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Two approaches.

• Siegel, . . . : Generating functions for counting problems

• Geometrically, from Jacobi map on abelian varieties.

1. Θ-functions and quadratic forms.

Quadratic form Q = Vector space with positive definite, symmetric, bilinear
inner product ·.

Let Γ be a lattice such that if x · y ∈ Z for every x if and only if y ∈ Γ (self-dual).
It corresponds to a quadratic form over Z (even diagonal).

Question. In how many ways does Q represent a given integer ?

Let r(Q, a) = |{x ∈ Γ : x · x = a}| <∞ since Q is positive definite.

Generating function ΘΓ(t) =
∑
x∈Γ e

−πtx·x, where t ∈ R. We have ΘΓ(t) =∑
a∈Z r(Q, a)qa where q = e−πt.

Exercise. ΘΓ(t) = t−n/2vol(V/Γ)ΘΓ(t−1). If Γ was not self-dual, the right Θ
would be over Γ′ = {y : y.x ∈ Z ∀X ∈ Γ}, the dual of Γ. The proof is using
Poisson summation formula.

Note. r(Q, a) ≤ Cqn/2 so the series converges for |q| < 1. Hence more generally
we can take q = e2πiz with z ∈ H and it will converge.

Theorem.

• (1) dim(V ) is divisible by 8.

• (2) ΘΓ is a modular form of weight n/2 (i.e. ΘΓ(−1/z) = (−iz)n/2ΘΓ(z)).

Corollary. There exists a cusp form of weight n/2 = 2k such that ΘΓ = E2k+fΓ
(because ΘΓ(∞) = 1, so Θ− E2k ∈ S2k).

So we get rQ(a) = 4k
Bk
σ2k−1(a) +O(ak).

Note. If n = 8, there are no cusp form of weight 8/2 = 4 so ΘΓ = E4.
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Genus of Γ. The set of quadratic forms equivalent to Q (equivalently lattices
equivalent to Γ) over Q.

The Minkowski-Siegel mass formula “computes”
∑

Γ′∈genus/Z−equiv
1

|Aut(Γ′)| =:
MΓ.

We have the Siegel-Weil identity :
∑

Γ′∈genus(Γ)
1

|Aut(Γ′)|ΘΓ′ = MΓ · E2k (on
average, over a genus, fΓ disappears). It is an example of Θ− lift.

For n = 8 : the genus of self dual lattices has only one isometry class : root
lattice of E8, and |Aut(Γ)| = |WE8 | = 21435527.

Siegel. Natural generalization : representing a quadratic form in m variables
by a quadratic form in n variables

Xt

pos. def.︷︸︸︷
Q︸︷︷︸
n×n

X︸︷︷︸
n×m

=
pos. semi-def︷︸︸︷

A︸︷︷︸
m×m

.

Want X to have coeffs in Z. $r(Q,a) is a special case when A = (a), the quadratic
form is ax2.

Θn(z,Q) :=
∑

Apos. semi-def. n×n mat /Z

r(Q,A) exp(πitrace(Az)),

z ∈ Hg, the Siegel upper-half plane.

Key point. The automorphy factor by
[
A B
C D

]
: Cτ + D. One approach

(classical), scalar-valued autom factor : det(Cτ +D)k

Koecher effect : When g > 1, “holom at ∞” condition is automatic ! (you
cannot have poles, every singularity is removable for functions of several complex
variables).

Definition. Siegel modular form of weight k is a holomorphic function f : Hg →

C such that f(γ(τ)) = det(Cτ +D)kf(τ), where γ =
[
A B
C D

]
.

Useful generalization : vector-valued siegel modular form :

if g > 1, let ρ : GLg(C) → GL(V ) be a representation (classical : ρ = detk,
enough to deal with irreps ). A weight ρ modular form is a holom map f : Hg → V
such that f(γ(τ)) = ρ(Cτ +D)f(τ) for γ ∈ Sp2g(Z) (or congruence subgroup).

Fourier expansions f(τ) =
∑
n a(n)︸︷︷︸
∈V

e2πitrace(nτ)︸ ︷︷ ︸
“q”

, where the sum is taken over n

elements of GLn(Q) such that 2n ∈ Mg(Z) with even diagonal.
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Geometric picture.

Why abelian varieties ? because of abelian integrals.

Abel : Tries to compute
∫
f(x, y(x)) dx when y satisfies an algebraic equation

F (x, y(x)) = 0 for F ∈ C[x, y].

Example.
∫ dx√

x2+ax+b . Arc length of an ellipse. If y satisfies a quadratic equation
then we get

∫ dt√
(1−t2)(1−k2t2)

= Θ3(0)Θ1(v)
Θ2(0)Θ0(v) for some v, where Θ0,1,2,3 are the

Jacobi Theta functions (Exercise for the future).

For y2 = x3 + ax+ b. A point on an elliptic curve is of the form (√,√′) since

X ∼= C/Λ, the curve is its own Jacobian, so the integral
∫
y
x dx is some log of √.

In modern terms F (x, y(x)) = 0 is a curve in P2 choose a basis of the homology
H1(X,Z) γ1, . . . , γg and a basis of the De Rham cohomologyH1(X,Z) ω1, . . . , ωg.
The Z-span of

∫
γi
ωj is denoted by Λ, its period lattice.

Let X be a complex projective curve. We can map points P ∈ X to
(
∫ P
P0
w1, . . . ,

∫ P
P0
ωg) mod Λ, this gives a map X → Cg/Λ, the abelian variety

Cg/Λ is called Jac(X) the Jacobian of X. The map is Abel-Jacobi map.

Theorem. Abel : This map is injective. Jacobi : This map is surjective.

Riemann’s Θ-functions. For τ ∈ Hg. Recall Γ\Hg =Mg the moduli space of
Cg/Λ that have complex structure.

Theta(z, τ) =
∑
n∈Zg

e2πi(utτu+2utz),

it converges uniformlu on compact subsets of Cg ×Hg.

We can express Θn(Q,Z) (the theta series) in terms of such Θ function, and get
the functional equation from it.

Θ-functions.

Θ
[
a
b

]
(z, τ) = e2iπ(atτa+2at(z+b))Θ(z + τa+ b, τ).

analogy for g = 1 : j : Γ\H→ P1, modular functions are C(j).

One can consider sections of a line bundle on Γ\Hg, embed it into a projective
space, those Θ functions should be generating the ring of modular functions.

Sections of line (vector) bundles :

• (1) on Cg/Λ
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• (2) On Γ\Hg, take universal bundle on Γ\Hg, its sections (which are Siegel
modular forms) corresponds to sections of the bundle Γ\Hg × Cg/Λ.

Step 1: Understand line bundles on Λ\Cg

Summary : Suppose H is a hermitian form taking Z-values on Λ (get that if
Λ = periodmatrix), equivalently this is a polarization. Elements of H2(X,Z)
correspond to line bundles on Λ\Cg.

Lefschetz Theorem. Θ functions give enough sections for an embedding.

Appell-Humbert Theorem. Every hypersurface on Cg/Λ is the zero locus of
a θ function.
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