Talk 4 : Automorphic Forms and Vector Bundles

Stephen Pietromonaco

March 20th, 2019

The goal is to interpret automorphic forms as algebraic sections of algebraic vector bundles on Shimura varieties $\Gamma \backslash \mathbf{G}(\mathbb{R}) / K$.

We focus on the case $\mathbb{G}=\mathrm{Sp}_{2 g}$.
Motivation : Use tools from algebraic geometry (sheaves+cohomology) to study automorphic forms (dimension formulas via Riemann-Roch).

Let f be a classical weight K modular form $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$. Define $F: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{C}$ by $F(g)=j(g, i)^{-K} f(g \cdot i)$.
We check how F behaves under a representation of $\mathrm{SO}(2)$ on the right. We get

$$
F\left(\gamma g \cdot K_{\theta}\right)=\underbrace{\underbrace{F(g)}}_{\text {rep of } \operatorname{SO}(2)_{\Gamma-\text { invariance on the left }}^{i K \theta}}
$$

for all $\gamma \in \Gamma, g \in \mathrm{SL}) 2(\mathbb{R})$ and $K_{\theta} \in \mathrm{SO}(2)$.
Let G be a Lie group, $K \subset G$ a closed Lie subgroup (assume K connected). The map $G \rightarrow G / K$ has the structure of a principal K-bundle i.e.

- 1. Free right K-action on G.
- 2. Fibers are diffeomorphisms to K.
- 3. Locally trivial.

Let (V, σ) be an r-dimensional complex representation of K. Define $E_{K}:=$ $G \times_{K} V=G \times V / K$. The right action of K on $G \times V$ is given by $k \cdot(g, v) \mapsto$ $\left(g k, \sigma\left(k^{-1}\right) v\right)$.

Fact : $\Pi: E_{V} \rightarrow G / K$ is a rank r smooth (complex) vector bundle (it is an associated vector bundle).

Definition. We say $\Pi: E \rightarrow X$ is a smooth complex rank r vector bundle if Π is a smooth surjection between smooth manifolds such that

- 1. $\Pi^{-1}(x) \cong \mathbb{C}^{r}$
- 2. There is an open cover $\left\{U_{i}\right\}$ of X with diffeomorphisms $\phi_{i}: \Pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{r}$ with compatibility condition $g_{i, j}=$
$\phi_{i} \circ \phi_{j}^{-1}: U_{i} \cap U_{j} \rightarrow \mathrm{GL}_{r}(\mathbb{C})$, this map is called a transition function. Those maps must satisfy Cocycle condition. $g_{i j}=g_{i k} g_{k j}$ on $U_{i} \cap U_{j} \cap U_{k}$. Also we need the composition of ϕ_{i} with projection on the first coordinate to be equal to Π on $\mathrm{Pi}^{-1}\left(U_{i}\right)$.

For associated bundles, the triangle commutes

$$
\mathrm{GL}(V) \stackrel{\sigma}{\leftarrow} K \stackrel{t_{i j}}{\leftarrow} U_{i} \cap U_{j} \stackrel{g_{i j}}{\longrightarrow} \mathrm{GL}(V) .
$$

Remarks. If X is a complex manifold or algebraic variety, a holomorphic (resp. algebraic bundle) is such that the transition functions $g_{i j}$ are holomorphic (res. algebraic) + likewise for Π.

Definition. A smooth section of a vector bundle $\Pi: E \rightarrow X$ is a smooth map $s: X \rightarrow E$ such that $\Pi \circ s=\operatorname{Id}_{X}$.

A holomorphic (res. algebraic) section of a holomorphic (resp. algebraic) bundle is a section where s is also holomorphic (resp. algebraic). The set of smooth sections of a vector bundles is usually denoted $\Gamma_{C^{\infty}}(E)$.
Key Lemma. We have the bijection

$$
\begin{gathered}
\left\{F: G \rightarrow V \mid F(g k)=\sigma\left(k^{-1}\right) F(g) \forall g \in G, \forall k \in K\right\} \stackrel{\cong}{\cong} \Gamma_{C^{\infty}}\left(E_{v}\right), \\
F \mapsto s, \text { where } s(g K)=[(g, F(g))] \\
\text { conversely } s \mapsto F, \text { defined by } F(g)=v, \text { where } s(g K)=[(g, v)] .
\end{gathered}
$$

Main example. Let \mathbf{G} be a connected semisimple algebraic group and $K \subset$ $\mathbf{G}(\mathbb{R})$ denote a maximal compact subgroup.
Suppose that $X=\mathbf{G}(\mathbb{R}) / K$ is a Hermitian symmetric domain.
Let (V, σ) be a representation of K. Let $E_{v}=\mathbf{G}(\mathbb{R}) \times_{K} V \rightarrow X$ the associated smooth complex vector bundle over X. Let $\Gamma \subset \mathbf{G}(\mathbb{R})$ a torsion-free lattice. Define a Γ-action on $\mathbf{G}((R) \times V$ by $\gamma \cdot(g, v) \mapsto(\gamma g, v)$.
Let $E_{V, \Gamma}=\Gamma \backslash \mathbf{G}(\mathbb{R}) \times_{K} V \rightarrow \Gamma \backslash X$ is a smooth complex vector bundle on $\Gamma \backslash X$.
$\Gamma_{C^{\infty}}\left(E_{V, \Gamma}\right)=\left\{F: \mathbf{G}(\mathbb{R}) \rightarrow V \mid F(\gamma \cdot g \cdot k)=\sigma\left(k^{-1}\right) F(g) \forall \gamma \in \Gamma, g \in \mathbf{G}(\mathbb{R}), k \in K\right\}$.

These "formally" look like what we would call vector-valued automorphic forms, except $E_{v, \Gamma}$ and its section are apriori smooth, not algebraic.

Borel Embedding.

A Hermitian symmetric domain $X=\mathbf{G}(\mathbb{R}) / K$ embeds into its "compact dual" $\hat{X}=\mathbf{G}(\mathbb{C}) / P$. The map $\beta X \rightarrow \hat{X}$ is the Borel embedding.

Here P is some parabolic subgroup of $\mathbf{G}(\mathbb{C})$ (i.e. $\mathbf{G}(\mathbb{C}) / P$ is a smooth projective variety, "generalize flag variety").

Example. Take $\mathbf{G}=\mathrm{SL}_{2}$, we have $\mathbb{H}=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2)$.
Let $K=\mathrm{SO}(2)=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{R})}(i)$. In $\mathrm{SL}_{2}(\mathbb{C})$, we have that $\left(\begin{array}{ll}0 & -1 \\ 1 & -i\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C})$ takes i to ∞.

$$
\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{C})}(\infty)=P=\left\{\left(\begin{array}{cc}
\star & \star \\
0 & \star
\end{array}\right)\right\}
$$

Flags. A flag is a sequence of vector spaces $\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{s}=\mathbb{C}^{n}$. Let $n_{i}=\operatorname{dim} V_{i} / V_{i-1}, n=n_{1}+\cdots+n_{s}$. The stabilizer of this flag is a block triangular matrix with s diagonal blocks (in the appropriate basis), where the i th is of size n_{i}. This is the parabolic subgroup stabilizing the flag.
Let $Y_{1}=\left\{\{O\} \subset L \subset \mathbb{C}^{2} \mid \operatorname{dim}(L)=1\right\}$. Then $\mathrm{SL}_{2}(\mathbb{C})$ acts transitively on Y_{1}.
The standard flag : $\{0\} \subset \operatorname{span}_{\mathbb{C}}\left(e_{1}\right) \subset \mathbb{C}$. Its stabilizer is $P==\left\{\left(\begin{array}{cc}\star & \star \\ 0 & \star\end{array}\right)\right\}$.
We have $Y_{1} \cong \mathrm{SL}_{2}(\mathbb{C}) / P \cong \mathbb{P}^{1}(\mathbb{C})$, the compact dual of \mathbb{H}.
Example. $\mathbf{G}=\mathrm{Sp}_{2 g}, X=\mathbb{H}_{g}=\operatorname{Sp}_{2 g}(\mathbb{R}) / U(g)$
Consider $\left(\mathbb{Z}^{2 g},\langle\cdot, \cdot\rangle\right)$ the symplectic lattice with basis $\left\{e_{1}, \ldots, e_{g}, f_{1}, \ldots f_{g}\right\}$, where $\left\langle e_{i}, e_{j}\right\rangle=\left\langle f_{i}, f_{j}\right\rangle$ and $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i j}$.
We have $\left.\left(\mathbb{C}^{2 g}\right),\langle\cdot, \cdot\rangle\right) \cong\left(\mathbb{Z}^{2 g},\langle\cdot, \cdot\rangle,\right) \otimes \mathbb{C}$.
Let

$$
Y_{g}=\left\{\{0\} \subset L \subset \mathbb{C}^{2 g} \mid \operatorname{dim}(L)=g,\langle x, y\rangle=0 \forall x, y \in L\right\}
$$

L here is a Lagrangian, i.e. maximal totally isotropic subspace.
Y_{g} is the Grassmannian of Lagrangian subspaces, and $\mathrm{Sp}_{2 g}(\mathbb{C})$ acts transitively on Y_{g}.
Standard flag. $0 \subset\left\langle e_{1}, \ldots, e_{g}\right\rangle \subset \mathbb{C}^{2 g}$. The stabilizer of the standard flag is

$$
P=\left\{\left[\begin{array}{cc}
A & \star \\
0 & \left(A^{-1}\right)^{T}
\end{array}\right] \in \operatorname{Sp}_{2 g}\right\} .
$$

Therefore, $Y_{g} \cong \mathrm{Sp}_{2 g} / P$.
We have an open set $Y_{g}^{+}=\left\{L \in Y_{g} \mid-i\langle x, \bar{x}\rangle>0\right.$ for all $\left.x \in L\right\}$.
$\mathrm{Sp}_{2 g}(\mathbb{R})$ acts transitively on Y_{g}^{+},

$$
\langle x, \bar{x}\rangle \underset{g \in \mathrm{Sp}_{2 g}(\mathbb{C})}{=}\langle g x, g \bar{x}\rangle \underset{g \in \mathrm{Sp}_{2 g}(\mathbb{R})}{=}\langle g x, \overline{g x},\rangle .
$$

$-i\langle\bar{x}, x\rangle=i\langle x, \bar{x}\rangle$, it is a hermitian form. The stabilizer in $\mathrm{Sp}_{2 g}(\mathbb{R})$ of a point in Y_{g}^{+}is $U(g)$.
Proposition. We have a $1-1$ correspondence
$\left\{\right.$ Smooth bundles $\left.\mathbf{G}(\mathbb{R}) \times_{K} V \rightarrow X\right\} \leftrightarrow\left\{\right.$ Algebraic bundles $\left.\mathbf{G}(\mathbb{C}) \times_{P} V \rightarrow \hat{X}\right\}$

- Left-to-right : Extend (V, σ) to $(V, \hat{\sigma})$.
- Right-to left : Restrict via $\beta: X \rightarrow \hat{X}$.

Proof. Given a representation (V, σ) of K, by the Weyl unitary trick we get a unique unitary representation of $K_{\mathbb{C}}$. We use the Levi decomposition $P=U \rtimes M$ where $M \cong K_{\mathbb{C}}$ (the particular levi factor here is the complexification of K). We can pullback the representation on M to P (equiv define a representation of P where U acts trivially). So we get $\mathbf{G}(\mathbb{C}) \times{ }_{P} V \rightarrow \hat{X}$ as an algebraic bundle.

Corollary. Pulling back via β, we realize $\mathbf{G}(\mathbb{R}) \times_{K} V \rightarrow X=\mathbf{G}(\mathbb{R}) / K$ to be holomorphic.

It was immediate previously that since $\mathbf{G}(\mathbb{R}) \times{ }_{K} V \rightarrow X$ is a holomorphic bundle, then $E_{v, \Gamma} \rightarrow \Gamma \backslash X$ is one as well (we just quotient by Γ, which is discrete so it stays holomorphic).
Bailey-Borel Theorem. $\Gamma \backslash X$ is a quasi-projective algebraci variety (called a Shimura variety), and $E_{V, \Gamma}$ are algebraic bundles.

