{y}, \sqrt{y}) since $X \cong \mathbb{C}/\Lambda$, the curve is its own Jacobian, so the integral $\int \frac{y}{x} dx$ is some log of \sqrt{y} .

In modern terms F(x, y(x)) = 0 is a curve in \mathbb{P}^2 choose a basis of the homology $H_1(X, \mathbb{Z}) \gamma_1, \ldots, \gamma_g$ and a basis of the De Rham cohomology $H^1(X, \mathbb{Z}) \omega_1, \ldots, \omega_g$. The \mathbb{Z} -span of $\int_{\gamma_i} \omega_j$ is denoted by Λ , its period lattice.

Let X be a complex projective curve. We can map points $P \in X$ to $(\int_{P_0}^P w_1, \ldots, \int_{P_0}^P \omega_g) \mod \Lambda$, this gives a map $X \to \mathbb{C}^g/\Lambda$, the abelian variety \mathbb{C}^g/Λ is called $\operatorname{Jac}(X)$ the Jacobian of X. The map is *Abel-Jacobi map*.

Theorem. Abel : This map is injective. Jacobi : This map is surjective.

Riemann's Θ -functions. For $\tau \in \mathcal{H}_g$. Recall $\Gamma \setminus \mathcal{H}_g = \mathcal{M}_g$ the moduli space of \mathcal{C}^g / Λ that have complex structure.

$$Theta(z,\tau) = \sum_{n \in \mathbb{Z}^g} e^{2\pi i (u^t \tau u + 2u^t z)},$$

it converges uniformlu on compact subsets of $\mathbb{C}^g \times \mathcal{H}_q$.

We can express $\Theta^n(Q, Z)$ (the theta series) in terms of such Θ function, and get the functional equation from it.

Θ -functions.

$$\Theta\begin{bmatrix}a\\b\end{bmatrix}(z,\tau) = e^{2i\pi(a^t\tau a + 2a^t(z+b))}\Theta(z+\tau a+b,\tau).$$

analogy for $g = 1 : j : \Gamma \setminus \mathbb{H} \to \mathbb{P}^1$, modular functions are $\mathbb{C}(j)$.

One can consider sections of a line bundle on $\Gamma \setminus \mathcal{H}_g$, embed it into a projective space, those Θ functions should be generating the ring of modular functions.

Sections of line (vector) bundles :

• (1) on \mathbb{C}^g/Λ

• (2) On $\Gamma \setminus \mathcal{H}_g$, take universal bundle on $\Gamma \setminus \mathcal{H}_g$, its sections (which are Siegel modular forms) corresponds to sections of the bundle $\Gamma \setminus \mathcal{H}_g \times C^g / \Lambda$.

Step 1: Understand line bundles on $\Lambda \backslash \mathbb{C}^{g}$

Summary : Suppose H is a hermitian form taking \mathbb{Z} -values on Λ (get that if $\Lambda = periodmatrix$), equivalently this is a polarization. Elements of $H^2(X, \mathbb{Z})$ correspond to line bundles on $\Lambda \setminus \mathbb{C}^g$.

Lefschetz Theorem. Θ functions give enough sections for an embedding.

Appell-Humbert Theorem. Every hypersurface on \mathbb{C}^g/Λ is the zero locus of a θ function.