
Talk 4 : Adèles and approximation

Ed Belk

February 27th, 2019

1. Chinese Remainder Theorem, Adèles, Idèles, and ap-
proximation.

Let S be a finite set of finite places of Q. Given integers av, v ∈ S and a real
number εv > 0 there exists α ∈ Q such that

|α− av|v < εv ∀v ∈ S

|α|v ≤ 1 ∀v finite.

Let F denote a number field. Let Vf = Vf (F ) denote its set of finite places, and
V∞ the set of infinite places (this is a finite set). For a place v let Fv denote its
completion at v.

The adèles ring AF is defined as the product
′∏

v∈Vf

Fv ×
∏
v∈V∞

Fv,

where the left term is the restricted product with respect to
∏
v∈Vf

Ov i.e. the
subset of elements of the product with all but finitely many entries in the integer
ring Ov.

A base of open neighborhoods of AF looks like∏
v∈V∞

Uv ×
∏
v∈S
Uv ×

∏
v/∈S

Ov,

where Uv ⊂ Fv is an open subset and S ⊂ Vf is finite.

Theorem. One has

AF = F +

 ∏
v∈V∞

Fv ×
∏
v∈Vf

Ov

 ,

so the embedding F → AF given by x 7→ (x, x, x, · · · ) is discrete and cocompact.
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Proof. Case F = Q. We have AQ = Q + (R×
∏
p Zp).

Discreteness : ((−1, 1)×
∏
p Zp) ∩Q = {0}.

WEAK APPROXIMATION : F →
∏
v∈S Fv is dense (S finite).

STRONG APPROXIMATION : F + Fv0 is dense in AF for any place v0.
Equivalently F is dense in AF,f (finite adeles) if and only if |F\AF /K| = 1 (only
contains the identity element).

Idèles : The group IF = A×F is called the idèle group.

Theorem. The image of F× in IF is discrete.

By this theorem we can consider IF /F×, this is called the idèle class group,
denoted C`(F ).

There is a canonical surjection d : IF → R>0, x = (xv)v 7→
∏
v |xv|v.

Recall the product formula
∏
p≤∞ |x|p = 1 where x ∈ F×. Note that for each

place, we have to choose the right scaling of the absolute value so that we get
a Haar measure on the completion (take |x|v = `−.. where ` is the order of the
residue field).

Let I1F = Ker(d) ⊃ F×.

FACT.

• The group IF /F× is not compact (image under the norm d is surjective,
thanks to prod formula)

• The group I1F /F× is compact.

There is a surjection
C`(F )→ Cl(F )

a = (av)v 7→
∏
P

PvP(OP).

Theorem. (Finiteness of the class group) Let K =
∏
v∈Vf

K×v be compact
open in IF = Gm(AF ) then

F×IF,f/K is finite

The set IF,f denotes only the finite ideles (without the infinite places). Note
that F×\IF,f = F× × (

∏
v|∞ F×v )1\I1F is compact.

We have Kv = 1 + P
(
vkv) ⊂ O×v ⊂ F×V .

In the additive case, F\AF is also compact, and F\AF /Kv is always a singleton,
hence strong approximation, but for the case of Gm we only have that it is
finite. Similarly, if our group is the orthogonal group, this gives us groups of
isomophisms over local fields, and F , and it tells us that only finitely many
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equivalence classes over F are contained in any isomorphism class over local
fields.

The map det : GLn → GL1 = Gm gives us am injective map

GLn(F )\GLn(AF,f )/Kf → F×\GL1(Af )/ det(Kf )

Theorem1 1. Let K =
∏
v∈Vf

Kv be a compact open subgroup of SL2(AF )
then for v ∈ Vf

SL2(AF ) = SL2(F )
( ∏
v∈V∞

SL2(Fv)×Kf

)
.

Equivalently, there is a correspondence

ΓKf
\
∏
v∈V∞

SL2(Fv)
∼→ SL2(F )\SL2(A)/Kv,

where ΓKf
= SL2(F ) ∩Kf .

examples. Let F = Q, we have V∞ = {∞}.

1. Take Kf =
∏
p SL2(Zp). Then ΓKf

= SL2(Z).

2. Let K(N) =
∏
p|N

(
1 + pvp(N)M2(Zp)

)
∩ SL2(Zp)︸ ︷︷ ︸∏

p
{g∈SL2(Zp)|g≡I( mod N)}

×
∏

other SL2(Zp).

3. K0(N) =
∏
p{g ∈ GL2(Zp)|g =

(
? ?
0 ?

)
( mod N)}. We have K0(N) ∩

GL2(Q) = Γ0(N).

SL2(F )\SL2(A)/Kf = ΓKf
\SL2(F∞). in general (ex) :

G(F )\G(A)/Kf =
∏

[gf ]∈G(F )\G(Af )/Kf

ΓgfKfg
−1
g

where ΓKf
= G(F ) ∩Kf .

Fact. GL2(F )\GL2(Af )/K0(N)→ C`(F ) is independent of N .

Recalling that SL2 → Sp2, we extend the theorem 1 to

Theorem 1A. Let G = Sp2g with g ≥ 1 and let Kf =
∏
v∈Vf

Kv be a com-
pact open subgroup of G(AF ). Let ΓK = G(K) ∩K then there is a bijective
homeomorphism

G(F )\G(AF )/K ∼−→ ΓK\
∏
v∈V∞

G(Fv).
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We can quotient on the right by SO2(R) = U(1)

SL2(Z)︸ ︷︷ ︸
Γ(1)

\SL2(R) ∼→ SL2(Q)\SL2(A)/
∏
p

SL2(Zp).

Γ(1)\H = Γ(1)\(SL2(R/SO2(R)) = SL2(Z)\SL2(R)/SO2(R) ∼→ SL2(Q)\SL2(AQ)/K∞Kf ,

where K∞ = U(1) = SO2(R) and Kf =
∏
p SL2(Zp).

We have HSiegel ∼= Sp2g(R)/U(g)

ΓKf
\HSiegel ∼→ Sp2g(Q)\Sp2g(AQ)/K∞Kf .

Functions on Γ\Hg can become functions on the quotient . Starting with
f : Γ\Hg → C : f(Γz) = f(z) we build F : Sp2g(Q)\Sp2g(AQ)/K∞Kf → C by
[g] 7→ f(g acting on i1g).

Starting with F : G(F )\G(A)/K∞Kf → C given z ∈ H write z = g∞i for some
g∞ ∈ G(F∞) set

f(z) = F ([g∞; 1]) 1 ∈ G(Af )

Starting with f : Γ\H → C given X ∈ G(F )\G(A)/K∞Kf , we can write
X = [g∞, gf ]. G(Af ) = G(F )Kf so gf = γkf . So X = [γ−1g∞; 1]. Set
F (x) = f(γ−1g∞i).

2. Eisenstein series

Recall the Eisenstein series (for Γ(1))

E2k(z) = 1
2
∑

(c,d)=1

1
(cz + d)2k =

∑
γ∈Γ∞\Γ(1)

j(γ, z)−2k,

where Γ∞ =
{(

1 ?
0 1

)
|x ∈ Z

}
, and j

((
a b
c d

)
, z = cz + d

)
.

If k > 1 then this is good and satisfies

E2k(γz) = j(γ, z)−2kE2k(z) for γ ∈ SL2(Z).

Replace −2k with arbitrary s ∈ C, we still get this for Re(s) >> 0,

E−s(γz) = j(γ, z)sE−s(z).
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We have an isomorphism Γ∞\Γ(1) ↔ B(Q)\G(Q) where G = SL2 and B ={(
? ?
0 ?

)}
.

We can write
E−s =

∑
γ∈B(Q)\G(Q)

j(γ, z)s,

satisfying the same property.

Γ(N) = {g ∈ Γ(1)|g ≡ 1 mod N} .

σi · ∞ = xi

E(i)
s (z;N) =

∑
γ∈Γ0(N)\Γ(N)

j(σ−1
i γ, z)−s.

In general, for γ =
[
A B
C D

]
∈ Sp2g(Z), define j(γ, τ) = Cτ+C, where τ ∈ HSiegel.

We have
E(τ) =

∑
γ

(det j(γ, τ))−s

the sum taken over the set of representations for GLg(Z)\Sp2g(Z).
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